
660 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

Scenario-Based Insider Threat Detection
From Cyber Activities

Pratik Chattopadhyay , Lipo Wang , and Yap-Peng Tan, Senior Member, IEEE

Abstract— An insider threat scenario refers to the outcome
of a set of malicious activities caused by intentional or unin-
tentional misuse of the organization’s systems, networks, data,
and resources. Prevention of insider threat is difficult, since
trusted partners of the organization are involved in it, who
have authorized access to these confidential/sensitive resources.
The state-of-the-art research on insider threat detection mostly
focuses on developing unsupervised behavioral anomaly detec-
tion techniques with the objective of finding out anomalous-
ness or abnormal changes in user behavior over time. However,
an anomalous activity is not necessarily malicious that can lead
to an insider threat scenario. As an improvement to the existing
approaches, we propose a technique for insider threat detection
from time-series classification of user activities. Initially, a set
of single-day features is computed from the user activity logs.
A time-series feature vector is next constructed from the statistics
of each single-day feature over a period of time. The label of each
time-series feature vector (whether malicious or nonmalicious)
is extracted from the ground truth. To classify the imbalanced
ground-truth insider threat data consisting of only a small
number of malicious instances, we employ a cost-sensitive data
adjustment technique that undersamples the nonmalicious class
instances randomly. As a classifier, we employ a two-layered deep
autoencoder neural network and compare its performance with
other popularly used classifiers: random forest and multilayer
perceptron. Encouraging results are obtained by evaluating our
approach using the CMU Insider Threat Data, which is the
only publicly available insider threat data set consisting of about
14-GB web-browsing logs, along with logon, device connection,
file transfer, and e-mail log files. We observe that both deep
autoencoder and random forest classifiers classify the data-
adjusted time-series feature set with high precision, recall, and
f-score. Although multilayer perceptron has a high recall, it suf-
fers from a lower precision and f-score compared to the other
two classifiers.

Index Terms— Cost-sensitive learning, imbalanced data, insider
threat, time-series classification.

I. INTRODUCTION

INSIDERS are the trusted partners of an organization who
have authorized access to the organization’s resources, data,

and network. In unwanted situations, these insiders loose
liability toward their employers either out of anger or out
of greed for making personal benefits. This provokes them
to behave maliciously and intentionally harm the organi-
zation’s resources and lower its reputation. According to

Manuscript received January 10, 2018; revised May 17, 2018; accepted
July 1, 2018. Date of publication August 23, 2018; date of current version
September 11, 2018. (Corresponding author: Lipo Wang.)

P. Chattopadhyay is with the Department of Computer Science
and Engineering, IIT (BHU) Varanasi, Varanasi 221005, India (e-mail:
pratik.cse@iitbhu.ac.in).

L. Wang and Y.-P. Tan are with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
elpwang@ntu.edu.sg; eyptan@ntu.edu.sg).

Digital Object Identifier 10.1109/TCSS.2018.2857473

IBM 2016 Cyber Security Intelligence Index (a survey
made by IBM about the threat) [1], among all the security
breaches or attacks recorded in 2015 worldwide, more than
60% are caused by insiders only. Thus, the prevention of
insider threat is a matter of serious concern.

The main objective of this paper is to develop an effec-
tive insider threat detection algorithm to classify a sequence
of insider activities as malicious or nonmalicious. In this
paper, we will focus on the analysis of human behav-
ioral activities only. Analysis of psychometry, emotion,
and other nonbehavioral factors is outside the scope of
this paper.

Depending on the sequence of malicious activities involved,
insider threat can be categorized into a number of threat
scenarios. Providing proper definition to these threat scenarios
is challenging, since it requires past experience as well as
extensive manual effort. In this paper, instead of defining the
threat scenarios, we focus on developing an effective machine
learning algorithm to achieve our objective. We assume that
the definition of the threat scenarios and the ground-truth
information pertaining to the different threat scenarios is
available to us.

The CMU Insider Threat Data [2] is the public insider threat
data available till date. Hence, the evaluation of the approach
is done using these data. Version 4.2 of the data is used in
this paper, since it focuses only on behavioral characteristics.
This data set consists of the user-activity logs of 1000 insiders
over a period of 17 months from January 2010 to May 2011.
The different user activity logs captured in the CMU Data are
as follows.

1) The logon activity details are stored in a file named
logon.csv. For each user, the file stores the computer
ids in which he/she has logged in or logged off along
with the corresponding time stamps.

2) The device.csv file contains the device connection
information for each user, including the computer
ids and the time stamps at which a device is con-
nected/disconnected.

3) The file transfer details for each user are stored in
file.csv. Along with the time stamp, it also lists the type
(pdf, doc, jpg, and so on) of file/files transferred.

4) The e-mail exchange details are contained in a file
named email.csv. It provides information, such as the
number of e-mails sent by a user on a day, e-mail size,
attachment count, whether the recipient is from the same
organization or not, and so on.

5) The http log is provided by the file http.csv. It specifies
the URLs visited, the machine id accessed to visit each

2329-924X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5805-6563
https://orcid.org/0000-0002-4257-7639

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 661

web page, and some keywords selected from the content
of the web page.

6) The psychometric.csv contains the big five psychometric
scores (i.e., O, C, E, A, and N).1

Three threat scenarios are defined in the CMU Data based on
the above set of user activities. These are as follows.

1) Scenario S1: User who has never used removable
drives previously or worked overtime starts behaving
uncharacteristically by logging in after office hours
using a removable drive and uploading data to wik-
ileaks.org. He/she leaves the organization shortly after
this.

2) Scenario S2: User begins searching for new employment
opportunities by surfing job websites. Before leaving
the organization, he/she steals confidential information
using a thumb drive. The frequency of the thumb
drive usage is higher than what he/she used to do
previously.

3) Scenario S3: User downloads keylogger and obtains a
list of passwords of different employees of the orga-
nization. Next, he/she uses a thumb drive to transfer
this list of passwords to the supervisor’s machine and
tries searching for the supervisor’s password. Once suc-
cessful, he/she logs into the supervisor’s machine and
broadcasts an alarming mass e-mail creating panic in the
organization. This type of malicious activity comes from
system administrators when they become disgruntled
with their supervisors.

In addition to the threat scenarios, the CMU Insider Threat
Data provide a set of ground truth for each of the above-
mentioned threat scenarios along with the date and time stamp
of each activity.

From the definition of the threat scenarios, it is observed
that none of these deals with psychometric information. Hence,
the log file named “psychometric.csv” has not been used in
this paper. Section I-A provides the background knowledge
required to carry out this paper. This includes the description
of the previous work done on insider threat detection, their
shortcomings, and how the proposed method is capable of
overcoming these drawbacks.

A. Background

Several factors can trigger an insider threat attack. A few
of these, as mentioned by Liang and Biros [3], are personality
problems, mental health disorders, social isolation, emotional
characteristics, disgruntlement, social and cultural conflicts,
and so on. These factors have often been seen to affect an
insider’s behavior adversely, provoking him/her to behave
maliciously. Majority of the work done on insider threat
detection are unsupervised [4]–[12], while a few supervised
methods [13]–[15] have also been developed. In Section I-A1,
we provide an overview of the state-of-the-art research on
behavioral-based insider threat detection.

1) Behavioral-Based Insider Threat Detection: Unsuper-
vised Methods: A research team from Leidos, an American
defense company, developed an unsupervised anomaly detec-
tion system termed PROactive Detection of Insider threats with

1https://en.wikipedia.org/wiki/Big_Five_personality_traits

Graph Analysis and Learning,2 which accepts user activity
logs as inputs and uses high-performance computing for
anomaly detection. Memory et al. [4] described an anomaly
detection technique by analyzing user roles and their historical
access patterns from the computer usage and network activity
logs. The list of blackboard models given in [4] can be used
as a baseline to set up a new insider threat detection system.
Young et al. [5] proposed a structural anomaly detection
method by combining structural and semantic information
from user activities. The features used in this paper are:
1) count of attachments on e-mails sent; 2) count of file trans-
fers to removable drives; 3) count of distinct machines logged
onto; 5) count of print jobs submitted; 6) count of blacklisted
web pages visited; 6) ratio of file transfers on removable drives
to all file transfers; 7) ratio of the number of upload activities
to the number of download activities; and 8) ratio of the
number of distinct removable drives used for uploading to that
used for downloading. Predicting anomalousness in behavior
by following an ensemble-based clustering approach has been
studied by the same research team in [6] and [16]. Perfor-
mance evaluation of these approaches on an extensive data
set consisting of computer usage activity logs of 5500 people
has shown encouraging results. However, this data set has not
been made available to the public, and hence could not be
used in this paper.

Researchers from the Palo Alto Research Center, Palo
Alto, CA, USA, proposed a proactive insider threat detection
approach in [8] by combining structural anomalies obtained
from social and information networks, along with the psycho-
logical profile extracted from user behavioral patterns. A time-
series-based anomaly detection method has been proposed
in [7], which concatenates the statistics (mean, weighted mean,
and sum of weighted differences) of single-day activities over
a period of time to generate a time-series feature vector. An
unsupervised isolation forest algorithm is next employed to
predict if an insider behavior is anomalous from the above
statistical features.

The Cyber Security Centre of the University of Oxford
developed another anomaly detection tool termed Corporate
Insider Threat Detection [9] to detect anomalous activities.
Three activity indicators have been considered here: 1) user’s
daily activities; 2) comparison between user’s daily activity
and his/her previous activity; and 3) comparison between
the user’s daily activity and the previous activity of their
role. The active learning strategy employed here allows the
analyst to incorporate knowledge back into the system via an
interactive manner. Similar to [4], Nurse et al. [10] have also
described a grounded framework for insider threat detection
by identifying the key factors that have triggered insider
threat scenarios in the past. This paper does not focus on
user activity analysis but only provides an overview of the
several factors responsible for triggering an attack as well as
an understanding of whether an insider threat activity has been
done deliberately or unintentionally.

Magklaras and Furnell [14] proposed an approach that per-
forms file content analysis and integrity checking to monitor

2https://en.wikipedia.org/wiki/Proactive_Discovery_of_Insider_Threats_
Using_Graph_Analysis_and_Learning

662 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

misuse of computer systems. It takes into account several
human behavioral characteristics, such as user knowledge of
a file system, network interaction patterns, and so on. Other
insider threat detection approaches include [17] that deals with
the integration of user taxonomy and psychological profiling to
identify user misbehavior in real time from his/her technolog-
ical trait. However, experimental evaluation of the algorithm
has not been done, and no results have been reported. Along
with anomaly detection, Eldardiry et al. [18] proposed a
method for detecting spoofing attacks, i.e., identifying sus-
picious insiders who pretend to behave in a manner similar
to the group they belong to. The final anomaly score for a
user is computed as the weighted sum of the anomaly scores
obtained from the different activities, e.g., logon, file transfer,
e-mail, web browsing, and so on.

The ELICIT anomaly detection system described by Maloof
and Stephens [11] aims to detect insiders who violate the “need
to know” principle. Usually, any security organization defines
a clearance level for its users. An attempt to seek information
beyond the clearance level is said to be a violation of the
“need to know” principle. A real-world corporate intranet
consisting of 3900 users has been used to test the performance
of the ELICIT model in [11]. The anomaly score has been
computed from Bayesian ranking of the scores obtained from
76 different anomaly detectors. The approach in [12] describes
the identification of anomalous user activities by assigning
a threat rank to each user on each day on the basis of the
following factors: severity of the threat and frequency of
anomalous behavior. A high disparity in the magnitude of the
threat rank implies significant deviation of the single-day user
activities from their usual pattern. The work in [19] discusses
about the detection of anomalies from single modalities, e.g.,
web access patterns, printing, file access, and so on, and
how to fuse them using a domain-knowledge driven Bayesian
network.

Supervised Methods: To date, only a few supervised insider
threat detection approaches have been developed, which are
described next. The work in [14] describes a taxonomy for the
development of a supervised insider threat detection system,
but does not focus on the relevant features to be computed
for identifying the threat scenarios. As described before in
Section I, an insider threat database is generally imbalanced
with only a small number of malicious instances and a com-
paratively large number of nonmalicious instances. Learning
from imbalanced data poses significant challenges. Although
important, this issue has not been given significant attention
in the past. Only a few works [13], [15] have given insights
to this problem. Pfleeger [13] explained the concept of insider
threat and discusses about the several classification challenges
arising out of the scarcity of malicious ground truth data.
However, the paper provides only a conceptual framework, and
no details have been given on the technical aspects required
for effectively handling imbalanced data. Azaria et al. [15]
presented a framework for the behavioral analysis of insider
threat (BAIT) using a semisupervised bootstrapping-based
classification method that learns from highly imbalanced data.
The data set used for performance evaluation in [15] has no
resemblance with that of the CMU Data, which consists of

TABLE I

CONFUSION MATRIX FOR BINARY CLASSIFICATION

user-activity logs, and hence, the features described in [15]
are not suitable for this paper. Specifically, Azaria et al. [15]
designed a one-person game and recruited 795 subjects to
play the game on Amazon Mechanical Turk. To introduce
imbalancedness in the data, only a few subjects were asked
to behave maliciously. The model is used to predict a user
as malicious or nonmalicious from the way he/she plays the
game. Simple aggregated behavioral features have been used
here, e.g., frequency with which each and every activity (fetch-
ing data from CD/DVD/USB, sending e-mail with encrypted
data, and so on) is executed. Seven variations of the BAIT
algorithm have been described in this paper, out of which the
best one has a recall of 0.7 and a precision of only 0.07.

Similar to the data set used in [15], the ground truth of
CMU Insider Threat Data is also highly imbalanced with
only a small number of malicious class instances and a
comparatively larger number of nonmalicious class instances.
Cost-sensitive learning [20]–[29] has been extensively used in
the past to effectively handle imbalanced data. Section I-A2
focuses on describing the various cost-sensitive learning tech-
niques in the literature, along with useful metrics for evaluat-
ing classification performance on imbalanced data.

2) Class-Imbalance Problem and Existing Solutions: A
confusion matrix [30] (refer to Table I) is commonly used to
compute metrics for performance evaluation of classification
algorithms. Let, for any class, C, TP, FP, FN, and TN, respec-
tively, denote the number of true positives, false positives, false
negatives, and true negatives. Single class metrics, namely,
precision, recall, and f-score (and not overall accuracy) are
generally recommended for evaluating classifier performance
on imbalanced data. With reference to Table I, precision (PC),
recall (RC), and f-score (FC) for class C are mathematically
expressed as follows:

PC = TP

TP + FP
, (1)

RC = TP

TP + FN
, (2)

FC = 2
(1 + β2)PCRC
PC + β2RC

(3)

where β is a positive constant. Macroaveraged precision
(PAV), recall (RAV), and f-score (FAV) are often used to
study the overall classifier performance. These are computed
by averaging the precision, recall, and f-score values obtained
from each class.

In contrast to the traditional classification algorithms, cost-
sensitive classification requires a cost matrix (more specifi-
cally a misclassification cost matrix) as an input during the
training phase. In general, for C classes, the cost matrix
is a square matrix of dimensions C×C , where the element
corresponding to row i and column j indicates the cost of
misclassifying a sample from class j as class i . In the case of

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 663

binary classification problems such as insider threat detection,
the cost matrix is of dimensions 2×2. Several categories of
cost-sensitive learning techniques have been introduced by
researchers over the years [24], [29]. Among these, the most
important are: 1) algorithm-level adjustments; 2) altering class
distribution of the ground truth data; and 3) ensemble-based
learning. The first category of approaches is mainly applicable
for classification using neural networks or other classifiers. The
original backpropagation learning algorithm is unsuitable for
classifying data with imbalanced class distribution. A cost-
sensitive version of the backpropagation learning algorithm,
described in [31], has taken into account the adaptivity of
learning rate and the adaptivity of output neuron values
by means of expected misclassification costs. Another cost-
sensitive learning technique using a radial basis neural network
has been described by Wan et al. [20], where the learning
rate for the minority class has been chosen to be higher than
that for the majority class. This causes the backpropagated
error to have a higher influence on the minority class than
on the majority class, and the network gradually gets trained
with the minority class samples accurately. In another work
on cost-sensitive neural network [21], instead of adjusting
the learning rate, the misclassification cost for each class has
been multiplied with the predicted value at the corresponding
output neuron. Likewise, any classifier can be transformed to
its corresponding cost-sensitive version. Two such techniques
are: 1) [29], which describes a method based on fuzzy SVM
for class imbalanced learning and 2) [32], which shows the
application of genetic algorithm to generate a population of
biases for a decision tree induction algorithm. Another frame-
work for a cost-sensitive neural network termed MetaCost
has been described in [33], which is based on relabeling of
training examples with their estimated minimal-cost classes
and repeatedly applying the classifier on the newly labeled
training set.

In the second category of cost-sensitive learning approaches,
data-level adjustments are done to reduce the imbalanced
data distribution. These methods resample (i.e., either over-
sample or undersample) the training data in proportion with
the misclassification cost provided by the cost matrix. Both
undersampling and oversampling have their own benefits and
limitations. While undersampling of majority class might lose
important information, oversampling of the minority class can
lead to overfitting [34].

One of the earliest data adjustment algorithms is termed
Synthetic Minority Over-sampling Technique (SMOTE) [25].
It oversamples the minority class by synthetically adding new
samples to the training set. The algorithm selects one sample
at a time, extracts feature vector from the minority sample,
finds the nearest neighbor of this feature vector, computes the
vector difference between the two, multiplies this difference
with a random number generated in the range (0,1), and finally
adds this weighted difference to the feature vector. Using
this technique, new minority samples are generated in the
neighborhood of the original sample until the data set becomes
balanced. However, the SMOTE algorithm is nonselective in
nature, where any of the minority class samples can be used
for oversampling.

As an improvement, a selective oversampling technique
has been presented in [35]. Since the boundary samples of
the minority class are prone to get misclassified, in [35],
the oversampled set of minority class samples has been con-
structed by synthetically generating data from these boundary
samples. Selective oversampling of the minority class in [35]
has also been seen to perform better than that of nonselective
oversampling as done for SMOTE [25]. Another improvement
to the SMOTE algorithm, termed the Modified Synthetic
Minority Oversampling (MSMOTE) [26], performs adaptive
mediation using K -nearest neighbor classifier to remove noisy
data. Three strategies for rebalancing the training set as
given in [23] are undersampling, random resampling, and
a recognition-based induction scheme. In random undersam-
pling, the majority class samples are undersampled randomly
until their number becomes equal to that of the number of
minority class samples. On the other hand, random resampling
is done by sampling the minority class randomly until the
number of samples in the two classes match each other.

The third category of approaches, namely, the ensemble-
based approaches [27], [28], [36] fuses predictions from
multiple classifiers by computing a weighted vote of the pre-
dictions. A variety of techniques for combining multiclassifier
outputs exist in the literature, such as bagging, boosting, and
majority voting [37]. AdaBoost learning algorithm [38] has
often been used to improve classification accuracy by fusing
the outputs from several weak classifiers. Performances of
both SMOTE and MSMOTE have been seen to improve, once
these are integrated with the AdaBoost learning algorithm.
The resulting algorithms have been named SMOTEBoost [27]
and MSMOTEBoost [26], respectively. A clustering-based
subset ensemble learning technique has been described in [39],
which clusters majority class samples into a fixed number of
groups and subsequently reduces the number of majority class
samples. Next, predictions from an ensemble of the classifiers,
decision tree, Naive Bayes, K -nearest neighbor, and support
vector machines, are fused by employing a combined bagging
approach for final prediction.

Recently, Seiffert et al. [28] proposed the RUSBoost
ensemble-based cost-sensitive classification algorithm, which
uses the AdaBoost algorithm while combining the different
classifier outputs. Instead of oversampling the minority class
as in [25]–[27], in RUSBoost, the majority class samples are
undersampled randomly. This causes the RUSBoost algorithm
to be more time-efficient than that of SMOTEBoost. Experi-
ments conducted on 15 different data sets in [28] have revealed
that the performance of RUSBoost is marginally better than
that of SMOTEBoost. An extensive survey of the commonly
used data adjustment techniques for handling imbalanced data
can also be found in [22]. In this paper, we use the random
undersampling-based cost-sensitive learning strategy [23],
which falls under the second category of cost-sensitive
learning techniques, and obtain significantly high precision
and recall in detecting each of the threat scenarios of the
CMU Data.

Generally, insider threat scenarios do not materialize within
a single day, but rather occur over a period of time. Hence,
we felt it necessary to also review the important feature

664 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

extraction methods from time-series data. This is described
in Section I-A3.

3) Review on Time-Series Analysis Methods: Depending on
the data types, time-series data [40] can be classified into
a number of categories: 1) discrete-valued and continuous-
valued and 2) uniformly sampled and nonuniformly
sampled [41]. While uniformly sampled time-series signals
are easy to compare by means of standard distance metrics,
comparison between nonuniformly sampled signals is difficult
due to the lack of one–one correspondence among the sampled
points. The dynamic time warping algorithm [42]–[44] is
frequently used to compare nonuniformly sampled sequences,
by finding matching points between sequences.

Shapelet-based features have been used for time-series
classification in [45]–[47]. These approaches use the similarity
index between a shapelet (subsequence of a time series) and
a time series for classification. Ji et al. [48] proposed a
pattern identification method called minimal distinguishing
subsequence with the objective of estimating a minimal sub-
sequence that occurs frequently in sequences of one class and
infrequently in sequences of the other class. The gap constraint
within the subsequences, as considered in this paper, makes it
suitable for analyzing only protein sequence type of structures.

Other frequently used time-series analysis methods include
the application of discrete Fourier transform or discrete
wavelet transform [49]–[52], which transform the time-domain
signal into frequency domain. A detailed survey of the
techniques useful for time-series analysis as well as differ-
ent frequency-domain representations of a time series can
be found in [53]. In [54] and [55], the applicability of
fractals in time-series prediction has been studied. Fractal
dimension provides the intrinsic dimension of a signal in
the hyperspace. A time-series signal, which undergoes very
little or almost no variation across the sampled times, will
have a fractal dimension close to one. As variability in the
signal becomes higher, its intrinsic dimensionality increases.
The book on Data Mining with Computational Intelligence by
Wang and Fu [56] describes several time-series prediction and
cost-sensitive classification techniques.

Statistical features extracted from a time series (for exam-
ple, mean, standard deviation, skewness, kurtosis, and so
on) preserve important structural properties of the series.
In [57], a number of statistical features (including structural
features, entropy, and scaling properties) have been used to
do multivariate time-series clustering. Once these features
are computed, a greedy forward feature selection strategy is
employed to select a subset of features that best represents the
time series. A book on time-series analysis by Chatfield [58]
lists the different statistical and frequency-based properties that
can be extracted from a time-series signal, such as Fourier
transform, Laplace transform, Z-transform, spectral power
analysis, and so on.

From the extensive literature survey on behavioral-based
insider threat detection in Section I-A1, it can be seen that the
unsupervised approaches are mostly anomaly-detection-based,
which compute features depicting the variability of user
activities over a period of time. However, a high anomaly
score cannot guarantee the occurrence of a malicious activity.

On the other hand, supervised approaches mostly compute
frequency-based features and do not take into consideration
the variation of insider behavior over time. In this paper,
we combine the advantages of both the unsupervised and
supervised techniques by following an algorithm based on the
classification of time series of user activities. An overview
of our approach and the main contributions of this paper are
specified next in Section I-B.

B. Summary of Our Approach

As an initial step, we construct scenario-specific single-day
features from the user activity logs. By single-day features,
we mean features specific to a single day, such as the first
logon time in a day, last logoff time in a day, or aggregated
information of certain activities in a day, such as the number
of computers accessed in a day, the number of external
devices connected in a day, and so on. To preserve information
about the variation of user behavior over a period of time,
we compute a set of statistical measures from the time series
of each single-day activity feature and concatenate them into
a vector, which we term as the time-series feature vector.
Classification of this time-series feature set is done after
randomly undersampling the nonmalicious class samples to
make the feature set balanced.

The main contributions of this paper can be summarized as
follows.

1) This paper describes a method of classifying time series
of user activities to predict whether an insider is mali-
cious or not. As mentioned in Section I-A, previous
methods to insider threat detection are mostly unsu-
pervised, which just compute a set of anomaly scores
to depict the variability observed in user behavior over
time. In these approaches, unusual high variability in
user activity over a time period is said to correspond to
malicious behavior. However, a high variability in user
behavior does not necessarily correspond to malicious
activity. The issue has been addressed in this paper by
first computing a set of anomaly scores from statistics
of user activity over a time period. A statistical feature
vector formed from these statistical parameters is next
used to predict if an insider activity set can be mapped
to some of the known threat scenarios.

2) A few supervised insider threat detection approaches
developed till date carry out classification of single-day
activities to predict if an insider is malicious or not.
However, an insider usually does not exhibit radical
changes in behavior within a single day. The gradual
change in his/her behavior can be best captured by
computing features from the time series of user activi-
ties. Evaluation of the proposed technique in Section III
shows that the proposed algorithm outperforms the state-
of-the-art insider threat detection approaches by a sub-
stantially high margin.

3) It is observed from the ground truth of CMU Insider
Threat Data that although certain insider threat scenarios
can occur within a few days, some other may need a
larger time period to materialize. In Section III, we have
described a method to determine the approximate time

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 665

Fig. 1. Block diagram for building the classification model for insider threat
detection.

window needed to analyze a given threat scenario from
the available ground truth information.

4) Results show that the proposed insider threat detection
algorithm is significantly accurate. It has the potential to
suit the needs of any organization only with necessary
modifications in the feature set.

The block diagram in Fig. 1 shows an overview of the
sequence of steps followed in building the system. Further
details of each of the blocks are given in Section II.

The rest of this paper is organized as follows. In Section II,
the proposed algorithm is explained in two different sections.
Section II-A describes the extraction of appropriate single-
day features for identifying each threat scenario present in
the CMU Insider Threat Data, whereas the construction of the
time-series features from the above set of single-day features is
discussed in Section II-B. Classifiers used and testing protocol
along with experimental results are presented in Section III.
Concluding remarks and scope for further research are finally
pointed out in Section IV.

II. TIME-SERIES CLASSIFICATION OF USER ACTIVITIES

Here, we describe the proposed feature extraction technique
to identify the different threat scenarios of the CMU Data
(refer to Section I for detailed specification of the scenarios).

A. Extraction of Single-Day Features

The single-day features extracted from the CMU Data
are listed in Table II. The first column of the table shows
the activity type, the second column specifies the features
extracted from each activity log along with the corresponding
symbols, while the last three columns indicate, which features
are appropriate for identifying the threat scenarios. Symbols
“
√

” and “×” in each row represent whether a feature is
appropriate to identify a threat scenario or not. It needs to
be mentioned here that the set of features in Table II are
specific to the CMU Insider Threat Data and its associated
scenarios. While working on a different data set, these features
must be updated accordingly. However, the overall algorithm
described in this paper (refer to Fig. 1) has the potential to
work effectively on any given insider threat data set.

With reference to Table II, the extraction of first 18 single-
day features is straightforward given the logon, device, file,
e-mail, and http user activity logs. However, to compute the
features L1–L4, L6, L8, L9, and D1, shown in the second
column of the table, knowledge of the office start and end
times is needed, which is not provided by the CMU Data. The

TABLE II

SINGLE-DAY FEATURES

Fig. 2. Bar diagram showing (a) percentage of the total number of logon
activities and (b) percentage of the total number of logoff activities at different
time intervals of 30 min from CMU Data version 4.2.

logon log-file from this data set (which contains the logon and
logoff times for all users) is used to obtain an estimate of the
office start and end times. The percentage of the total number
of logon activities at consecutive time intervals of 30 min
starting from 12:01 to 0:00 h is provided in Fig. 2(a). Fig. 2(b),
on the other hand, shows the percentage of logoff activities
corresponding to the same time intervals.

666 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

It is seen from Fig. 2(a) that more than 10% of the total
number of logon activities occur within the time interval
7:30–7:59 h. The previous interval (i.e., 7:00–7:29 h) shows
a much smaller percentage of logon activities, whereas the
next two intervals (i.e., 8:00–8:29 and 8:30–8:59 h) show
the highest percentage of logon activities. Thus, office start
time can be suitably considered to be 8:00 h (i.e., 8:00 A.M.).
Using a similar argument, the office end time can be chosen as
19:00 h (i.e., 7:00 P.M.) from Fig. 2(b).

The last two features, namely, H2 and H3, are http log-based
features and are computed from the term frequency–inverse
document frequency (TF-IDF) scores3 of the keywords in a
visited web page. Identification of CMU threat scenario S2
(refer to Section I for a description of the threat scenar-
ios) requires information about the frequency of visit to job
websites, whereas for detecting scenario S3, the frequency of
visiting key generator downloading sites is an important cue.
However, CMU Data do not specify the type of website that
is being visited. In the absence of this information, the ground
truth http log file can be used to prepare a corpus of docu-
ments, say D1 and D2, consisting of keywords from the web
pages visited by malicious and nonmalicious users, respec-
tively. Thus, in the corpus for scenario S2, D1 mostly consists
of terms related to job opportunities. On the other hand for
scenario S3, D1 contains terms, such as keylogger, password,
crack, and so on. Given a new web page, the TF-IDF
score of the keywords in this page can reflect whether the
page is similar to D1 or D2. A higher similarity score for
D1 than D2 indicates the possibility of a suspicious
web-activity.

The http log of the CMU Data provides a keyword list
for each visited page, which we directly use to compute the
TF-IDF features. If only the URLs of the visited web pages
were captured in the activity logs, instead of the keywords,
standard keyword extraction algorithms [59], [60] could have
been employed to do this task. The Porter stemming algorithm
[61] is used to remove suffixes and find the base form of
each word in D1 and D2. Suppose a test page consists of
n keywords, w1, w2, . . . wn . Furthermore, let fw j ,D be the
frequency of word w j in document D, where j = 1, 2, . . ., n,
and D ∈ {D1,D2}. The term frequency [t f (w j ,D)] of word
w j in document D is given by the normalized frequency of
this word in document D, i.e.,

t f (w j ,D) = fw j ,D
|D| (4)

where |D| represents the number of words in document D.
The inverse document frequency [id f (w j)] of term w j in the
corpus is mathematically expressed as follows:

id f (w j) = N
1 + |D ∈ {D1,D2} : w j ∈ D| . (5)

In (5), the numerator N denotes the number of documents
in the corpus (in the present case N = 2, since there are two
documents D1 and D2), whereas the denominator is one added
with the number of documents in which the term w j appears

3https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Fig. 3. Sliding window mechanism.

at least once. Addition with one avoids division by zero in
case the term does not appear in any of the documents in the
corpus. The TF-IDF score of term w j in a document D within
the corpus is henceforth computed as

TF-IDF(w j ,D) = t f (w j ,D)id f (w j). (6)

The magnitude of this statistic increases proportionally with
the frequency of occurrence of the word in a document, but
is offset by its frequency in the corpus. From (6), it can be
seen that the value of TF-IDF(w j ,D) will be zero if w j is
present in both the documents or does not belong to any of
them. A similarity score (SD) of the web page with respect to
document D is computed by summing up the TF-IDF values
of each word present in the page, as shown in (7):

SD =
n∑

j=1

TF-IDF(w j ,D). (7)

B. Construction of the Time-Series Feature Vector

Suppose the data set contains user activity logs captured
over a period of T days. Scenario-based insider threat detection
is done by analyzing appropriate user activity logs (refer to
Table II) in small time intervals over the entire length of the
time line. We employ a time window of length W (where W
≤ T) and slide it over the time line, shifting the window by one
day at each step, as shown in Fig. 3. The figure explains the
sliding window mechanism with W = 3 days and T = 10 days.
In the figure, each small-sized box represents a single day.
For a time line of 10 days, there are 10 such boxes. The gray
region on the time line represents the days covered by the
time window at a particular position. There will be a maximum
number of (T−W+1) different positions of the window on the
time line. Separate time-series feature vectors are computed for
each window position.

Since the single-day features are computed from different
user activities, their magnitudes are not comparable. Therefore,
before computing the time-series feature vector, we divide
each single-day feature attribute with the maximum value of
the attribute within the time window to normalize it within
the range (0,1). In the rest of this paper, by single-day feature
attributes, we will refer to the normalized single-day feature
attributes.

1) Statistical Measures: To construct the time-series fea-
ture vector, we compute a set of statistical measure-
ments corresponding to each single-day feature attribute for
each window position. The time-series feature vector for the

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 667

dth day is computed from the statistics of single-day features
corresponding to the previous (d−W+1) days, inclusive of
the dth day, where d = W, W+1, . . . T. The statistical mea-
surements computed from the time series of each single-day
feature are: 1) mean; 2) variance; 3) Katz fractal dimension;
and 4) total power corresponding to the top five frequencies
in the power spectrum of the time-series signal.

Mean provides the average value of an attribute within a
time window, whereas variance shows the amount of disper-
sion in the data. Fractal dimension [54], [55], [62] is a statisti-
cal index measuring the complexity (i.e., the amount of details)
of a time series. Suppose that K single-day feature attributes
are required to detect a threat scenario (refer to Table II).
Let [Xi1 Xi2 . . . XiW] be the feature vector containing the
magnitudes of a certain single-day feature attribute Xi at a
particular position of the time window, i = 1, 2, . . ., K. The
mean (Mi) and variance (Vi) of the attribute i are computed
according to the following two equations:

Mi = 1

W

W∑

j=1

Xij (8)

Vi = 1

W

W∑

j=1

(Xij − Mi)
2. (9)

The Katz fractal dimension Fi of the time series of this
attribute is computed as

Fi = log10
(Z
Z

)

log10
(D
Z

) (10)

where Z is the sum of the distances between each pair
of consecutive points, Z is the average distance between
successive point pairs, and D is the diameter of the time series
computed as

D = max2≤ j≤W {|Xi1 − Xij |}. (11)

The magnitude of the Katz fractal dimension is close to one
when the time series has almost uniform value throughout the
time window. It increases in magnitude as more and more
variability is introduced into the time series, i.e., when the
behavior changes from malicious to nonmalicious or from
nonmalicious to malicious.

The time-series feature vector [Xi1 Xi2 . . . XiW] corre-
sponding to the single-day feature attribute Xi can also be
viewed as a time-varying signal. We first decompose the
signal into its different frequency components and obtain its
equivalent frequency-domain representation, i.e., periodogram,
using discrete Fourier transformation, as given by (12). Let us
denote the periodogram corresponding to Xi as Xi (ω)

Xi (ω) =
W∑

w=1

Xiw exp− j 2π(ω−1)(w−1)
W (12)

where ω ∈ Z (the set of integers). The power of the signal at
each frequency is given by

Pi (ω) = Xi (ω)Xi (ω) (13)

where Xi (ω) is the complex conjugate of Xi (ω). If a user
activity remains almost uniform throughout the time win-
dow, the power at the high-frequency components of the
periodogram will be nil. On the other hand, if significant
variations are present in the user activity within the time
window, the power at the high-frequency components of the
signal will be greater. As features, we consider the total power
at the top five frequency components from the periodogram.

Suppose Mi , Vi , Fi , and Ei , respectively, denote the mean,
variance, Katz fractal dimension, and spectral power density
of the time series of the feature attribute Xi . The time-
series feature vector Vi for this attribute is constructed by
concatenating the above statistical measures, as shown in (14):

Vi = [Mi Vi Fi Ei]. (14)

The time-series feature vectors corresponding to the K single-
day feature attributes are concatenated to construct the final
feature vector for identifying a threat scenario. If V denotes
this vector, then

V = [V1 V2 . . . VK]. (15)

With reference to Table II, 12 single-day features are needed
to identify scenario S1. The time-series feature vector for
this scenario will thus have a total dimensionality of 48.
Likewise, the dimensionality of the time-series feature vectors
for scenarios S2 and S3 is 16 and 68, since the corresponding
single-day feature vectors are of dimensionality 4 and 17,
respectively. The complete time-series feature vector preserves
useful dynamics of a user behavior within the time win-
dow that cannot be captured by single-day features alone.
The imbalanced time-series feature set is next balanced by
randomly undersampling the nonmalicious class instances to
achieve a desired imbalance ratio. Imbalance ratio is defined
as the ratio of the number of majority class samples (i.e.,
nonmalicious class) to the number of minority class samples
(i.e., malicious class) [63].

2) Selection of Appropriate Time-Window Length: Mali-
cious insiders do not execute threatful activities every day.
They tend to perform abnormally for a very short period of
time (typically for a few days) and start behaving normally
after that. With reference to Fig. 3 and the associated dis-
cussions in the first paragraph of Section II-B, if W = T,
then the window covers the entire length of the time line.
Since T is usually large, it would be difficult to precisely
figure out at which period of time certain insider threat-
related activities have occurred. On the contrary, the use of
a smaller time window will help in getting such information
more precisely. However, W cannot be too small either,
since in that case the behavioral changes of an insider from
malicious to nonmalicious, or from nonmalicious to malicious,
might not get accurately captured. Corresponding to each
threat scenario, the minimum window length for which each
of the performance metrics, precision, recall, and f-score,
is greater than or equal to γ (0≤γ≤1) is chosen as the optimal
window length. This condition helps in selecting the classifier
configuration with a less number of false positive cases and
a high number of true positive cases. In Section III, we will
discuss more on this issue with suitable experimental results.

668 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

TABLE III

NUMBER OF NONMALICIOUS AND MALICIOUS SAMPLES IN THE ORIGINAL TIME-SERIES FEATURE SET FOR THE DIFFERENT
WINDOW LENGTHS AND FOR DIFFERENT SCENARIOS ALONG WITH THE NUMBER OF UNDERSAMPLED

NONMALICIOUS INSTANCES FOR THE DIFFERENT IMBALANCE RATIOS C1–C7

III. EXPERIMENTAL RESULTS

We evaluate this paper through extensive experiments using
the CMU Data version 4.2 and present the important findings.
All simulations are carried out in MATLAB 2017a on a system
having 2.4-GHz Intel Xeon Processor [E5-2640 (v4)] and
128-GB RAM. As a classifier, we employ a deep autoen-
coder neural network and compare its performance with other
commonly used classifiers, namely, random forest [64] and
multilayer perceptron [65].

Recently, autoencoders have been extensively used as
tools for learning deep neural networks [66], [67]. The hid-
den/encoding layers of a deep autoencoder are trained sepa-
rately in an unsupervised manner to learn the input features
at different levels of abstraction. The final layer of the deep
network is a soft-max classification layer, which is trained in
a supervised manner using the outputs of the last encoding
layer. Let us assume that a K-dimensional feature vector
[V1 V2 . . . VK] is provided as input to the deep autoencoder,
and [V̂1 V̂2 . . . V̂K] is the corresponding desired output vector.
If N denotes the total number of samples in the feature set,
the cost function for training each encoding layer of the deep
network is as follows:

L1 = 1

N

N∑

n=1

K∑

k=1

(Vkn − V̂kn)2 + β�sparsity (16)

where β denotes the coefficient for the sparsity regularization
term and �sparsity is the sparsity regularization term given by

�sparsity =
H∑

i=1

(
ρlog

(
ρ

ρ̂i

)
+(1 − ρ)log

(
1 − ρ

1 − ρ̂i

))
(17)

where ρi is the average activation value at a neuron and ρ is
its desired value. Cross-entropy loss function is next used to
train the final soft-max classification layer using the features
at the last encoding layer.

The deep learning toolbox4 of MATLAB 2017a is used to
construct a two-layer deep autoencoder neural network and
train it with the data-adjusted time-series feature set. For each
insider threat scenario (refer to Section I), we compute the
performance metrics (refer to Section I-A2) by varying the
length of the time window and also by reducing the imbalance

4https://www.mathworks.com/discovery/deep-learning.html

ratio gradually. We experiment with the window lengths of
5, 10, 20, and 40 days, and for each of these window lengths,
the nonmalicious class is randomly undersampled to the fol-
lowing imbalance ratios: C1 = 500, C2 = 300, C3 = 200,
C4 = 100, C5 = 50, C6 = 1, and C7 = 0.5. Table III shows
the original number of malicious and nonmalicious instances
in the time-series feature set for each scenario corresponding
to each window length as well as the number of undersampled
nonmalicious class samples for the different imbalance ratios.
The data-adjusted time-series feature set is next used for
training the deep autoencoder neural network. Any instance
of this time-series feature set is labeled as malicious, if cer-
tain malicious activity has occurred within the corresponding
time window.

To choose the optimum network parameters through exper-
imentation, we vary the number of neurons in the hidden
layers of the deep autoencoder from 5 to 2K (where K is the
dimensionality of the feature set) in the steps of 5, with the
constraint that the second hidden layer has a lesser number
of neurons than the first one. Fivefold cross validation is
carried out, and finally, the optimal window length for each
scenario is determined from the values of average recall RAV,
average precision PAV, and average f-score FAV, following the
condition stated in Section II-B2. In this paper, we consider
γ to be 0.8.

Fig. 4(a)–(d) shows the recall for malicious class RM

(black bars), recall for nonmalicious class RNM (gray bars),
and average recall RAV (white bars) corresponding to sce-
nario S1 for each experimental setup, as described earlier.
Similarly, Figs. 5(a)–(d) and 6(a)–(d) show the precision
(PM , PNM, and PAV) and f-score (FM , FNM, and FAV) for
the two classes along with their averages. It is seen from
the figures that for scenario S1, significantly high values of
precision, recall, and f-score (all greater than γ) are obtained
for a small window length of only five days. Thus, the optimal
window length is set to five days. It is also observed that,
for this window length, the best value of RM is obtained
when the imbalance ratio is set to C5. The averages of the
recall, precision, and f-score for the chosen window length and
imbalance ratio are 0.9868, 0.9870, and 0.9742, respectively.

Figs. 7(a)–(d), 8(a)–(d), and 9(a)–(d) show the recall, pre-
cision, and f-score values for the malicious and the nonmali-
cious classes along with their average values for scenario S2.

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 669

Fig. 4. Scenario S1 detection: variation of recall for malicious class,
recall for nonmalicious class, and average recall as imbalance ratio decreases
from C1 to C7 for different window lengths. (a) Window length = 5 days.
(b) Window length = 10 days. (c) Window length = 20 days. (d) Window
length = 40 days.

It is observed from the figures that each of the performance
metrics is greater than γ for all the imbalance ratios, if the
window length is set to 40 days. The best recall for the
malicious class at this particular window size is obtained
for the imbalance ratio C7. For this particular combination
of window length and imbalance ratio, each of the met-
rics, RAV, PAV, and FAV, attains the maximum possible
value, i.e., 100%.

We also carry out similar experiments for scenario S3 and
found that the optimal window length and the imbalance ratio

Fig. 5. Scenario S1 detection: variation of precision for malicious class,
precision for nonmalicious class, and average precision as imbalance ratio
decreases from C1 to C7 for different window lengths. (a) Window length
= 5 days. (b) Window length = 10 days. (c) Window length = 20 days.
(d) Window length = 40 days.

TABLE IV

OPTIMAL TIME-WINDOW LENGTHS AND IMBALANCE RATIOS

FOR THE CMU DATA THREAT SCENARIOS

for identifying this scenario are 10 days and C6, respectively.
For this configuration, each of the above metrics attains a value
of 100%. Table IV shows the optimal time-window lengths

670 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

Fig. 6. Scenario S1 detection: variation of f-score for malicious class,
f-score for nonmalicious class, and average f-score as imbalance ratio
decreases from C1 to C7 for different window lengths. (a) Window length
= 5 days. (b) Window length = 10 days. (c) Window length = 20 days.
(d) Window length = 40 days.

and the imbalance ratios for the three scenarios determined in
the previous experiment. It may be noted that the criterion for
optimal window length selection (described in Section II-B2)
could have been satisfied for some intermediate window length
as well (e.g., 15 days or 25 days). But for most practical
purposes, such a minor difference in the lengths of the time
window will not significantly affect the localization of an
insider threat event.

An important observation from Figs. 4 and 7 is that, for
a fixed window length, as the imbalance ratio is gradually
decreased from C1 to C7, the value of RM tends to increase.

Fig. 7. Scenario S2 detection: variation of recall for malicious class,
recall for nonmalicious class, and average recall as imbalance ratio decreases
from C1 to C7 for different window lengths. (a) Window length = 5 days.
(b) Window length = 10 days. (c) Window length = 20 days. (d) Window
length = 40 days.

However, the magnitude of RNM falls if the imbalance ratio is
made very low. This is due to the fact that, with the reduction
of imbalance ratio, a more number of nonmalicious instances
get eliminated, and the classifier learns to predict the malicious
class with higher accuracy, whereas its prediction accuracy on
the nonmalicious class reduces gradually. The phenomenon
is more prominent for small values of the window lengths
than for higher values. With reference to Table III, for large
time-window lengths, the number of malicious samples in the
feature set is more compared to that for small lengths of the
time window. Thus, when the time-window size is set to a

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 671

Fig. 8. Scenario S2 detection: variation of precision for malicious class,
precision for nonmalicious class, and average precision as imbalance ratio
decreases from C1 to C7 for different window lengths. (a) Window length
= 5 days. (b) Window length = 10 days. (c) Window length = 20 days.
(d) Window length = 40 days.

large value, the classifier shows a higher value of RM even
for higher values of imbalance ratio.

As explained before, time-series features are more appro-
priate for identifying insider threat scenarios than single-
day features. To experimentally verify this fact, we compare
the overall classification performance of deep autoencoder
when trained with both these types of feature sets. Average
f-score (FAV) is an appropriate metric to measure the overall
classification performance. So, we present this metric for the
three scenarios and also for the different imbalance ratios
C1, C2, . . ., C7 in Fig. 10(a)–(c). The optimal window length

Fig. 9. Scenario S2 detection: variation of f-score for malicious class, f-score
for nonmalicious class, and average f-score as imbalance ratio decreases
from C1 to C7 for different window lengths. (a) Window length = 5 days.
(b) Window length = 10 days. (c) Window length = 20 days. (d) Window
length = 40 days.

corresponding to each scenario specified in Table IV has been
used to obtain the above results.

As expected, it is observed from the figures that the
time-series-based classification of user activities outperforms
single-day classification. The difference in the average f-score
values is small for each of scenarios S1 and S3, since in
this case insiders execute malicious activities mostly within
a single day. However, this difference is substantially high
for scenario S2, in which there is a gradual change in insider
behavior over time.

672 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

Fig. 10. Comparison between the single-day classification and the time-
series classification of user activities in terms of average f-score for scenarios
(a) S1, (b) S2, and (c) S3.

We also make a comparative study of the performances of
the deep autoencoder neural network with two other popularly
used classifiers, namely, random forest5 and multilayer per-
ceptron with backpropagation.6 In Fig. 11(a)–(c), we present
the precision, recall, and f-score for the malicious class corre-
sponding to each of the three scenarios. The optimal values for
the window length and the imbalance ratio (refer to Table IV)
are also used in this experiment. In each figure, the bars
corresponding to the random forest, multilayer perceptron,
and deep autoencoder classifiers are colored with “black,”
“gray,” and “white,” respectively. Each classifier is subjected
to fivefold cross validation repeatedly by varying the classifier
parameters. While carrying out classification using multilayer
perceptron, we vary the number of hidden layer neurons from
5 to 2K in the steps of 5, and for each of these network
configurations, four different learning rates 0.05, 0.25, 0.5,
and 1 are considered. In the case of random forest classifier,
we vary the number of decision trees in the forest from
10 to 150 in the steps of 10, and for each of these ensembles,
the same four learning rates are considered, as mentioned
earlier. Performance metrics presented in Fig. 11(a)–(c) are

5https://www.mathworks.com/help/stats/treebagger.html
6https://www.mathworks.com/help/nnet/ref/train.html

Fig. 11. Comparative study of the performances of three classifiers: random
forest, multilayer perceptron, and deep autoencoder on the time-series feature
set for scenarios (a) S1, (b) S2, and (c) S3.

computed from the network configuration that provides the
best value of the metric RM . From the figures, it is observed
that the deep autoencoder classifier performs with significantly
high precision, recall, and f-score. The performance metrics
for the random forest classifier are also reasonably high, and
for scenarios S2 and S3, it is comparable with that of the
deep autoencoder. On the other hand, multilayer perceptron
has a lower precision than either of the other two classifiers
used in this paper. The reason for this is explained next. High-
dimensional data are difficult to classify, and both deep autoen-
coder and random forest reduce the original high-dimensional
data into smaller dimensions. While deep autoencoder aims
to find a smaller representation of the original feature vector,
each tree within a random forest works on different subsets of
the original attribute set. In contrast, multilayer perceptron per-
forms classification using the complete set of feature attributes,
and hence, suffers from poor classification performance.

Majority of the existing approaches on insider threat detec-
tion aim at detecting only anomalousness, and users exhibiting
high degree of anomaly score are suspected as probable
insiders. None of the existing techniques on insider threat
detection has performed threat scenario-based classification
on time series of user activities. The two approaches clos-
est to this paper are [15], which carried out cost-sensitive

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 673

TABLE V

COMPARATIVE STUDY WITH EXISTING TECHNIQUES

classification on single-day features, and [7], which computed
time-series features from the first-order statistical measure-
ments and employed isolation forest algorithm to obtain the
anomaly scores. To verify the effectiveness of the proposed
algorithm, we compare it with both these techniques. The best
two classifiers obtained in our previous study, i.e., random for-
est and deep autoencoder, have been used in the comparison.

The protocol followed here is different from the previous
experiments. We randomly select a percentage (say r%) of
samples from the data set as training set. Hyperparameters of
each classifier are chosen from the configuration that provides
the minimum cross-validation error. Experiments have been
conducted with the values of r = 70, 50, and 30, and the
results are presented in Table V.

It can be seen from the table that the proposed approach
always outperforms both [15] as well as [7] by a significantly
high margin in terms of average recall and average f-score.
The effect is more pronounced for scenario S2 than that for
S1 and S3, since, in the case of S2, user behavior changes grad-
ually, and higher order statistical measurements are needed to
preserve the dynamics of this change at a high resolution. The
fact that scenario S2 in the CMU data deals with gradual and
slow changes in user behavior is also evident from the fact that
a larger time window is needed to detect insiders accurately.
The use of only the first-order statistics [7] is insufficient to
capture the dynamics of behavioral changes accurately. As in
previous experiments, here again the performances of deep
autoencoder and random forest have been found to be com-
parable. The results in Table V also prove that both the cost-
sensitive data-adjustment and the time-series classification of
user activities are essential for accurate identification of insider
threats.

So far, we have presented the results of insider threat
detection from the ground truth knowledge of predefined
threat scenarios. However, it is also possible to come across
situations in which no threat scenarios are present in the data.
In our next experiment, we evaluate the performance of the
proposed algorithm on the CMU Insider Threat Data with the
assumption that the scenario-specific ground truth knowledge
of insider threat data is not available to us. The time-series

Fig. 12. Average f-score for the different window lengths and imbalance
ratios when no threat scenarios are considered.

feature set is thus formed from the complete set of single-
day features specified in Table II. To make this feature set
scenario-independent, each feature vector in this feature set
is labeled as malicious if it corresponds to any one of the
threat scenarios S1–S3 (refer to Section I), else it is labeled
as nonmalicious. In Fig. 12, we report the average f-score for
the imbalance ratios: C5–C7, and window lengths: 5, 10, 20,
and 40 days. As expected, it can be seen from the results that
the maximum value of f-score (i.e., 0.98) is achieved if the
window length is set to 20 days and the imbalance ratio is set
to C1. On increasing the length of the window beyond 20 days,
no noticeable improvement in the value of f-score is observed.

IV. CONCLUSION AND FUTURE WORK

We have proposed an accurate scenario-based insider
threat detection approach from human behavioral activities.
Existing algorithms are mostly unsupervised and aim to find
anomalies in human behavior. The few supervised approaches
developed till date do not take into account the temporal
changes in user activities. This paper is an improvement
over the state-of-the-art algorithms. It constructs a time-series
feature vector from the statistics of single-day user activities
within a time window, employs random undersampling of the
nonmalicious class samples to make the feature set balanced,
uses the ground truth knowledge to label each vector in the
balanced feature set as malicious or nonmalicious, and finally
trains a classifier using the reduced feature set. The algorithm
proposed in this paper can also be potentially deployed in
other related domains, such as intrusion detection, even if no
threat scenarios are defined in the data set.

Experimental evaluation of our algorithm in Section III
shows that it has the capability to identify malicious insiders
with significantly high precision, recall, and f-score if a
suitable classifier is used. In the future, it can be studied if
increasing the number of hidden layers of the deep autoen-
coder neural network can further improve the classification
performance metrics. The effectiveness of our algorithm in
handling challenging real-world data sets will also be studied
in the future. We have started building our own data set from
user-activity logs, and once we come up with an extensive
data, we will evaluate the proposed algorithm on this data set
and study the performance. Also, further improvements to the
algorithm will be proposed, if needed.

ACKNOWLEDGMENT

The authors would like to thank the Director of IIT (BHU)
Varanasi, Varanasi, India, for helping us with the facilities
needed to complete the final part of the project.

674 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

REFERENCES

[1] I. X.-F. R. Team. (2016). 2016 Cyber Security Intelligence Index.
[Online]. Available: http://www-03.ibm.com/security/data-breach/cyber-
security-index.html

[2] A. P. Moore et al., “A preliminary model of insider theft of intellectual
property,” Softw. Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep. , 2011.

[3] N. Liang and D. Biros, “Validating common characteristics of malicious
insiders: Proof of concept study,” in Proc. 49th Hawaii Int. Conf. Syst.
Sci., Jan. 2016, pp. 3716–3726.

[4] A. Memory, H. G. Goldberg, and T. E. Senator, “Context-aware insider
threat detection,” in Proc. Workshop Activity Context Syst. Archit., 2013,
pp. 44–47.

[5] W. T. Young, H. G. Goldberg, A. Memory, J. F. Sartain, and
T. E. Senator, “Use of domain knowledge to detect insider threats in
computer activities,” in Proc. Secur. Privacy Workshops, May 2013,
pp. 60–67.

[6] T. E. Senator et al., “Detecting insider threats in a real corporate database
of computer usage activity,” in Proc. 19th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2013, pp. 1393–1401.

[7] G. Gavai, K. Sricharan, D. Gunning, R. Rolleston, J. Hanley, and
M. Singhal, “Detecting insider threat from enterprise social and online
activity data,” in Proc. 7th ACM CCS Int. Workshop Manage. Insider
Secur. Threats, 2015, pp. 13–20.

[8] O. Brdiczka et al., “Proactive insider threat detection through graph
learning and psychological context,” in Proc. Symp. Secur. Privacy
Workshops, May 2012, pp. 142–149.

[9] P. A. Legg, O. Buckley, M. Goldsmith, and S. Creese, “Caught in the
act of an insider attack: Detection and assessment of insider threat,” in
Proc. IEEE Int. Symp. Technol. Homeland Secur., Apr. 2015, pp. 1–6.

[10] J. R. C. Nurse et al., “Understanding insider threat: A framework for
characterising attacks,” in Proc. Secur. Privacy Workshops, May 2014,
pp. 214–228.

[11] M. A. Maloof and G. D. Stephens, “ELICIT: A system for detecting
insiders who violate need-to-know,” in Proc. Int. Workshop Recent Adv.
Intrusion Detect. Berlin, Germany: Springer, 2007, pp. 146–166.

[12] K. Bhavsar and B. H. Trivedi, “An insider cyber threat prediction
mechanism based on behavioral analysis,” in Proc. Int. Conf. ICT
Sustain. Develop., 2016, pp. 345–353.

[13] C. P. Pfleeger, “Reflections on the insider threat,” in Insider Attack and
Cyber Security. Boston, MA, USA: Springer, 2008, pp. 5–16.

[14] G. B. Magklaras and S. M. Furnell, “Insider threat prediction tool:
Evaluating the probability of IT misuse,” Comput. Secur., vol. 21, no. 1,
pp. 62–73, 2001.

[15] A. Azaria, A. Richardson, S. Kraus, and V. S. Subrahmanian, “Behav-
ioral analysis of insider threat: A survey and bootstrapped prediction
in imbalanced data,” IEEE Trans. Comput. Social Syst., vol. 1, no. 2,
pp. 135–155, Jun. 2014.

[16] W. T. Young, A. Memory, H. G. Goldberg, and T. E. Senator, “Detecting
unknown insider threat scenarios,” in Proc. Secur. Privacy Workshops,
May 2014, pp. 277–288.

[17] M. Kandias, A. Mylonas, N. Virvilis, M. Theoharidou, and D. Gritzalis,
“An insider threat prediction model,” in Proc. Int. Conf. Trust, Privacy
Secur. Digit. Bus. Berlin, Germany: Springer, 2010, pp. 26–37.

[18] H. Eldardiry, E. Bart, J. Liu, J. Hanley, B. Price, and O. Brdiczka,
“Multi-domain information fusion for insider threat detection,” in Proc.
Secur. Privacy Workshops, May 2013, pp. 45–51.

[19] A. Coden et al., “Uncovering insider threats from the digital footprints
of individuals,” IBM J. Res. Develop., vol. 60, no. 4, pp. 8:1–8:11,
Jul./Aug. 2016.

[20] C. Wan, L. Wang, and K. M. Ting, “Introducing cost-sensitive neural
networks,” in Proc. 2nd Int. Conf. Inf., Commun. Signal Process., 1999,
pp. 445–449.

[21] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with
methods addressing the class imbalance problem,” IEEE Trans. Knowl.
Data Eng., vol. 18, no. 1, pp. 63–77, Jan. 2006.

[22] N. Chawla, “Data mining for imbalanced datasets: An overview,” in Data
Mining and Knowledge Discovery Handbook. New York, NY, USA:
Springer, 2005, pp. 853–867.

[23] N. Japkowicz, “The class imbalance problem: Significance and strate-
gies,” in Proc. Int. Conf. Artif. Intell., Special Track Inductive Learn.,
2000, pp. 111–117.

[24] Z. Qin, C. Zhang, T. Wang, and S. Zhang, “Cost sensitive classification
in data mining,” in Proc. 6th Int. Conf. Adv. Data Mining Appl. Berlin,
Germany: Springer-Verlag, 2010, pp. 1–11.

[25] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, no. 1, pp. 321–357, 2002.

[26] S. Hu, Y. Liang, L. Ma, and Y. He, “MSMOTE: Improving classification
performance when training data is imbalanced,” in Proc. 2nd Int.
Workshop Comput. Sci. Eng., Oct. 2009, pp. 13–17.

[27] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTE-
Boost: Improving prediction of the minority class in boosting,” in
Proc. 7th Eur. Conf. Princ. Pract. Knowl. Discovery Databases, 2003,
pp. 107–119.

[28] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“RUSBoost: A hybrid approach to alleviating class imbalance,” IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 40, no. 1,
pp. 185–197, Jan. 2010.

[29] R. Batuwita and V. Palade, “FSVM-CIL: Fuzzy support vector machines
for class imbalance learning,” IEEE Trans. Fuzzy Syst., vol. 18, no. 3,
pp. 558–571, Jun. 2010.

[30] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Inf. Process. Manag., vol. 45, no. 4,
pp. 427–437, 2009.

[31] M. Kukar and I. Kononenko, “Cost-sensitive learning with neural
networks,” in Proc. 13th Eur. Conf. Artif. Intell. Hoboken, NJ, USA:
Wiley, 1998, pp. 445–449.

[32] P. D. Turney, “Cost-sensitive classification: Empirical evaluation of a
hybrid genetic decision tree induction algorithm,” J. Artif. Intell. Res.,
vol. 2, pp. 369–409, Mar. 1995.

[33] P. Domingos, “MetaCost: A general method for making classifiers cost-
sensitive,” in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 1999, pp. 155–164.

[34] C. Drummond and R. Holte, “C4.5, class imbalance, and cost sensitivity:
Why under-sampling beats over-sampling,” in Proc. Int. Conf. Machine
Learn., Workshop Learn. Imbalanced Data Sets (II), 2003, pp. 1–8.

[35] J. Stefanowski and S. Wilk, “Selective pre-processing of imbalanced
data for improving classification performance,” in Proc. Int. Conf.
Data Warehousing Knowl. Discovery. Berlin, Germany: Springer, 2008,
pp. 283–292.

[36] T. Dietterich, “Ensemble methods in machine learning,” in Proc. 1st
Int. Workshop Multiple Classifier Syst. Berlin, Germany: Springer, 2000,
pp. 1–15.

[37] S. Tulyakov, S. Jaeger, V. Govindaraju, and D. Doermann, “Review
of classifier combination methods,” in Machine Learning in Doc-
ument Analysis and Recognition. Berlin, Germany: Springer, 2008,
pp. 361–386.

[38] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting methods,”
Ann. Statist., vol. 26, no. 5, pp. 1651–1686, 1998.

[39] X.-S. Hu and R.-J. Zhang, “Clustering-based subset ensemble learning
method for imbalanced data,” in Proc. Int. Conf. Mach. Learn. Cybern.,
Jul. 2013, pp. 35–39.

[40] S. Lee, D. Kwon, and S. Lee, “Minimum distance queries for time series
data,” J. Syst. Softw., vol. 69, nos. 1–2, pp. 105–113, 2004.

[41] T. W. Liao, “Clustering of time series data—A survey,” Pattern Recog-
nit., vol. 38, no. 11, pp. 1857–1874, Nov. 2005.

[42] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic
time warping for time series classification,” Pattern Recognit., vol. 44,
no. 9, pp. 2231–2240, Sep. 2011.

[43] T. M. Rath and R. Manmatha, “Lower-bounding of dynamic time
warping distances for multivariate time series,” Multi-Media Indexing
Retr. Group, Center Intell. Inf. Retr., Univ. Massachusetts, Amherst,
Amherst, MA, USA, Tech. Rep. MM 40, 2003.

[44] J. Mei, M. Liu, Y.-F. Wang, and H. Gao, “Learning a Mahalanobis
distance-based dynamic time warping measure for multivariate
time series classification,” IEEE Trans. Cybern., vol. 46, no. 6,
pp. 1363–1374, Jun. 2016.

[45] J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform
for time series classification,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2012, pp. 289–297.

[46] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classifi-
cation of time series by shapelet transformation,” Data Mining Knowl.
Discovery, vol. 28, no. 4, pp. 851–881, 2014.

[47] L. Ye and E. Keogh, “Time series shapelets: A novel tech-
nique that allows accurate, interpretable and fast classification,”
Data Mining Knowl. Discovery, vol. 22, nos. 1–2, pp. 149–182,
2011.

[48] X. Ji, J. Bailey, and G. Dong, “Mining minimal distinguishing subse-
quence patterns with gap constraints,” in Proc. 5th IEEE Int. Conf. Data
Mining, Nov. 2005, pp. 259–286.

CHATTOPADHYAY et al.: SCENARIO-BASED INSIDER THREAT DETECTION FROM CYBER ACTIVITIES 675

[49] C. Jentsch and S. S. Rao, “A test for second order stationarity of a
multivariate time series,” J. Econometrics, vol. 185, no. 1, pp. 124–161,
Mar. 2015.

[50] X. Zhu, W. Luan, and Y.-S. Zhu, “Frequency domain method for analysis
of macroeconomic time series,” in Proc. Int. Conf. Multimedia Technol.,
Oct. 2010, pp. 1–4.

[51] K. K. Teo, L. Wang, and Z. Lin, “Wavelet packet multi-layer perceptron
for chaotic time series prediction: Effects of weight initialization,”
in Proc. Int. Conf. Comput. Sci. Berlin, Germany: Springer, 2001,
pp. 310–317.

[52] L. Wang, K. K. Teo, and Z. Lin, “Predicting time series with wavelet
packet neural networks,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
Jul. 2001, pp. 1593–1597.

[53] P. Esling and C. Agon, “Time-series data mining,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 12:1–12:34, 2012.

[54] D. Chakrabarti and C. Faloutsos, “F4: Large-scale automated forecasting
using fractals,” in Proc. 11th Int. Conf. Inf. Knowl. Manage., New York,
NY, USA, 2002, pp. 2–9.

[55] W. Lutzenberger, H. Preissl, and F. Pulvermüller, “Fractal dimension
of electroencephalographic time series and underlying brain processes,”
Biol. Cybern., vol. 73, no. 5, pp. 339–350, 1997.

[56] L. Wang and X. Fu, Data Mining With Computational Intelligence.
Berlin, Germany: Springer-Verlag, 2006.

[57] X. Wang, A. Wirth, and L. Wang, “Structure-based statistical features
and multivariate time series clustering,” in Proc. 7th IEEE Int. Conf.
Data Mining, Oct. 2007, pp. 351–360.

[58] C. Chatfield, The Analysis of Time Series: An Introduction, 6th ed.
Boca Raton, FL, USA: CRC Press, 2016.

[59] Y. Matsuo and M. Ishizuka, “Keyword extraction from a single document
using word co-occurrence statistical information,” Int. J. Artif. Intell.
Tools, vol. 13, no. 1, pp. 157–169, 2004.

[60] Y.-H. Chen, E. J.-L. Lu, and M. F. Tsai, “Finding keywords in blogs:
Efficient keyword extraction in blog mining via user behaviors,” Expert
Syst. Appl., vol. 41, no. 2, pp. 663–670, Feb. 2014.

[61] P. Willett, “The porter stemming algorithm: Then and now,” Program,
vol. 40, no. 3, pp. 219–223, 2006.

[62] H. Preißl, W. Lutzenberger, F. Pulvermüller, and N. Birbaumer, “Fractal
dimensions of short EEG time series in humans,” Neurosci. Lett.,
vol. 225, no. 2, pp. 77–80, Apr. 1997.

[63] A. Fernández, S. García, M. J. del Jesus, and F. Herrera, “A study of
the behaviour of linguistic fuzzy rule based classification systems in the
framework of imbalanced data-sets,” Fuzzy Sets Syst., vol. 159, no. 18,
pp. 2378–2398, 2008.

[64] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001, doi: 10.1023/A:1010933404324.

[65] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997, ch. 4, pp. 81–126.

[66] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
J. Mach. Learn. Res., vol. 11, pp. 625–660, Feb. 2010.

[67] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

Pratik Chattopadhyay received the B.Tech. degree
in computer science and engineering from the
Institute of Engineering and Management, Kolkata,
India, in 2009, the M.E. degree in computer science
and engineering from Jadavpur University, Kolkata,
in 2011, and the Ph.D. degree from IIT Kharagpur,
Kharagpur, India, in 2015.

He was a Post-Doctoral Researcher with the
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore. He is
currently an Assistant Professor with the Department

of Computer Science and Engineering, IIT (BHU) Varanasi, Varanasi, India.
His current research interests include machine learning, image processing, and
data mining.

Lipo Wang received the bachelor’s degree from the
National University of Defense Technology, Chang-
sha, China, and the Ph.D. degree from Louisiana
State University, Baton Rouge, LA, USA.

He has authored or co-authored over 300 papers,
of which more than 100 are in journals. He holds a
U.S. patent in neural networks and a Chinese patent
in very large scale integration. He has co-authored
two monographs and (co-)edited 15 books. His cur-
rent research interests include intelligent techniques
with applications to communications, image/video

processing, biomedical engineering, and data mining.
Dr. Wang was the President of the Asia–Pacific Neural Network

Assembly (APNNA). He was an AdCom Member of the IEEE Computational
Intelligence Society from 2010 to 2015 and served as the CIS Vice President
for Technical Activities. He was a member of the Board of Governors
of the International Neural Network Society from 2011 to 2016 and an
AdCom Member of the IEEE Biometrics Council. He received the APNNA
Excellent Service Award. He served as the Chair of the Emergent Technolo-
gies Technical Committee. He was the Founding Chair of both the EMBS
Singapore Chapter and the CIS Singapore Chapter. He served as the Chair
of the Education Committee, IEEE Engineering in Medicine and Biology
Society (EMBS). He serves/served as the chair/committee member of over
200 international conferences. He was/will be a keynote/panel speaker for
35 international conferences. He is/was an associate editor/editorial board
member of 30 international journals, including four IEEE TRANSACTIONS,
and a guest editor of 10 journal special issues.

Yap-Peng Tan (SM’97) received the B.S. degree
from National Taiwan University, Taipei, Taiwan,
in 1993, and the M.A. and Ph.D. degrees from
Princeton University, Princeton, NJ, USA, in 1995
and 1997, respectively, all in electrical engineering.

From 1997 to 1999, he was with Intel Corpo-
ration, Chandler, AZ, USA, and Sharp Laborato-
ries of America, Camas, WA, USA. In 1999, he
joined Nanyang Technological University, Singa-
pore, where he is currently a Professor and an Asso-
ciate Chair (Academic) of the School of Electrical

and Electronic Engineering. His current research interests include image and
video processing, content-based multimedia analysis, computer vision, pattern
recognition, machine learning, and data analytics.

Dr. Tan served a member of the Multimedia Systems and Applications
Technical Committee and Visual Signal Processing and Communications
Technical Committee of the IEEE Circuits and Systems Society, and a member
of the Image, Video and Multidimensional Signal Processing Technical
Committee of the IEEE Signal Processing Society. He served as a voting
member of the IEEE International Conference on Multimedia & Expo Steering
Committee from 2011 to 2012, the Chairman of the IEEE Signal Processing
Singapore Chapter from 2009 to 2010, the Chair of the Visual Signal
Processing and Communications Technical Committee of the IEEE Circuits
and Systems Society from 2012 to 2014, the Chair of the Nominations
and Elections Subcommittee of the Multimedia Signal Processing Technical
Committee of the IEEE Signal Processing Society from 2012 to 2013, and
the Chair of the Membership & Election Subcommittee of the Multimedia
Systems and Applications Technical Committee of the IEEE Circuits and
Systems Society from 2013 to 2017. He was the Finance Chair of ICIP
2004, the General Co-Chair of ICME 2010, the Technical Program Co-Chair
of ICME 2015, and the General Co-Chair of the 2015 IEEE International
Conference on Visual Communications and Image Processing 2015. He is the
Technical Program Co-Chair of ICME 2018 and the 2019 IEEE International
Conference on Image Processing 2019, the Chair of the ICME Steering
Committee from 2018 to 2019. He has also served as an Associate Editor
of the IEEE TRANSACTIONS ON MULTIMEDIA, the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, the IEEE SIGNAL

PROCESSING LETTERS, and the IEEE ACCESS, an Editorial Board Member
of the EURASIP Journal on Advances in Signal Processing, and EURASIP
Journal on Image and Video Processing, a Guest Editor for special issues of
several journals including the IEEE TRANSACTIONS ON MULTIMEDIA.

http://dx.doi.org/10.1023/A:1010933404324

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

