
Ant Colony Optimization for the Traveling Salesman Problem Based on Ants
with Memory

Bifan Li1, Lipo Wang1,2, and Wu Song3

1 College of Information Engineering, Xiangtan University, Xiangtan, Hunan, China.
Email: bevan_li@yahoo.cn

2 Scholl of Electrical and Electronic Engineering, Nanyang Technology University,
Block S1,50 Nanyang Avenue, Singapore 639789

Email: Elpwang@ntu.edu.sg
3 Dept. of Computer Science, QiongZhou Academy, Wuzhishan, Hainan, China.

Email: evol_song@yahoo.com.cn

Abstract

We propose a new model of Ant Colony
Optimization (ACO) to solve the traveling salesman
problem (TSP) by introducing ants with memory into
the Ant Colony System (ACS). In the new ant system,
the ants can remember and make use of the best-so-far
solution, so that the algorithm is able to converge into
at least a near-optimum solution quickly. We have
tested the algorithm in 3 representational TSP
instances and compared the results with the original
ACS algorithm. According to the result we make
amelioration to the new ant model and test it again.
The simulations show that the amended ants with
memory improve the converge speed and can find
better solutions compared to the original ants.

1. Introduction

 Ant Colony Optimization (ACO) [6], which
studies artificial agent systems, takes inspiration from
the foraging behavior of real world ants. Biologists
noticed that blind ants can find the shortest path
between food sources and their nests. Research also
found out that ants deposit pheromone on the way
while walking. The other ants can follow the previous
pheromone by probability while passing by. The more
the pheromone, the higher the probability with which
the ants will follow. Because it takes less time for ants
to find food and carry them back to the nests through
the shortest path, after a long enough period of time,
more ants will choose this shortest path and deposit
pheromone on it. In this way, all ants eventually choose

the shortest path. ACO is used to solve discrete
optimization problems such as the Traveling Salesman
Problem (TSP) and the Quadratic Assignment Problem
(QAP) [6]. The first ant algorithm was introduced by
Dorigo et al. [1] in 1991 and was called the Ant System
(AS) [1] [2]. Dorigo and Gambardella proposed the
Ant Colony System (ACS) [4][5] later in 1996, while
Stützle and Hoos proposed the MAX-MIN Ant System
(MMAS) [3]. ACO has drawn much research attention
and various extended versions of the ACO paradigm
were proposed, such as the Best-Worst Ant System
(BWAS) [8], the Rank based Ant System (RAS) [7]
etc..

The main novel idea of ants with memory algorithm,
to be discussed in the remainder of the paper, is the
synergistic use of the previous best solution
constructed by ants.

This paper is organized as follows: In section 2, we
introduce the background knowledge of the TSP, AS
and ACS. In section 3, we provide definition of the
parameters and environment of the experiments. In
section 4, we explain what ants with memory are and
simulated them in ACS. In section 5 we amend the ants
with memory, then we show the results of the
experiments which were generated by amended ants
and compare the performance of each algorithm.
Finally, in section 6, we are dedicated to discuss the
main characters of ants with memory and suggesting
directions for further research.

2. Background

2.1 Traveling Salesman Problem

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI

496

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI

496

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ICNC.2008.354

496

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ICNC.2008.354

496

TSP is one of the most widely known NP-hard
problems. In the TSP we are given a set of cities
ci,cj,…cN and the distances d(ci,cj) for each pair of
distinct cities (ci,cj). The salesman has to visit every
city once and only once, and return to the starting city
in the end. Our goal is to find a closed tour with
minimal cost. In this paper, we concentrate on the
symmetric TSP, where d(ci,cj)= d(cj,ci) for 1≤i,j≤N.

D198.tsp, Rat783.tsp and Pr2392.tsp, these TSP
models were widely used by Dorigo et al. [2][4][5], are
available at TSPLIB benchmark library [11],

2.2 Ant system

In origin AS [1] [2], all the m ants which have
constructed a solution in the loop can update the
pheromone. The value of pheromone ijτ which
contacted with the edge ij between city i and city j
updated with the following formula:

1
(1)

m
k

ij ij ij
k

τ ρ τ τ
=

= − + Δ∑i （1）

The parameter ρ is the pheromone evaporate rate，m
is the number of ants, k

ijτΔ is the quantity of the

pheromone left on edge (i,j) by ant k：

{ / edge (i,j) in ant k`s tour
0 otherwise

kQ Lk
ijτΔ = （2）

where Q is a constant，Lk is the length of the tour
which constructed by ant k in the current loop.

During constructing process, ants will visit the
following city through a stochastic mechanism：While
an ant locating in city i has constructed the partial
solution, the probability of move to city j is given by
(3) ：

()

 i f ()

0 o th e rw ise

p
il

ij ij p
ij

k
ij il ilc N s

c N s
p

α β

α β

τ η

τ η
∈

⎧ ⋅
∈⎪⎪= ⋅⎨

⎪
⎪⎩

∑
 （3）

The parameter pN(s) here is a set of suitable
elements. In another word, it is a set of edges (i,l) here
the parameter l means the city not visited by ant k. The
parameters α and β contact with the importance
between pheromone and the heuristic information
which was given by (4)：

1/i j ijdη = （4）

Where the parameter dij shows the distance between
city i and j.

2.3 Ant colony system

One major difference between the ACS[4-6] and the
AS is that the ACS introduces Local Pheromone
Update into the algorithm at the end of each step of the
construction, also known as offline pheromone update.
And only when every ant explored the last edge of its
tour the algorithm updates the pheromone as:

0(1)i j i jτ ϕ τ ϕ τ= − ⋅ + ⋅ （5）

Here (0,1]ϕ ∈ is the parameter about the pheromone
decay rate, the

0τ , which is defined as
0τ =(Lnn)-1,

initializes the value of pheromone [4][5].
 The local pheromone update gives the algorithm

a character by decreasing the pheromone values on the
visited edges, subsequent ants can be encouraged to
explore other edges so that new different solutions
might be found with greater probabilities.

The offline pheromone update only executed by the
last ant at the end of each iteration, called iteration-best
or best-so-far. But there still a little different between
them as formula (6) shows:

{ (1) (i,j) belongs to best tour,
 otherwise.

ij ij

ijij
ρ τ ρ τ

ττ − ⋅ + ⋅Δ= （6）

Here
i j 1 / b e s tLτΔ = , Lbest could be Lib or Lbs.

There is another important difference between the
ACS and the AS while using decision rule by ants. In
the ACS, ants use so called pseudorandom proportional
rule [4][5], the probability of an ant move from the city
i to the city j was determined by a parameter q0 and a
random variable q which is uniformly distributed
over[0,1]:

0pc N(s)il
arg max { } if q q (Exploitation)

use formular (3) otherwise(Exploration)

il il

j
βτ η

∈
≤⎧

= ⎨
⎩

i

 (7)

3. Experiment parameters

The environment of the experiments in the paper is
listed in table 3.1.

Table 3.1 Experiment environment

CPU RAM OS
Double Core Intel Pentium

D 2.80G
DDR
1G

Red Flag
Linux

The abbreviation parameters used in table5.2 until
table5.4 come from ACOTSP program which is coded
by Stützle[12]. The parameters of ACS series were

497497497497

given by Dorigo et al. [4][5]: m=10,α＝ ρ=1,β=2,
0 nn

-1=(n L)τ ⋅ , q0=0.98, here Lnn is the tour length
produced by the nearest neighbor heuristic, and the
local search heuristic algorithm is 3-opt.

4. Ants with memory and experiment

Being different from the preexistent attempts to Ant
System, we are trying to introduce a novel character
into the agent. We let the new ants memorize the
best-so-far solution. This model was called Ants with
Memory (Mant).

Generally speaking, the Mant can be used in any
version of ACO algorithms. In Mant algorithm, we
choose random part of the best-so-far solution and
make it as the new solution proportion. The Mant based
on ACO algorithm is given by table4.1:

Table 4.1 Mant algorithm

Initialize parameters, pheromone trails,

While (termination condition not met)Do

 While (not first loop)Do

Generate random number i, j(0<i<j<n),

Put visited tag from city i+1 to j-1

Make i as start city and j as end city

Construct solutions as normal ACO

 Apply local search(could use 2-opt/3-opt etc.)

 Update pheromone trails

 End

End

We present the result of the Mant based ACS
algorithm versus original ACS algorithm simulated in
three tsp models as follows:

(a)D198.tsp

 (b)Rat783.tsp

(c)Pr2392.tsp

Fig4.1 Mant Based on ACS
Dashed line with dot is Mant ,

real line with triangle is original ant
 We could read from the Fig.4.1 and Fig.4.2 that

the Mant ACO algorithm could match the act of
original ACO in D198.tsp and Rat783.tsp, but it fall
behind in Pr2392.tsp while comparing with original ant
ACO. We found that the Mant algorithm has strong
tendence which will converge the result into the local
optimum, this property can help algorithm to find
optimum value faster in small or middle sized problem,
however, when the scope of the problem getting larger,
this tendence will also astrict the global search ability
of the algorithm and fall into the local optimization trap
especially.
 We have to make some improvement on Mant model
in next section.

5. Amelioration on Mant and experiment

5.1 Probabilistic Mant
Aimed at weaken the memory property of Mant, We

introduce the probabilistic strategy into Mant. That is,
we control the Mant use their memory property by a

498498498498

probability as used by Dorigo in ACS[4][5](it is called
pseudorandom proportional rule). We call the new
amended model of Mant with probability p1 as MantP1,
for better illustration, we also provide Mant with
probability p2 as MantP2, here p2=1-p1. the detailed
algorithm shows in table 5.1.

Table 5.1 MantP1 algorithm

Initialize parameters, pheromone trails,

While (termination condition not met)Do

 While (not first loop)Do

Generate random number q,

If (q< q0), construct solutions as Mant

Else, construct solutions as normal

ACO

 Apply local search(could use 2-opt/3-opt etc.)

 Update pheromone trails

 End

End

In MantP2 algorithm, we just switch (q<q0) into (q>
q0) in MantP1 algorithm.

5.2 Probabilistic Mant in ACS

Now we could simulate Mant, MantP1 and MantP2
into ACS algorithm and compare the three Mant
models to normal ant in D198.tsp, Rat783.tsp and
Pr2392.tsp.

(a)D198.tsp best

(b)D198.tsp worst

(c) Rat783.tsp best

(d) Rat783.tsp worst

499499499499

(e) Pr2392.tsp best

(f) Pr2392.tsp worst

Fig.5.1 Mant, MantP1, MantP2 Based on ACS
(Real line with dot is original ant, bold dashed is
Mant, real line with pentacle is MantP1 and light
dashed is MantP2, best means the condition the
best results the algorithms found in all loops while
worst means the worst results they found)

From the upper fig.5.1(a) to fig.5.1(f), we could
easily find out that the MantP1 performs the best both
in best and worst condition in all three tsp models. The
MantP1 could find the optimum value with less time
against the original ant except Pr2392.tsp in best
condition fig.5.1(e), however, the MantP1 find the
better result witch is 0.5% worse than the original ant
in 20 seconds earlier.

Table 5.2 On D198.tsp

Type of
Mant

Average
Best

Average
Iterations

Avg.time
best

Stddev
Best

ACS 15780.50 4760.50 22.83 0.53
Mant 15780.80 3093.50 14.77 0.42

MantP1 15780.70 4546.40 22.13 0.48
MantP2 15781.10 4220.40 20.41 1.45

Table 5.3 On Rat783.tsp
Type of
Mant

Average
Best

Average
Iterations

Avg.time
best

Stddev
Best

ACS 8911.90 1200.80 29.65 13.48
Mant 8907.30 1769.80 44.22 14.39

MantP1 8906.20 1096.10 27.20 12.38
MantP2 8910.70 1384.30 34.77 18.22

Table 5.4 On Pr2392.tsp
Type of
Mant

Average
Best

Average
Iterations

Avg.time
best

Stddev
Best

ACS 387686.90 442.30 43.06 720.72
Mant 388345.60 360.00 35.18 510.20

MantP1 387634.70 352.70 35.40 690.81
MantP2 388270.30 361.30 35.73 570.22

The further information were show in upper three
tables, the best values among four algorithms were
signed by bold. Except the Average-Best in table 5.2,
the statisical comparison told us that the probabilistic
Mant has surpassed original ant in ACS at speed and
quality while searching for the optimum solution. Even
in table 5.2 the MantP1 exceeded other three
competitors in all targets.

6. Conclusion

 In the end, we have shown through this paper
that the Mant is a very simple but interesting novel
approach to the ACO system. It has been shown to
compare favorably with ACS algorithm, and Its
amelioration model probabilistic Mant got inspiring
performance in ACS. However, competition on the
TSP is very tough, and a utilization of best-so-far tour
information which converges these solutions to a
near-optimum seems to be a useful strategy. We still
long for better performance of probabilistic Mant on
the Dynamic TSP[9][10] in further study.

7. References

[1] A. Colomi, M. Dorigo, V. Maniezzo, “Distributed
optimization by ant colonies,” Proceedings of the 1st
European Conference on Artificial Life, pp.134-142, 1991.
[2] M. Dorigo, V. Maniezzo and A. Colorni. “Ant System:
Optimization by a colony of cooperating Agents,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
vol.26,no.2,pp. 29–41,1996.
[3] T. Stützle and H.H. Hoos, “Improving the Ant System: A
detailed report on the MAX–MIN Ant System,” FG
Intellektik, FB Informatik, TU Darmstadt, Germany, Tech.
Rep. AIDA–96–12, Aug. 1996.
[4] M. Dorigo and L.M. Gambardella. “Ant Colony System:
A cooperative learning approach to the traveling salesman
problem,” IEEE Transactions on Evolutionary Computation,
vol.1,no.1,pp.53–66, 1997.

500500500500

[5] M. Dorigo and L.M. Gambardella. “Ant colonies for the
traveling salesman problem,” BioSystems,vol.43,
o.2,pp.73-81,1997.
[6] M. Dorigo, G. Di Caro and L.M. Gambardella, “Ant
algorithms for discrete optimization,” Artificial Life, vol. 5,
no. 2, pp. 137–172, 1999.
[7] B. Bullnheimer, R.F. Hartl, and C. Strauss, “A new
rank-based version of the Ant System: A computational
study,” Central European Journal for Operations Research
and Economics, vol. 7, no. 1, pp. 25–38, 1999.
[8] O. Cordón, I.F. de Viana, F. Herrera, and L. Moreno, “A
new ACO model integrating evolutionary computation
concepts: The best-worst Ant System,” in Proc. ANTS 2000,
M. Dorigo et al., Eds., IRIDIA, Université Libre de Bruxelles,
Belgium, pp. 22–29, 2000.
[9] M. Guntsch and M. Middendorf, “Pheromone
modification strategies for ant algorithms applied to dynamic
TSP,” in pplications of Evolutionary Computing: Proc.
EvoWorkshops 2001, ser. LNCS, E. J. W. Boers et al., Eds.,
Springer Verlag, vol. 2037, pp. 213–222, 2001.
[10] C.J. Eyckelhof and M. Snoek, “Ant systems for a
dynamic TSP: Ants caught in a traffic jam,” in Proc. ANTS
2002, ser. LNCS, M. Dorigo et al., Eds., Springer Verlag, vol.
2463, pp. 88–99, 2002.
[11] TSPLIB:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/T
SPLIB95/tsp
[12] ACO Public Software:
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-softwa
re.html

501501501501

