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Abstract—Spectral band power features are one of the most 
widely used features in the studies of electroencephalogram 
(EEG)-based emotion recognition. The power spectral density of 
EEG signals is partitioned into different bands such as delta, theta, 
alpha and beta band etc. Though based on neuroscientific 
findings, the partition of frequency bands is somewhat on an ad-
hoc basis, and the definition of frequency ranges of the bands of 
interest can vary between studies. On the other hand, it is also 
arguable that one definition of power bands could perform equally 
well on all subjects. In this paper, we propose to use autoencoder 
to automatically learn from each subject the salient frequency 
components from power spectral density estimated as 
periodogram by Fast Fourier Transform (FFT). We propose a 
network architecture especially for EEG feature extraction, one 
that adopts hidden unit clustering with added pooling neuron per 
cluster. The classification accuracy with features extracted by our 
proposed method is benchmarked against that with standard 
power features. Experimental results show that our proposed 
feature extraction method achieves accuracy ranging from 44% to 
59% for three-emotion classification. We also see a 4-20% 
accuracy improvement over standard band power features. 

Keywords—emotion classification; electroencephalogram 
(EEG); brain-computer-interface (BCI); power spectral density; 
unsupervised feature extraction; autoencoder 

I. INTRODUCTION 

Affective brain-computer-interface (BCI) [1] envisions an 
emotion-aware interaction between human and machine. The 
goal of an affective BCI is to detect the emotional states of the 
user via electroencephalogram (EEG) signals and to respond to 
the user accordingly. Such a BCI could potentially enrich the 
user’s experience during the interaction with a machine. EEG-
based affective BCI does not rely on explicit inputs from the 
user, but on direct measurement of spontaneous brain activities. 
Thus, this modality could potentially reveal the truly-felt 
emotions of the user. 

A closed-loop affective BCI generally consists of signal 
acquisition, feature extraction, neural pattern classification and 
feedback to the user. Feature extraction and neural pattern 
classification are arguably the most crucial parts in the loop. 
Spectral band power features have been one of the most widely 

used features [2] in BCI studies and EEG-based applications. 
Despite their popular use, however, there lacks a consensus on 
the definition of frequency ranges—different studies respect 
different definitions. On the other hand, we argue that the most 
discriminative frequency components with respect to the task in 
question are subject-specific, that is, it is difficult to find a 
common definition of frequency ranges that could perform 
equally well on all subjects. In view of this, we propose to use 
autoencoder to learn from each subject the subject-specific, 
salient frequency components from the power spectral density 
of EEG signals. Building upon the trained autoencoder, we 
propose a network architecture especially for EEG feature 
extraction, one that adopts hidden neuron clustering with added 
pooling neuron per cluster. The classification performance using 
features extracted by our proposed method is benchmarked 
against that using band power features. 

The remainder of the paper is organized as follows. Section 
II introduces the dataset based on which we carry out the 
experiment. Section III explains the methodologies. Section IV 
documents the experiments. Section V presents the experimental 
results with discussions. Section VI concludes the paper. 

II. DATASET 

In this study, we use a publicly available affective EEG 
dataset SEED contributed by Zheng et al. [3]. The dataset 
contains 15 subjects, each subject taking three recording 
sessions during one month at an interval of two weeks between 
successive sessions. In each session, each subject was presented 
fifteen movie clips to induce the desired emotional states: 
positive, neutral and negative, with five movie clips assigned to 
each emotion. Sixty-two-channeled (see Fig. 1) EEG signals 
were simultaneously recorded when the subject was exposed to 
the affective stimuli, at a sampling rate of 1000 Hz. The EEG 
signals were then down-sampled to 200 Hz and post-processed 
by a 75 Hz low-pass filter by the authors. The same affective 
stimuli were used for all three sessions. The resultant dataset 
contains fifteen EEG trials corresponding to fifteen movie clips 
per subject per session. Each trial lasts for three to five minutes, 
depending on the length of the movie clip. The trial IDs and their 
corresponding emotion states are listed in Table I. 
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III. METHODS 

Before feature extraction, we visually inspect the signal 
quality of all trials. Twenty-one EEG channels are rejected due 
to signal quality issues (e.g., loose electrode contact). The 
remaining 41 channels are used for further processing, including 
AF3, C2, C3, C4, C5, C6, CB1 (cerebellum), CB2, CP1, CP2, 
CP3, CP4, CP5, F1, F4, F6, F8, FC1, FC3, FC4, FC6, FP1, FP2, 
FPZ, FT7, FT8, FZ, O1, O2, OZ, P2, P4, P6, P8, PO4, PO5, 
PO7, PO8, PZ, TP7 and TP8, as shown in Fig. 1. All EEG trials 
except the shortest one are truncated at the end to have the same 
length as the shortest trial, which is 185-second. Each EEG trial 
is then segmented into multiple 4-second-long sections (each 
section equaling to 800 sampling points) without overlapping 
between any two successive sections. As such, each trial yields 
46 sections. Features are extracted out of each section. 

A. Power Feature Extraction 
Band power features are one of the most widely used 

features in the context of EEG-based emotion recognition [2]. 
Though based on neuroscientific findings, the frequency band 
ranges of interest are somewhat defined on an ad-hoc basis and 
vary between studies. In our study, we follow such definition 
[2]: delta band (1-4 Hz), theta band (4-8 Hz), alpha band (8-12 
Hz), and beta band (12-30 Hz). We do not include the gamma 
band (>30 Hz) in this study, as the gamma components are more 
artifact-prone. 

Let � ∈ ℝ�×� be one section of EEG signals, where � = 41 
is the number of channels and � = 800 the number of points 
sampled. The power spectral density of �(	, : ) is estimated as 
periodogram by Fast Fourier Transform (FFT), where �(	, : ) is 
the 	th row of �. Since one row comprises 800 points sampled 
at a rate of 200 Hz, the resolution of the periodogram is 0.25 Hz. 
The power features are computed by averaging the periodogram 
over the target frequency ranges defined above. The final feature 
vector is a concatenation of the features of the same frequency 
band derived from all 41 channels. The dimension of the feature 
vector is 41 when using delta band, theta band, alpha band, or 

beta band alone. In addition, we also combine all power bands 
at feature level by concatenating the feature vectors of four 
bands. The feature vector is of 41×4 = 164 dimensions. Each 
trial yields 46 samples per feature. 

B. Autoencoder 
An autoencoder is a neural network that is trained to produce 

outputs approximating to its inputs [4]. The structure of a simple 
feedforward, nonrecurrent autoencoder with one hidden layer is 
shown in Fig. 2. The objective of the autoencoder is to make 
� 
resemble x. Autoencoder can be trained using the 
backpropagation algorithm [4]. The training does not involve the 
class labels of the data and is on an unsupervised basis. 
However, we are not particularly interested in the output 
� . 
Instead, we are more interested in the output of hidden layer, �. 
When the hidden layer has fewer neurons than the input layer, � 
is a compressed representation of 
 and has to capture the most 
salient feature of 
 [4] in order to be able to reproduce it at the 
output layer. � could then be used for further feature learning or 
as the feature vector of 
 for classification or regression. 

1) Proposed Structure 
In this study, we leverage autoencoder to automatically learn 

the salient frequency components from the periodogram instead 
of predefining the frequency ranges such as delta, theta, alpha, 
and beta. The input to the autoencoder is the raw periodogram 
from 1 to 30 Hz with a resolution of 0.25 Hz. The dimension of 
the periodogram is 117-D, thus the input layer and output layer 
both consist of 117 neurons. The hidden layer consists of 
 
neurons. After the autoencoder has been trained, the hidden 
neurons have learned the salient frequency components over 1-
30 Hz. Such information is encoded in the weight vectors of the 
hidden neurons. We hypothesize that hidden neurons carrying 
similar weights have learned similar frequency components. We 
propose to cluster the hidden units into several groups by their 
weight vectors. A mean pooling neuron is added on top of each 
group to aggregate the outputs from all hidden neurons that are 
in the same cluster. The outputs of the mean pooling neurons are 
considered features learned from the raw periodogram, which 

TABLE I.  TRIAL IDS AND THEIR CORRESPONDING EMOTION 

STATES. 

Trial IDs Induced Emotion 
1, 6, 9, 10, 14 Positive 

2, 5, 8, 11, 13 Neutral 

3, 4, 7, 12, 15 Negative 

 

Fig. 1 The placement of 62 EEG electrodes. Shaded channels are used 

in this study. Other channels are rejected due to signal quality issues. 

(Figure adapted from [3].) 

 

Fig. 2 An example of an autoencoder with one hidden layer. 
 is the 

input to the network, � = �(�(�)
 + �(�))  and 
� = �(�(�)� + �(�)) , 

where � is the output of hidden neurons (also known as code), �(�) is the 

weights between hidden layer and input layer, �(�) is the bias vector of 

hidden neurons (not drawn in the figure), �(⋅) is the activation function of 

hidden neurons (also known as transfer function), �(�)  is the weights 

between hidden layer and output layer, �(�) is the bias vector of output 

neurons, �(⋅) is the activation function of output neurons. The network is 

trained to reproduce input 
 at the output layer. 
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are essentially weighted power features, but without 
predefinition of band ranges. The final feature vector is the 
concatenation of features derived from 41 channels. The 
dimension of the final feature vector is, therefore, 41�, where 
� is the number of clusters of hidden neurons. The proposed 
network structure is illustrated in Fig. 3. 

IV. EXPERIMENTS 

We benchmark the performance of standard power features 
against features that are automatically learned by autoencoder 
under our proposed structure. The performance is measured by 
accuracy discriminating the three emotion states. Since there are 
3 classes to be classified, the theoretical chance level is 33.33%. 

A. Using standard power features 
We evaluate the classification accuracy on a per-subject 

basis by five-fold cross-validation. Within one session, the 
fifteen trials from the subject in question are partitioned into five 
folds as follows. Fold 1 = {trial #1,2,3}, fold 2 = {trial #4, 5, 6}, 
fold 3 = {trial #7, 8, 9}, fold 4 = {trial #10, 11, 12} and fold 5 = 
{trial #13, 14, 15}. Each fold contains one trial for each emotion. 
We train the classifier with four folds and test the classifier with 
the remaining fold. As such, the training set comprises 46×3×4 
= 552 training samples and the test set consists of 46×3 = 138 
test samples. The process is repeated five times until each fold 
has served as the test set for once. The per-subject classification 
accuracy is averaged over five runs. The overall mean accuracy 
is the average per-subject accuracy over fifteen subjects. In this 
experiment, we adopt a logistic regression classifier [5]. The 
classifier training process stops at maximum 100 iterations. 

B. Using features learned by autoencoder with the proposed 
structure 
Firstly, we need to train the autoencoder to reconstruct the 

input data (periodograms). Based on the same partition scheme 
as used in Section IV.A, we set aside one fold as the test set, and 
the remaining four folds are pooled together as the training set. 

The training set comprises 46×41×3×4 = 22632 periodograms. 
The test set consists of 46×41×3 = 5658 periodograms. Eighty-
five percent of the data randomly sampled from the training set 
are used as actual training data by the autoencoder, and the rest 
fifteen percent of the data in the training set are used as 
validation data to select the best weights, that is, the weight 
parameters that lead to the minimum reconstruction error on the 
validation data. In this experiment, we use one hidden layer with 

 = 100 hidden neurons. Input data are 117-D raw periodogram 
covering 1-30 Hz frequency range. Thus, the autoencoder 
architecture is 117 (input neurons)-100 (hidden neurons)-117 
(output neurons). The linear activation function is used in all 
layers. The reconstruction error between input 
 and output 
� is 
measured by mean squared error. The whole network is trained 
using backpropagation and batch gradient descent with 
minibatch size equal to 256. Training stops at maximum 50 
epochs. The weight parameters that minimize the reconstruction 
error on validation data are retained. After the autoencoder has 
been trained, the output layer is removed from the network. We 
then employ 
-means algorithm to cluster the hidden units into 
�  groups based on the similarity of their weight vectors, � 
varies from 1 to 10. A mean pooling neuron is added on top of 
each group to aggregate the outputs, as is shown in Fig. 3. The 
outputs of the mean pooling neurons are viewed as features 
extracted out of the periodogram. The training data, validation 
data, and test data are fed to the trained network with added 
pooling layers to extract features. The final feature vector is a 
concatenation of features from 41 channels. The classifier (same 
configuration as what is used in Section IV.A) is trained on 
training data pooled with validation data, and tested on the test 
data. As such, the training data and validation data together 
contribute 552 training samples to the classifier. The test data 
contribute 138 test samples. The procedures (autoencoder 
training, hidden unit clustering, feature extraction and classifier 
training and testing) are repeated five times per subject, until 
each fold has served as the test set for once. The per-subject 
classification accuracy is averaged over five runs. The overall 
mean accuracy is the average per-subject accuracy over fifteen 
subjects. 

V. RESULTS AND DISCUSSIONS 

The accuracy results classifying three emotion states using 
different features are tabulated in TABLE II. Among the four 
spectral band power features, beta power performs the best. 
Theta and alpha powers give similar performance, both being 
inferior to beta and delta power. The fusion of all power features 
(combined power) does not lead to improved accuracy 
compared to beta power feature. 

The results of the proposed feature extraction method are 
displayed at the lower half of Table II, with a varying number of 
clusters of hidden neurons � from 1 to 10. When � = 1 and 2, 
the accuracy is better than that of delta, theta, alpha powers but 
below beta power. Starting from �  = 3, the accuracy of the 
proposed feature exceeds standard power features. When � = 4, 
the feature vector dimension is the same as combined power 
features. The accuracy of the proposed method sees a 10.12% 
increase over combined power feature. There is also a tendency 
that the classification accuracy increases with growing number 
of clusters of hidden neurons. The best accuracy is attained by 

 

Fig. 3 Proposed network structure. After an autoencoder has been 

trained, 
  hidden neurons are clustered into �  groups based on the 

similarity of their weights. Neurons within the same groups carry weights 
similar to each other, thus have learned similar components from the input. 

ℎ�
(�)

 is the output of the 	th hidden neuron in cluster �. �� is the number of 

neurons belonging to cluster � , ∑ ��
�
��� = 
 . ��  is the pooling neuron 

added to cluster � . �� =
�

� 
∑ ℎ�

(�)� 
��� . ! = [��, ��, … , ��]

" is viewed as 

the feature extracted out of 
. 
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the proposed method when �  = 10, a nearly 20% increment 
over theta and alpha power. However, when � exceeds 6, the 
improvement is only marginal. It is also worth noting that a large 
� value may not always be favorable, especially when the size 
of the training set is small. A larger � value results in a large-
dimensional feature vector, which requires more training data to 
fit the classifier. A limited training set increases the risk of 
overfitting when using large feature vectors. 

To see what frequency components may have been chosen 
by the autoencoder, we visualize the weights of clustered hidden 
units in Fig. 4. The plots show the weights of connection 
between the input layer and the hidden layer of the trained 
autoencoder of subject 1 in session 1 when � = 2. We average 
the weights within the same cluster and display the positive 
averaged weights for each cluster. Generally, a connection with 
a positive weight between input neuron 	 and hidden neuron # 
suggests that hidden neuron # favors the input from neuron 	 , 

whereas negative weight implies that hidden neuron # opposes 
the input from neuron 	. The first cluster of hidden neurons has 
three weight peaks at 5.5 Hz, 13.75 Hz, and 24 Hz, respectively, 
suggesting that this cluster of hidden neurons may favor theta 
and beta components. The second cluster show relatively evenly 
distributed weights over the spectrum, peaking at 8.75 Hz within 
the alpha band. Some delta and higher beta components are also 
selected by the second cluster, contrary to the first cluster. 

VI. CONCLUSIONS 

Spectral band power features have been one of the most 
widely used features in BCI studies and EEG-based 
applications. On the one hand, the definition of the frequency 
range, though based on neuroscientific findings, is somewhat on 
an ad-hoc basis and varying between studies. On the other hand, 
it is arguable that one definition of band ranges could perform 
equally well on all subjects. In this study, we proposed to find 
the subject-specific salient frequency components using 
autoencoder. We propose a network architecture especially for 
power feature extraction out of raw periodograms of EEG 
signals. The proposed architecture consists in clustering the 
hidden neurons of a trained autoencoder with added pooling 
neuron per each cluster. The proposed method essentially 
extracts features similar to power features, but without 
predefinition of band ranges. We benchmark the proposed 
methods against standard power feature extraction method. 
Experimental results show that our proposed method yields 
better accuracy than standard power features when the number 
of hidden unit clusters � ≥ 3. When � = 4, the proposed method 
yields feature of the same dimension as combined power 
features, but performs better than the latter by 10.12%. The 
classification accuracy may be further improved given a larger 
value of �, but we also see that the accuracy increment is only 
marginal when �  exceeds 6. We conclude that the proposed 
method, which automatically learns the salient frequency 
components, could potentially outperform standard band power 
features, whose frequency components are explicitly defined. 
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TABLE II.  OVERALL MEAN CLASSIFICATION ACCURACY (%) 

CLASSIFYING THREE EMOTIONS (POSITIVE, NEUTRAL AND NEGATIVE) 

USING DIFFERENT FEATURES. 

Feature  Session 1 Session 2 Session 3 Average 
Delta 43.68 40.54 41.86 42.03 

Theta 43.09 40.11 39.06 40.75 

Alpha 41.11 40.02 39.84 40.32 

Beta 50.16 50.01 48.51 49.56 

Combined 

power 

44.03 40.55 41.89 42.16 

P
ro

p
o

se
d

 m
et

h
o

d
 

� = 1 44.70 43.14 46.22 44.69 

� = 2 47.23 46.65 48.66 47.51 

� = 3 50.45 49.95 50.48 50.29 

� = 4 52.37 50.87 53.60 52.28 

� = 5 53.77 54.25 55.68 54.57 

� = 6 57.07 56.92 58.41 57.47 

� = 7 56.37 56.88 59.14 57.46 

� = 8 56.62 57.98 58.66 57.75 

� = 9 56.97 58.12 59.10 58.06 

� = 10 58.19 59.24 59.66 59.03 

 

Fig. 4 Plots of averaged weights of connection between hidden neurons 
within the same cluster and input neurons. Left: cluster 1; right: cluster 2. 

Bottom horizontal axis represents the index of input neuron (117 in total). 

Each input neuron receives the magnitude of periodogram at a specific 
frequency. The frequency is noted at the top horizontal axis (1-30 Hz, 

corresponding to the 117-D periodogram at a resolution of 0.25 Hz). The 

weight indicates to what extent a specific frequency component is favored 
by the hidden neuron. The left cluster has a strong preference for theta and 

beta components. The right cluster has a preference for delta and higher 

theta components as compared to the left cluster. 
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