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Abstract

We solve the frequency assignment problem (FAP) in
satellite communications with transiently chaotic neural
networks (TCNN). The objective of this optimization prob-
lem is to minimize cochannel interference between two
satellite systems by rearranging the frequency assignments.
For an N -carrier-M -segment FAP problem, the TCNN con-
sists of N × M neurons. The performance of the TCNN is
demonstrated through solving a set of benchmark problems,
where the TCNN finds comparative if not better solutions
compared to the existing algorithms.

1 Introduction

Wireless communication has received a lot of attention
these years due to its various applications including mobile
systems, broadcasting, and satellite communications. One
important research direction in wireless communication is
interference minimization, so as to guarantee a desired level
of quality of service. The frequency rearrangement is an ef-
fective complement alongside with the technique to reduce
the interference itself. Among diverse formulations and ob-
jectives of frequency assignment problems (FAP) [9, 8, 15],
we focus on frequency assignments in satellite communica-
tions in this paper.

Mizuike and Ito [7] proposed segmentation of frequency
band and presented a method based on the branch-and-
bound approach for the FAP in satellite communications.
The carrier is uniformly divided to unit segments with ar-
bitrary width. The application of their method showed that
the method was effective in the interference minimization.
Funabiki and Nishikawa [4] proposed a gradual neural net-
work (GNN), where the cost optimization is achieved by a

gradual expansion scheme and a binary neural network is
in charge of constraints. Salcedo-Sanz et al. combined the
Hopfield network with simulated annealing (HopSA) [14]
and the genetic algorithm (NG) [13] to solve the FAP in
satellite communications. As a kind of hybrid algorithms,
there is an increase in the computational cost of the HopSA
and the NG compared with the GNN [4, 14].

Chaotic neural networks were presented by Nozawa [10,
11] through adding negative self-feedback connections into
Hopfield networks. The simulation on several combinato-
rial optimization problems showed that chaotic search is ef-
ficient in approaching the global optimum or sub-optima.
Chen and Aihara [2] proposed a transiently chaotic neural
network (TCNN) by introducing a decaying negative self-
feedback. The TCNN, which is also known as chaotic sim-
ulated annealing (CSA) [16], is a powerful tool for com-
binatorial optimization problems [3, 17, 5]. In this paper,
we solve the FAP in satellite communications through the
TCNN, and simulation results show that the performance of
the TCNN is comparative with existing heuristics.

This paper is organized as follows. We review the TCNN
in Section 2. The formulation of the TCNN on the FAP is
described in Section 3. Parameters settings and simulation
results are presented in Section 4. Finally, we conclude the
contribution of this paper in Section 5.

2 Transiently chaotic neural networks

The TCNN [2] model is described as follows:

xij(t) =
1

1 + e−yij(t)/ε
(1)

yij(t + 1) = kyij(t) + α[
N∑

p=1,p�=i

M∑
q=1,q �=j

wijpqxpq(t)

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00  © 2007



+Iij ] − z(t) [xij(t) − I0] (2)

z(t + 1) = (1 − β)z(t) (3)

where the variables are

yij = internal state of neuron ij;

xij = output of neuron ij;

ε = the steepness parameter of the transfer

function (ε ≥ 0);
k = damping factor of the nerve membrane

(0 ≤ k ≤ 1);
α = the positive scaling parameter for inputs;

wijpq = the connection weight from neuron ij

to neuron pq;

Iij = input bias of neuron ij;

z(t) = self-feedback neuronal connection

weight (z(t) ≥ 0);
I0 = positive parameter;

β = damping factor for the time-dependent

neuronal self coupling (0 ≤ β ≤ 1).

wijpq is confined to the following conditions [6]:

N∑
p=1,p�=i

M∑
q=1,q �=j

wijpqxpq(t) + Iij = −∂E/∂xij (4)

where E denotes the energy function, which is designed to
have the minimum value at the optimal solution of the com-
binatorial optimization problem. Connection weights be-
tween neurons (wijpq) are derived by Equation (4) so that
the energy function will decrease monotonously as neurons
update after the self-feedback interaction vanishes (z = 0).

3 Problem formulation

We use the FAP formulation given by [7] and used
in [4, 14, 13]. As indicated in [7], the objective of the FAP
includes two parts, i.e., minimization of the largest interfer-
ence after reassignment and minimization of the total ac-
cumulated interference between systems. Fig.1 shows the
segmentation method for a 4-carrier-6-segment FAP and an
example of interference matrix E(I) = (eij) .

We continue using the neural network formulation given
by Funabiki and Nishikawa [4]. An N -carrier-M -segment
FAP between two systems is formulated on an N ×M neu-
ral network. If the neuron output xij = 1, then carrier i
is assigned to segment j, and no assignments are made if
xij = 0.

Figure 1. Segmentation and interference ma-
trix [4]. Cij denotes the j-th carrier in sys-
tem i. Sij stands for the j-th segment in sys-
tem i. (a) Segmentation of the two systems
and the optimum assignment corresponds to
the followed interference matrix. (b) the inter-
ference matrix E(I) for a 4-carrier-6-segment
system. * denotes infinity.
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The energy function for the TCNN of the FAP is defined
as [7, 4, 12]:

E =
W1

2

N∑
i=1

(
M∑

j=1

xij − 1)2

+
W2

2

N∑
i=1

M∑
j=1

N∑
p=1

p�=i

min(j+ci−1,M)∑
q=max(j−cp+1,1)

xijxpq

+
W3

2

N∑
i=1

M∑
j=1

xij(1 − xij) +
W4

2

N∑
i=1

M∑
j=1

dijxij (5)

where Wi, i = 1, . . . , 4, are weighting coefficients. The
W1 and W2 terms are designed to guarantee that the solu-
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Table 1. Specifications of the FAP instances
used in the simulation.

# Number of Number of Range of Range of
carriers N segments M carrier length interference

1 4 6 1 - 2 5 - 55
2 4 6 1 - 2 1 - 9
3 10 32 1 - 8 1 - 10
4 10 32 1 - 8 1 - 100
5 10 32 1 - 8 1 - 1000
6 18 60 1 - 8 1 - 50
7 30 100 1 - 8 1 - 100
8 50 200 1 - 8 1 - 1000

tion is a feasible one. The W3 term is used to force neuron
outputs approach 0 or 1 [12]. The W4 term optimizes the
interference after the frequency rearrangement. max(x, y)
returns the larger one between (x, y) and min(x, y) finds
the smaller value between (x, y). ci denotes the car-
rier length of carrier i. Cost matrix D = (dij , i =
1, . . . , N ; j = 1, . . . , M) is computed from the interference
matrix E(I) [4]. dij is the element on row i column j of the
cost matrix D.

The neuron output is continuous between 0 and 1. We
convert the continuous output xij to discrete neuron output
xb

ij as follows [1]:

xb
ij =

{
1, ifxij > 1

NM

∑N
p=1

∑M
q=1 xpq(t);

0, otherwise.
(6)

4 Simulation results

We simulate the TCNN for the FAP on 8 benchmarks.
The specifications of the 8 benchmarks are listed in Table 1.
Benchmarks 1-5 are from [4] and 6-8 are from [14]. Once
the difference of the energy function value between two it-
eration steps is smaller than a threshold (0.00001) in 3 con-
secutive steps or the number of iteration steps exceeds a pre-
defined number (15000 in our simulation), the iteration is
terminated.

Initial inputs of neural networks yij(0), (i =
1, . . . , N, j = 1, . . . , M) are randomly generated from
[−1, 1]. Parameters for the neural network are chosen as
follows [2]:

ε = 0.004, k = 0.999, α = 0.0015,
β = 0.001, z(0) = 0.1.

The weight coefficients of the energy function Wi, i =

Table 2. The performance of the TCNN on 8
instances. # denotes the instance number.
IL is the best largest interference and IT is
the best total interference. “Opt rate” stands
for the rate that the TCNN reached the opti-
mum in the 1000 runs. “Ave. error” denotes
the average error from the optimum. T is the
average number of iteration steps. η is the
convergence rate. “SD” stands for “standard
deviation”.

# IL T η
Best Opt rate Ave. IT mean±SD (%)

% error
1 30 32.1 5.4 100 426.5 ± 81 100
2 4 48.8 0.8 13 829.4 ± 117 100
3 7 21.6 1.3 85 2485 ± 153 96.4
4 64 16.7 10.5 919 2383 ± 264 87.5
5 697 18.6 53.8 7574 2342 ± 280 61.0
6 49 26.7 28.3 963 2651 ± 391 53.7
7 98 21.3 1.2 3889 3716 ± 389 67.1
8 994 27.4 3.9 60587 4839 ± 447 52.2

1, . . . , 4 are chosen as follows :

W1 = 1.0, W2 = 1.0, W3 = 0.7, W4 = 0.0002.

It is necessary to tune these coefficients to obtain better per-
formance of the TCNN. Along with the growing problem
size, the value of the W4 term increases, so does the dif-
ferences between numerical values of the W1 term and W2,
W3 terms. Hence, we slightly decrease W2 and W3, but
increase W4 as the problem size grows.

The algorithm is run 1000 times with different randomly
generated initial neuron states on each of 8 benchmarks. Ta-
ble 2 shows results, including the best largest interference
IL, the rate to reach the optimum (Opt rate), the average
error from the optimal result (Ave. error), the convergence
rate η (the ratio at which the neural network finds a fea-
sible solution in 1000 runs), and the total interference IT

when the optimum of the largest interference is found. The
average iteration steps T and standard deviations are also
shown in this Table. The convergence rate denotes the ratio
that the neural network finds a feasible solution at the end
of iterations. The results show that the TCNN is effective
in reducing the largest interference and total interference by
rearranging the frequency assignment.

Comparison of the TCNN with the GNN [4] and the
HopSA [14] is shown in Table 3. Results of the GNN and
the HopSA are from references [4, 14]. As authors in [14]
did not publish the average value, only the best result is in-
cluded in Table 3. We show that the TCNN is comparable
with the GNN and the HopSA in terms of the largest inter-
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Table 3. Comparison of simulation results (largest interference and total interference) obtained by
the TCNN, GNN and HopSA for instances 1 to 8. “SD” stands for “standard deviation”.

# GNN [4] HopSA [14] TCNN
Largest Total Largest Total Largest Total

Best mean Best mean Best mean±SD Best mean±SD
1 30 31.5 100 100.8 N/A N/A 30 35.4±4.6 100 112.6±13.7
2 4 4.9 13 15.4 N/A N/A 4 4.8±0.4 13 15.4±0.8
3 7 8.1 85 99.4 N/A N/A 7 8.4±1.3 85 90.6±16.7
4 64 77.1 880 982.0 84 886 64 74.1±12.5 880 1045±125
5 640 766.8 8693 9413.9 817 6851 697 749±73.8 7574 8527±238
6 49 N/A 1218 N/A 48 1002 49 77.3±9.3 963 1126±132
7 100 N/A 4633 N/A 98 4093 98 99.2±1.2 3889 4722±282
8 1000 N/A 70355 N/A 988 61330 994 998±3.9 60587 70340±2295

ference and outperforms in terms of the total interference,
especially on large-size problems.

5 Conclusion

In this paper, we solve the FAP in satellite communica-
tions through the TCNN. With rich and complex dynamics,
the TCNN has more chance to reach the global optimum
compared with the HNN. Simulation results on 8 bench-
mark problems show that the TCNN can find better solu-
tions compared to the previous methods with very low com-
putational cost.
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