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Abstract 
 

We propose a new model of Ant Colony 
Optimization (ACO) to solve the traveling salesman 
problem (TSP) by introducing ants with memory into 
the Ant Colony System (ACS). In the new ant system, 
the ants can remember and make use of the best-so-far 
solution, so that the algorithm is able to converge into 
at least a near-optimum solution quickly. We have 
tested the algorithm in 3 representational TSP 
instances and compared the results with the original 
ACS algorithm. According to the result we make 
amelioration to the new ant model and test it again. 
The simulations show that the amended ants with 
memory improve the converge speed and can find 
better solutions compared to the original ants. 
 
 
1. Introduction 
 

   Ant Colony Optimization (ACO) [6], which 
studies artificial agent systems, takes inspiration from 
the foraging behavior of real world ants. Biologists 
noticed that blind ants can find the shortest path 
between food sources and their nests. Research also 
found out that ants deposit pheromone on the way 
while walking. The other ants can follow the previous 
pheromone by probability while passing by. The more 
the pheromone, the higher the probability with which 
the ants will follow. Because it takes less time for ants 
to find food and carry them back to the nests through 
the shortest path, after a long enough period of time, 
more ants will choose this shortest path and deposit 
pheromone on it. In this way, all ants eventually choose 

the shortest path. ACO is used to solve discrete 
optimization problems such as the Traveling Salesman 
Problem (TSP) and the Quadratic Assignment Problem 
(QAP) [6]. The first ant algorithm was introduced by 
Dorigo et al. [1] in 1991 and was called the Ant System 
(AS) [1] [2]. Dorigo and Gambardella proposed the 
Ant Colony System (ACS) [4][5] later in 1996, while 
Stützle and Hoos proposed the MAX-MIN Ant System 
(MMAS) [3]. ACO has drawn much research attention 
and various extended versions of the ACO paradigm 
were proposed, such as the Best-Worst Ant System 
(BWAS) [8], the Rank based Ant System (RAS) [7] 
etc..  

The main novel idea of ants with memory algorithm, 
to be discussed in the remainder of the paper, is the 
synergistic use of the previous best solution 
constructed by ants. 

This paper is organized as follows: In section 2, we 
introduce the background knowledge of the TSP, AS 
and ACS. In section 3, we provide definition of the 
parameters and environment of the experiments. In 
section 4, we explain what ants with memory are and 
simulated them in ACS. In section 5 we amend the ants 
with memory, then we show the results of the 
experiments which were generated by amended ants 
and compare the performance of each algorithm. 
Finally, in section 6, we are dedicated to discuss the 
main characters of ants with memory and suggesting 
directions for further research. 

 
2. Background 
 
2.1 Traveling Salesman Problem 
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TSP is one of the most widely known NP-hard 
problems. In the TSP we are given a set of cities 
ci,cj,…cN and the distances d(ci,cj) for each pair of 
distinct cities (ci,cj). The salesman has to visit every 
city once and only once, and return to the starting city 
in the end. Our goal is to find a closed tour with 
minimal cost. In this paper, we concentrate on the 
symmetric TSP, where d(ci,cj)= d(cj,ci) for 1≤i,j≤N.  

D198.tsp, Rat783.tsp and Pr2392.tsp, these TSP 
models were widely used by Dorigo et al. [2][4][5], are 
available at TSPLIB benchmark library [11],  
 

2.2 Ant system    
 

In origin AS [1] [2], all the m ants which have 
constructed a solution in the loop can update the 
pheromone. The value of pheromone ijτ which 
contacted with the edge ij between city i and city j 
updated with the following formula: 
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The parameter ρ is the pheromone evaporate rate，m 
is the number of ants, k

ijτΔ  is the quantity of the 

pheromone left on edge (i,j) by ant k：  

{ /     edge (i,j) in ant k`s tour
0            otherwise
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where Q is a constant，Lk is the length of the tour 
which constructed by ant k in the current loop.  

During constructing process, ants will visit the 
following city through a stochastic mechanism：While 
an ant locating in city i has constructed the partial 
solution, the probability of move to city j is given by 
(3) ： 
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The parameter pN(s ) here is a set of suitable 
elements. In another word, it is a set of edges (i,l) here 
the parameter l means the city not visited by ant k. The 
parameters α and β contact with the importance 
between pheromone and the heuristic information 
which was given by (4)： 

1/i j ijdη =        （4） 

Where the parameter dij shows the distance between 
city i and j.  

 
2.3 Ant colony system 
 

One major difference between the ACS[4-6] and the 
AS is that the ACS introduces Local Pheromone 
Update into the algorithm at the end of each step of the 
construction, also known as offline pheromone update. 
And only when every ant explored the last edge of its 
tour the algorithm updates the pheromone as:  

0(1 )i j i jτ ϕ τ ϕ τ= − ⋅ + ⋅     （5） 

Here (0,1]ϕ ∈ is the parameter about the pheromone 
decay rate, the

0τ , which is defined as 
0τ =(Lnn)-1, 

initializes the value of pheromone [4][5]. 
   The local pheromone update gives the algorithm 

a character by decreasing the pheromone values on the 
visited edges, subsequent ants can be encouraged to 
explore other edges so that new different solutions 
might be found with greater probabilities. 

The offline pheromone update only executed by the 
last ant at the end of each iteration, called iteration-best 
or best-so-far. But there still a little different between 
them as formula (6) shows: 

{ (1 )    (i,j) belongs to best tour,
                          otherwise.

ij ij

ijij
ρ τ ρ τ

ττ − ⋅ + ⋅Δ=  （6） 

Here 
i j 1 / b e s tLτΔ =  , Lbest could be Lib or Lbs. 

There is another important difference between the 
ACS and the AS while using decision rule by ants. In 
the ACS, ants use so called pseudorandom proportional 
rule [4][5], the probability of an ant move from the city 
i to the city j was determined by a parameter q0 and a 
random variable q which is uniformly distributed 
over[0,1]:   
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use formular (3)                      otherwise(Exploration)
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3. Experiment parameters  
 

The environment of the experiments in the paper is 
listed in table 3.1. 

 
Table 3.1 Experiment environment 

CPU RAM OS  
Double Core Intel Pentium 

D 2.80G 
DDR 
1G 

Red Flag 
Linux 

The abbreviation parameters used in table5.2 until 
table5.4 come from ACOTSP program which is coded 
by Stützle[12]. The parameters of ACS series were 
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given by Dorigo et al. [4][5]: m=10,α＝ ρ=1,β=2, 
0 nn

-1=(n L )τ ⋅ , q0=0.98, here Lnn is the tour length 
produced by the nearest neighbor heuristic, and the 
local search heuristic algorithm is 3-opt.  
 
4. Ants with memory and experiment  
 

Being different from the preexistent attempts to Ant 
System, we are trying to introduce a novel character 
into the agent. We let the new ants memorize the 
best-so-far solution. This model was called Ants with 
Memory (Mant).  

Generally speaking, the Mant can be used in any 
version of ACO algorithms. In Mant algorithm, we 
choose random part of the best-so-far solution and 
make it as the new solution proportion. The Mant based 
on ACO algorithm is given by table4.1: 

 
Table 4.1 Mant algorithm 

Initialize parameters, pheromone trails, 

While (termination condition not met)Do 

     While (not first loop)Do 

Generate random number i, j(0<i<j<n), 

Put visited tag from city i+1 to j-1 

Make i as start city and j as end city 

Construct solutions as normal ACO 

     Apply local search(could use 2-opt/3-opt etc.) 

     Update pheromone trails 

     End 

End 

We present the result of the Mant based ACS 
algorithm versus original ACS algorithm simulated in 
three tsp models as follows: 

 
(a)D198.tsp 

  
           (b)Rat783.tsp 

  
(c)Pr2392.tsp 

Fig4.1 Mant Based on ACS 
Dashed line with dot is Mant , 

real line with triangle is original ant 
  We could read from the Fig.4.1 and Fig.4.2 that 

the Mant ACO algorithm could match the act of 
original ACO in D198.tsp and Rat783.tsp, but it fall 
behind in Pr2392.tsp while comparing with original ant 
ACO. We found that the Mant algorithm has strong 
tendence which will converge the result into the local 
optimum, this property can help algorithm to find 
optimum value faster in small or middle sized problem, 
however, when the scope of the problem getting larger, 
this tendence will also astrict the global search ability 
of the algorithm and fall into the local optimization trap 
especially. 
  We have to make some improvement on Mant model 
in next section. 
  
5. Amelioration on Mant and experiment  
 

5.1 Probabilistic Mant  
Aimed at weaken the memory property of Mant, We 

introduce the probabilistic strategy into Mant. That is, 
we control the Mant use their memory property by a 
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probability as used by Dorigo in ACS[4][5](it is called 
pseudorandom proportional rule). We call the new 
amended model of Mant with probability p1 as MantP1, 
for better illustration, we also provide Mant with 
probability p2 as MantP2, here p2=1-p1. the detailed 
algorithm shows in table 5.1.  

 
Table 5.1 MantP1 algorithm 

Initialize parameters, pheromone trails,  

While (termination condition not met)Do 

     While (not first loop)Do 

Generate random number q, 

If (q< q0), construct solutions as Mant 

Else, construct solutions as normal 

ACO 

     Apply local search(could use 2-opt/3-opt etc.) 

     Update pheromone trails 

     End 

End 

In MantP2 algorithm, we just switch (q<q0) into (q> 
q0) in MantP1 algorithm.  
 
5.2 Probabilistic Mant in ACS  
 

Now we could simulate Mant, MantP1 and MantP2 
into ACS algorithm and compare the three Mant 
models to normal ant in D198.tsp, Rat783.tsp and 
Pr2392.tsp. 

  
(a)D198.tsp best 

 
(b)D198.tsp worst 

  
(c) Rat783.tsp best 

 
(d) Rat783.tsp worst 
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(e) Pr2392.tsp best 

 
(f) Pr2392.tsp worst 

Fig.5.1 Mant, MantP1, MantP2 Based on ACS  
(Real line with dot is original ant, bold dashed is 
Mant, real line with pentacle is MantP1 and light 
dashed is MantP2, best means the condition the 
best results the algorithms found in all loops while 
worst means the worst results they found) 

From the upper fig.5.1(a) to fig.5.1(f), we could 
easily find out that the MantP1 performs the best both 
in best and worst condition in all three tsp models. The 
MantP1 could find the optimum value with less time 
against the original ant except Pr2392.tsp in best 
condition fig.5.1(e), however, the MantP1 find the 
better result witch is 0.5% worse than the original ant 
in 20 seconds earlier. 

 
Table 5.2 On D198.tsp 

Type of 
Mant 

Average 
Best 

Average 
Iterations 

Avg.time 
best 

Stddev 
Best 

ACS 15780.50 4760.50 22.83 0.53 
Mant 15780.80 3093.50 14.77 0.42 

MantP1 15780.70 4546.40 22.13 0.48 
MantP2 15781.10 4220.40 20.41 1.45 

Table 5.3 On Rat783.tsp 
Type of 
Mant 

Average 
Best 

Average 
Iterations 

Avg.time 
best 

Stddev 
Best 

ACS 8911.90 1200.80 29.65 13.48 
Mant 8907.30 1769.80 44.22 14.39 

MantP1 8906.20 1096.10 27.20 12.38 
MantP2 8910.70 1384.30 34.77 18.22 

Table 5.4 On Pr2392.tsp 
Type of 
Mant 

Average 
Best 

Average 
Iterations 

Avg.time 
best 

Stddev 
Best 

ACS 387686.90 442.30 43.06 720.72
Mant 388345.60 360.00 35.18 510.20

MantP1 387634.70 352.70 35.40 690.81
MantP2 388270.30 361.30 35.73 570.22

The further information were show in upper three 
tables, the best values among four algorithms were 
signed by bold. Except the Average-Best in table 5.2, 
the statisical comparison told us that the probabilistic 
Mant has surpassed original ant in ACS at speed and 
quality while searching for the optimum solution. Even 
in table 5.2 the MantP1 exceeded other three 
competitors in all targets. 

  
6. Conclusion 
 

   In the end, we have shown through this paper 
that the Mant is a very simple but interesting novel 
approach to the ACO system. It has been shown to 
compare favorably with ACS algorithm, and Its 
amelioration model probabilistic Mant got inspiring 
performance in ACS. However, competition on the 
TSP is very tough, and a utilization of best-so-far tour 
information which converges these solutions to a 
near-optimum seems to be a useful strategy. We still 
long for better performance of probabilistic Mant on 
the Dynamic TSP[9][10] in further study. 
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