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Transiently Chaotic Neural Network
with Variable Thresholds for the Frequency
Assignment Problem in Satellite
Communications

Wen Liu, Haixiang Shi and Lipo Wang

Abstract We proposed a transiently chaotic neural network with variable thresholds
(TCNN-VT) by mapping the optimization problem onto the thresholds in the self-
feedback terms of the neural network. This TCNN-VT model consists of N × M
noisy chaotic neurons for an N -carrier-M-segment frequency assignment problem
(FAP). The application of this new model on the FAP in satellite communications
shows better performance compared with existing techniques, especially in large-
scale problem.

Introduction

For the frequency assignment problem (FAP) in satellite communications, Mizuike
and Ito [1] divided the carrier to consecutive unit segments and proposed seg-
mentation of frequency band. Funabiki and Nishikawa [2] solved the FAP with a
gradual neural network (GNN), where cost optimization is achieved by a gradual
expansion scheme and a binary neural network is in charge of the satisfaction of
constraints. Salcedo-Sanz et al. combined the Hopfield network with simulated an-
nealing (HopSA) [3] and the genetic algorithm (NG) [4] for the FAP. However, as
a kind of hybrid algorithms, the computational cost of the HopSA and the NG are
increased compared with the GNN [2, 3].

Chen and Aihara [5] proposed a transiently chaotic neural network (TCNN) by
introducing transiently chaotic dynamics into the Hopfield neural network (HNN)
[6]. With decaying of the self-feedback connection, TCNNs are more effective in
solving combinatorial optimization problems compared to the HNN [7]. We further
develop the TCNN by proposing a transiently chaotic neural network with variable
thresholds (TCNN-VT). The thresholds are designed to minimize the largest inter-
ference after frequency rearrangements.

This paper is organized as follows. We propose the TCNN-VT and described
the formulation of the TCNN-VT on the FAP in Section “Transiently Chaotic
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Neural Networks with Variable Thresholds.”. Simulation results are presented in
Section “Simulation Results and Discussion”. Finally, we conclude this paper in
Section “Conclusion”.

Transiently Chaotic Neural Networks with Variable Thresholds

In the self-feedback term of the TCNN [5], the threshold I0 is constant positive.
We propose the TCNN-VT by varying the threshold with the interference of the
assignment which firing of the neuron represents and denote it as I (0)

i j :

I (0)
i j = 1− di j

di,max
(154.1)

where di j is the element on row i column j of the cost matrix D, and di,max is the
maximum value in row i . Cost matrix D = (di j , i = 1, . . . , N ; j = 1, . . . , M) is
obtained from the interference matrix E (I ) [2].
Hence, the new TCNN-VT model is described as:

xi j (t) = 1

1+ e−yi j (t)/ε
(154.2)

yi j (t + 1) = kyi j (t)+ α
⎛

⎝
N∑

p=1, p �=i

M∑

q=1, q �= j

wi j pq x pq (t)+ I

⎞

⎠− z(t)
[
xi j (t)− I (0)

i j

]

(154.3)

where xi j and yi j is the output and the internal state of neuron i j , respectively. ε is
the steepness parameter of the neuron activity function (ε > 0). k is the damping
factor of the nerve membrane (0 ≤ k ≤ 1). wi j pq is the connection weight from
neuron i j to neuron pq and is determined [8] by the energy function (154.4). Fur-
thermore, α is the positive scaling parameter for inputs. z(t) is the self-feedback
neuronal connection weight (z(t) ≥ 0), z(t + 1) = (1 − β)z(t). β is the damping
factor (0 ≤ β ≤ 1). I is a positive input bias.

The objective of the FAP includes two part, i.e., minimization of the largest inter-
ference after reassignment and minimization of the total accumulated interference
between systems [1, 2, 3]. According to [1, 2, 9], the energy function for the TCNN-
VT of the FAP is defined as:

E = W1

2

N∑

i=1

⎛

⎝
M∑

j=1

xi j − 1

⎞

⎠
2

+ W2

2

N∑

i=1

M∑

j=1

N∑

p=1
p �=i

min( j+ci−1,M)∑

q=max( j−cp+1,1)

xi j x pq

+ W3

2

N∑

i=1

M∑

j=1

xi j (1− xi j )+ W4

2

N∑

i=1

M∑

j=1

di j xi j (154.4)
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where Wi , i = 1, . . . , 4 are weighting coefficients. The W1 term forces that every
segment in system 2 is assigned to one and at most one segment in system 1. The
W2 term guarantees that all the segments of one carrier in system 2 are assigned
to consecutive segments in system 1 in the same order [2]. The W3 term is used to
force neuron outputs to approach 0 or 1 [9]. The W4 term is needed to optimize the
total interference. We convert the continuous output xi j to discrete neuron output xb

i j

according to the average value of neuron outputs. If the neuron output xb
i j is 1 at the

end of the neuron update, then carrier i is assigned to segment j , and no assignments
are made if xb

i j = 0.

Simulation Results and Discussions

An iteration is terminated once a feasible assignment is obtained or the number of
iteration steps exceeds 15,000. The specifications of the five instances from [2] are
listed in Table 154.1.

The choices of these parameters are similar to those used in other optimization
problems [5, 7] as follows: ε = 0.004, k = 0.99, α = 0.0015, β = 0.001, and
z(0) = 0.1. Initial inputs yi j (0) are randomly generated from [−1, 1]. Values for
the weighting coefficients are chosen as follows: W1 = 1.0, W2 = 1.0, W3 = 0.7,
W4 = 0.00015. The tuning of these weight coefficients is necessary to obtain better
performance.

We run the TCNN-VT on each instance 1, 000 times with different randomly
generated initial neuron states. Table 154.2 shows results for every instance, in-
cluding the largest interference, the total interference, and the convergence rate.
The convergence rate is the ratio at which the neural network finds a feasible so-
lution in 1,000 runs. The average iteration steps T and standard deviations are
also shown in this Table. The results show that the TCNN-VT is effective in re-
ducing the largest interference and total interference by rearranging the frequency
assignment.

Table 154.3 shows and the comparison of the TCNN-VT with the GNN [2] and
the HopSA [3]. We show that the TCNN-VT is comparable with the GNN in terms
of the largest interference and outperforms the GNN in terms of the total interfer-
ence. Compared with the HopSA, the TCNN-VT is more efficient.

Table 154.1 Specifications of the FAP instances used in the simulation

Instance Number of Number of Range of Range of
carriers N segments M carrier length interference

1 4 6 1–2 5–55
2 4 6 1–2 1–9
3 10 32 1–8 1–10
4 10 32 1–8 1–100
5 10 32 1–8 1–1000
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Table 154.2 The performance of the TCNN-VT on five instances. The interference is shown as the
best and average values (Best/ Ave). T is the average number of iteration steps. The convergence
rate is the ratio at which the neural network finds a feasible solution in 1,000 runs. “SD” stands for
“standard deviation”

Instance Largest Interference Total Interference T Convergence Rate
(Best/ Ave) (Best/ Ave) mean±SD (%)

1 30/ 35.4 100/ 112.6 1191 ± 273 100
2 4/ 4.8 13/ 15.4 1799 ± 317 100
3 7/ 8.4 96/ 130.6 2904 ± 96.5 92.4
4 70/ 94.1 828/ 1145 2716 ± 172.8 89.1
5 661/ 849 6910/ 9527 3075 ± 268 86.6

Table 154.3 Comparison of simulation results (largest interference and total interference) obtained
by the TCNN-VT, GNN and HopSA for instances 1 to 5

Instance GNN [2] HopSA [3] TCNN-VT

Largest Total Largest Total Largest Total

1 30 100 30 100 30 100
2 4 13 4 13 4 13
3 7 85 7 85 7 96
4 64 880 84 886 70 828
5 640 8693 817 6851 661 6910

Conclusions

We proposed a novel approach, i.e., the transiently chaotic neural network with vari-
able thresholds, to solve the FAP in satellite communications. The novel aspect of
the TCNN-VT is that the threshold in the self-feedback term of every neuron is
dependent on the interference of the frequency assignment which the neuron repre-
sents. Compared with other techniques, i.e. the GNN [2] and the HopSA [3], the
TCNN-VT is more efficient for the FAP in satellite communications, especially in
large-scale problem.
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