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Abstract

The objective of the satellite frequency assignment problem (FAP) is to
minimize the cochannel interference between two satellite systems by
rearranging the frequency assignments. This NP-complete problem is
difficult to solve, especially for large-size problems, and is yet grow-
ing in importance, since we increasingly depend on satellites to ful-
fill our communications needs. In this paper, we propose a transiently
chaotic neural network with variable thresholds (TCNN-VT) by letting
the threshold of a neuron vary with the interference of the assignment
which the neuron represents. We apply this new model on the FAP in
satellite communications.

Keywords: Combinatorial optimization, TCNN, variable threshold, chaos,
frequency assignment problem, FAP.

1 Introduction

Frequency assignment problems (FAP) [1, 2, 3] appear in various areas,
including mobile telecommunications, broadcasting, military operations, and
satellite communications. Among diverse formulations and objectives of the



FAP, we focus on minimization of system interference for fixed frequency as-
signments in satellite communications. Interference in satellite communica-
tions depends on transmitter power, channel loss, receiver sensitivity, and an-
tenna gains. Frequency rearrangements are an effective complement alongside
with the reduction of interference itself.

This paper continues to use the FAP formulation given by [4] and used
in [5, 6, 7]. Mizuike and Ito [4] proposed segmentation of frequency band to
avoid the treatment of the nonlinearity and presented a method based on the
branch-and-bound approach. The carrier is uniformly divided to a collection
of consecutive unit segments whose width can be set arbitrarily. The applica-
tion of their method on both the intersystem problem and intrasystem problem
showed that the method was helpful in the satellites orbit separation and noise
reduction for carriers [4].

Funabiki and Nishikawa [5] solved the FAP with a gradual neural network
(GNN) which they proposed, where cost optimization is achieved by a gradual
expansion scheme and a binary neural network is in charge of the satisfaction
of constraints. In the gradual expansion scheme, neurons are classified into
P groups in the order of the cost which firing of the neuron will cause. They
then activate one additional group of neurons in each phase until a solution
is found or all P groups have been added. Hence, optimization is obtained
by gradually increasing the number of activated neurons in the order of cost.
Salcedo-Sanz et al. combined the Hopfield network with simulated anneal-
ing [6] and the genetic algorithm [7] to solve the FAP in satellite commu-
nications. The Hopfield network with simulated annealing (HopSA) [6] and
the neural-genetic algorithm (NG) [7] are claimed to be more scalable than
previous algorithms. However, as a kind of hybrid algorithms, there is an in-
crease in the computational cost of the HopSA and the NG compared with the
GNN [5, 6].

Nozawa [8, 9] modified a Hopfield network model with a negative self-
feedback connection and obtained a neural network model as the globally
coupled map (GCM). The solution of the traveling salesman problem (TSP)
showed that chaotic search by the GCM model is efficient in approaching the
global optimum or sub-optima. Chen and Aihara [10] proposed a transiently
chaotic neural network (TCNN) by introducing transiently chaotic dynamics
into the Hopfield neural network through a decaying negative self-feedback.
The TCNN, which is also known as chaotic simulated annealing (CSA) [11],
is not a problem-specific but a general method for combinatorial optimiza-
tion problems [12, 13, 14]. With autonomous decreases of the self-feedback
connection, TCNNs are more effective in solving combinatorial optimization



problems compared to the HNN. He et al. [15] used the TCNN combined with
a multistage self-organizing algorithm to solve the cellular channel assignment
problem where the TCNN is in charge of searching for the optimal assignment.

In this paper, we further develop the TCNN by proposing a transiently
chaotic neural network with variable thresholds (TCNN-VT). The thresholds
are designed to minimize the largest interference after frequency rearrange-
ments.

This paper is organized as follows. We review the TCNN and propose the
TCNN-VT in Section 2. The formulation of the TCNN-VT on the FAP is de-
scribed in Section 3. Instances generating, parameters settings, and simulation
results are presented in Section 4. Finally, we conclude the contribution of this
paper in Section 5.

2 Transiently Chaotic Neural Networks with Variable
Thresholds

The TCNN [10] model is described as follows:

xi j(t) =
1

1 + e−yi j(t)/ε
(1)

yi j(t + 1) = kyi j(t) + α
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z(t + 1) = (1 − β)z(t) (3)

where xi j and yi j are output and internal state of neuron i j, respectively. wi jpq

is the connection weight from neuron i j to neuron pq, which is confined to the
following conditions [16]:

N∑

p=1,p,i

M∑

q=1,q, j

wi jpqxpq(t) + Ii j = −∂E/∂xi j (4)

Furthermore, ε denotes the steepness parameter of the neuron activity function
(ε > 0). k is the damping factor of the nerve membrane (0 ≤ k ≤ 1). α is the
positive scaling parameter for inputs. Ii j is an input bias of neuron i j. z(t) is
the self-feedback neuronal connection weight (z(t) ≥ 0). β is the damping fac-
tor for the time-dependent neuronal self coupling (0 ≤ β ≤ 1). E denotes the
energy function, whose minimization corresponds to optimal solutions of the



combinatorial optimization problem. The connection weights between neu-
rons are derived from the energy function by Equation (4) so that the energy
function will decrease monotonously as neurons update after the self-feedback
interaction vanishes (z = 0).

In the original TCNN [10], I0 is a constant positive bias in the self-feedback
term. We propose the TCNN-VT by varying the threshold with the interference
of the assignment which firing of the neuron represents and denote it as I(0)

i j

(0 ≤ I(0)
i j < 1).

I(0)
i j = 1 − di j

di,max
(5)

where di j is the element on row i column j of the cost matrix D, and di,max

is the maximum value in row i of the matrix D. Cost matrix D = (di j, i =

1, . . . ,N; j = 1, . . . , M) is obtained from the interference matrix E(I) = (ei j, i =

1, . . . , M; j = 1, . . . , M) [5]. Note that the maximum value of the cost matrix
does not include infinity.

Hence, the new TCNN-VT model is described as:

yi j(t + 1) = kyi j(t) + α
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3 Problem Formulation

Detail descriptions and several illustrations on cochannel interference in
satellite communications can be found in [4, 5, 6]. The objective of the FAP
includes two part, i.e., minimization of the largest interference after reassign-
ment and minimization of the total accumulated interference between systems.

We continue using the neural network formulation given by Funabiki and
Nishikawa [5] as their model needs less computation resource compared with
the one proposed by Kurokawa and Kozuka [17]. An N-carrier-M-segment
FAP between two systems is formulated on an N × M neural network. If the
neuron output xi j = 1 at the end of the neuron update, then carrier i is assigned
to segment j, and no assignments are made if xi j = 0. The novel aspect of the
TCNN-VT is that the threshold in the self-feedback term of every neuron is
dependent on the interference of the frequency assignment which the neuron
represents.

According to [4, 5, 18], the energy function for the TCNN-VT of the FAP



is defined as:
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where Wi, i = 1, . . . , 4, are weighting coefficients, whose choices are based on
the rule that all terms in the energy function should be comparable in magni-
tude, so that none of them dominates. Function max(x, y) returns the larger
one between (x, y) and min(x, y) finds the smaller value between (x, y).

The W1 term forces that every segment in system 2 is assigned to one and
at most one segment in system 1. The W2 term guarantees that all the segments
of one carrier in system 2 are assigned to consecutive segments in system 1 in
the same order [5]. The W3 term is used to force neuron outputs to approach a
corner of the hypercube, i.e., (0 or 1) [18]. The W4 term is needed to fulfill the
optimization of the total interference after the frequency rearrangement.

From Equations (2), (4) and (7), the dynamic equation for the TCNN-VT
can be obtained:
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Different with Salcedo-Sanz et al. [6, 7], who use binary Hopfield networks
with neurons outputting only 0 or 1, we use a continuous neural network, i.e.,
the neuron output is continuous between 0 and 1. We convert the continuous
output xi j of neuron (i, j) to discrete neuron output xb

i j as follows [19]:

xb
i j =

{
1, ifxi j >

1
NM

∑N
p=1

∑M
q=1 xpq(t);

0, otherwise.
(9)

4 Simulation Results and Discussions

An iteration is terminated once a feasible assignment is obtained or the
number of iteration steps exceeds a predefined maximum number (15000 in
our simulation).



Table 1. Specifications of the FAP instances used in the simulation.

Instance Number of Number of Range of Range of
carriers N segments M carrier length interference

1 4 6 1 - 2 5 - 55
2 4 6 1 - 2 1 - 9
3 10 32 1 - 8 1 - 10
4 10 32 1 - 8 1 - 100
5 10 32 1 - 8 1 - 1000
6 30 100 1 - 10 1 - 100
7 50 200 1 - 10 1 - 100
8 80 200 1 - 5 1 - 100

The specifications of the 8 instances are listed in Table 1. Instances 1
to 5 are from [5], where these are called instances 1-5, respectively. Using
the instance generation algorithm in Appendix I, we generated instances 6 to
8 to show the performance of the TCNN-VT on large-size problems. The
interference matrices E(I) for instances 6 to 8 are randomly generated from
[1, 100].

Parameters for the neural network are chosen as follows [10]: ε = 0.004,
k = 0.99, α = 0.0015, β = 0.001, and z(0) = 0.1. Initial inputs of neural
networks yi j(0), (i = 1, . . . ,N, j = 1, . . . , M) are randomly generated from
[−1, 1].

The weight coefficients of the energy function Wi, i = 1, . . . , 4, for all the
8 instances are listed in Table 2. The tuning of these weight coefficients is
necessary to obtain better performance. From our experience, along with the
growing problem size, the total aggregate interference the W4 term increases,
so does the differences between numerical values of the W1 term and W2, W3
terms. Hence, we slightly decrease W2 and W3, but increase W4 as the problem
size grows.

We run the TCNN-VT on each instance 1000 times with different randomly
generated initial neuron states. Table 3 shows results for every instance, includ-
ing the best largest interference IL, the rate to reach the optimum (Opt rate),
the average error from the optimal result, the convergence rate η (the ratio at
which the neural network finds a feasible solution in 1000 runs), and the total
interference IT when the optimum of the largest interference is found. The



Table 2. Weight coefficients Wi, i = 1, . . . , 4, of the energy function for all the 8
instances. W1 is fixed at 1.0.

# W2 W3 W4

1 1.0 0.7 0.00015

2 1.0 0.7 0.00015

3 0.4 0.7 0.00015

4 0.4 0.7 0.0002

5 0.35 0.7 0.0002

6 0.2 0.6 0.0002

7 0.2 0.6 0.0002

8 0.2 0.6 0.0002

average iteration steps T and standard deviations are also shown in this Table.
The convergence rate denotes the ratio that the neural network finds a feasible
solution at the end of iterations. The results show that the TCNN-VT is effec-
tive in reducing the largest interference and total interference by rearranging
the frequency assignment.

Table 4 shows results obtained by the TCNN-VT and the comparison with
the GNN [5] and the HopSA [6]. Results of the GNN are from references [5,
6], hence we only have the GNN results on instances 1-5. Results of the
HopSA on instances 1-5 are also from the reference [6]. As authors in [6]
did not publish the average value of the largest and total interference which
they found, only the best value is included in Table 4. For instances 6-8, we
rerun the HopSA algorithm from the authors of [6].

In Table 4, we show that the TCNN-VT is comparable with the GNN in
terms of the largest interference and outperforms the GNN in terms of the total
interference. Compared with the HopSA, the TCNN-VT is more efficient,
especially on large-size problems. For instance 7 which is a 50-carrier-200-
segment FAP, the best largest interference and total interference obtained by
the TCNN-VT are 117 and 5839, respectively, whereas for the HopSA, they are
124 and 6533, respectively. The HopSA fails to obtain a solution for instance



Table 3. The performance of the TCNN-VT on 8 instances. # denotes the instance
number. IL is the largest interference and IT is the total interference. The interference
is shown as the best and average values (Best/ Ave). “Opt rate” stands for the rate
that the TCNN-VT reached the optimum in the 1000 runs. T is the average number of
iteration steps. η is the convergence rate. “SD” stands for “standard deviation”.

# IL IT T η

(Best/ Ave) Opt rate Average (Best/ Ave) mean±SD (%)

% error

1 30/ 35.4 64.0 7.7 100/ 112.6 1191 ± 273 100

2 4/ 4.8 59.4 0.81 13/ 15.4 1799 ± 317 100

3 7/ 8.4 29.3 1.46 96/ 130.6 2485 ± 96.5 92.4

4 70/ 94.1 15.8 14.7 828/ 1145 2383 ± 252 87.5

5 661/ 849 23.7 121 6910/ 9527 3075 ± 268 86.6

6 91/ 97.3 22.8 11.6 3296/ 3826 3716 ± 484 77.1

7 117/ 137 28.1 20.4 5839/ 5722 3834 ± 397 78.4

8 134/ 150 21.5 27.5 6008/ 6340 4319 ± 430 73.3

8 due to the excessive computation time. “N/A" represents the situation that
the algorithm cannot find solutions in one month. In comparison, our proposed
TCNN-VT finds a feasible solution in less than one minute of CPU time on all
the instances.

We listed the computation times of the TCNN-VT and the HopSA [6] on
all 8 instances in Table 5. The computation time is measured in seconds (Sec.).
Also the computation time is calculated only based on convergence runs. As
shown in the Table, the TCNN-VT is much more computational efficient com-
pared with the HopSA. Also, the advantage of the TCNN-VT is more and more
distinctive as the problem size grows.

5 Conclusion

We propose a transiently chaotic neural network with variable thresholds
(TCNN-VT) by varying the threshold in the self-feedback term of the TCNN
model. With rich and complex dynamics, the new TCNN-VT maintains the
advantage of the TCNN.

We solve the FAP in satellite communications with the TCNN-VT. To min-



Table 4. Comparison of simulation results (largest interference and total interference)
obtained by the TCNN-VT, GNN and HopSA for instances 1 to 8.

# GNN [5] HopSA [6] TCNN-VT

Largest Total Largest Total Largest Total

(Best/Ave) (Best/Ave) (Best/Ave) (Best/Ave)

1 30/ 31.5 100/ 100.8 30 100 30 / 35.4 100 / 112.6

2 4/ 4.9 13/ 15.4 4 13 4 / 4.8 13 / 15.4

3 7/ 8.1 85/ 99.4 7 85 7 / 8.4 96 / 130.6

4 64/ 77.1 880/ 982.0 84 886 70 / 94.1 828 / 1145

5 640/ 766.8 8693/ 9413.9 817 6851 661 / 849 6910 / 9527

6 N/A N/A 98 3396 91 / 97.3 3296 / 3826

7 N/A N/A 124 6533 117 / 137 5839 / 5722

8 N/A N/A N/A N/A 134 / 150 6008 / 6340

Table 5. Comparison between the HopSA and the TCNN-VT on computation time
(Sec.). Results are displayed as mean±SD (standard deviation).

# HopSA TCNN-VT

1 1.0±0.0 0.026±0.1

2 1.0±0.0 0.038±0.1

3 33.0±0.0 0.53±0.49

4 33.8±0.8 0.46±0.45

5 33.0±0.5 0.47±0.42

6 2845±528 16.2±2.6

7 8916±1529 49.0±3.4

8 N/A 65.9±4.1



imize the largest interference, the neuron is designed to have a larger threshold
if this neuron presents an assignment with smaller interference. The simula-
tion results on 8 benchmark instances demonstrate that the TCNN-VT can find
better solutions than existing algorithms.

Appendix I

The following procedure describes the instance generation algorithm for a
N-carrier-M-segment FAP.

• Choose the number of carriers N and the number of segments M for the
instance.

• Select the values of the range of carrier length and the range of interfer-
ence between the two systems.

• Generate the set of carrier lengths ci, (i = 1, . . . ,N) and the interference
matrix E(I) (M × M) using uniformly distributed random values in the
range that we defined, respectively.

Appendix II

The following procedure describes the TCNN-VT algorithm on the FAP.

For RUN = 1, . . . , 1000:

• STEP 1: Initialization. T = 1. Read in the instance informa-
tion. Set up the parameters. Compute the threshold value for each
neuron. and initialize the neural network status.

• STEP 2: Do neuron updating.

• STEP 3: Validate outputs of neurons. T++.

– IF a valid solution is found, i.e., E1 and E2 equal to zero, then
store the result.

– Otherwise IF the number of iterations T reaches T_MAX,
then the algorithm does not converge.

– Otherwise return to STEP 2



IF Run < 1000, Run++. Go back to STEP 1.
Otherwise go to STEP 4

• STEP 4 :Calculate the statistical result for the performance of the
TCNN-VT, including the convergence rate and the best, average,
and standard deviation of interference results.
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