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Abstract 
 

In this paper, we develop a method for predicting 
signal peptides and their cleavage sites. Unlike other 
published work, we divide proteins into two segments 
and calculate the amino acid compositions on both 
segments. After that, we hybridize the pseudo amino 
acid compositions (PseAAs) to the feature vectors. 
Using support vector machines (SVMs) to train the 
datasets, we get better results than those with the 
optimized evidence-theoretic K nearest neighbor (OET-
KNN) classifier. The overall rate of correct prediction 
for signal peptides is over 97%. For identifying 
cleavage sites, we use the scaled window proposed by 
Chou to extract cleavable secretory segments and non-
cleavable secretory segments and improve the position 
weight matrix (PWM) method proposed by Hiller et al.. 
By hybridizing the scaled window and PWM methods, 
the correct prediction for signal peptides cleavage sites 
is also better or comparable to other methods.  
 
1. Introduction 
 

Signal peptides have had an immense impact on 
modern cell biology. They are in charge of the access 
of almost proteins in eukaryotes and prokaryotes to the 
secretory pathway [1]. When a cell is divided, a large 
amount of proteins with various essential functions are 
being made and must be delivered the right positions. 
So the knowledge of how signal peptides work 
becomes very important when understanding the 
molecular mechanisms or studying new drugs. Signal 
sequence is often located in the N-terminal part of the 
protein and cleaved off while the protein is transferred 
through the membrane. If a sorting signal in a protein is 
cleaved at a wrong position, the protein could be 
delivered to a wrong cellular location, leading to 
varieties of diseases [2]. Therefore how to discriminate 

secretory proteins from non-secretory proteins and 
identify their cleavage sites becomes the first 
challengeable problem we must resolve. However, the 
length of signal sequences and the order of the residues 
vary obviously between different proteins so it makes 
the identification of the cleavage sites more difficult. 
Nevertheless, they still have some common features 
(See Figure 1). The most important feature of signal 
peptides is a series of hydrophobic amino acids called 
the h-region. It generally consists of seven to fifteen 
amino acids in length. The n-region, at the upstream of 
the h-region, has typically one to five amino acids 
generally carrying positive charges. Between the h-
region and the cleavage site is the c-region, which 
consists of three to seven polar, but mostly uncharged, 
amino acids. Near to the cleavage site, a more specific 
subsite of amino acids exists: the residues at positions -
3 and -1 (relative to the cleavage site) must be small 
and neutral for cleavage to occur correctly. For 
example, Ala often occurs at the last residue and the 
last third residue of the signal sequence [3]. In addition, 
since the number of protein sequences in data banks has 
been rapidly increasing, it is time-consuming and 
expensively for researchers to identify all of signal 
peptides entirely by experiments. So an automated 
method for predicting signal peptides has become a 
prerequisite. 

 
Figure 1. A schematic drawing of a signal peptide 
 



Up to now, many efforts have actually been made to 
predict the presence of the signal peptides and their 
cleavage sites. The weight-matrix approach was 
developed by von Heijne [4], which was used to 
identify signal peptide cleavage sites. Folz and Gordon 
[5] implemented the prediction of signal peptides 
cleavage sites through two different algorithms. The 
widely used method, SignalP, developed by Nielsen et 
al. [6] [7] was based on neural network and hidden 
Markov model algorithms. And its new version, 
SignalP 3.0 [7], was enhanced greatly by adding other 
features into the network. PrediSi [8], based on a PWM 
approach, considered the amino acid bias present in 
proteins by using a frequency correction. The subsite 
coupling approach [9] [10] developed by Chou was 
also important, which was based on the sequence-
encoded algorithm [11] and the scaled window 
approach [12].  

This paper is organized as followings. In section 2, 
we give datasets in our experiment. In section 3, we 
introduce the methods used in our paper. In this section, 
we firstly resolve the problem of discriminating 
secretory proteins from non-secretory proteins by 
training SVM with protein sequences encoding with 
amino acid compositions and PseAAs [13]. Secondly, 
we briefly give an introduction about the SVM 
classifiers. Thirdly, we use the scaled window [12] and 
the PWM [8] methods to identify the cleavage sites of 
protein sequences confirmed as signal peptides by the 
SVM classifier. Different from the published work, we 
take the balance between the number of secretory-
cleavable segments and non-secretory-cleavable ones 
into consideration. In the final section, we discuss our 
results using the methods in our paper and compare 
them with those from other published work.  
 
2. Datasets 
 

A reliable benchmark data set is very necessary for 
the assessment of the predictive performance. By 
comparing with the performance from other published 
work, we can easily tell the benefits of the methods. 
The datasets in our experiment are constructed by Chou 
[14], extracted from the most recent version of Swiss-
Prot [15] database 50.7 (released on Sept-19-2006). 
There each protein contains the first N-terminal 100 
amino acids. They consist of three benchmark datasets 
for eukaryotic, Gram-positive and Gram-negative 
proteins, respectively. The eukaryotic dataset contains 
3302 secretory proteins and 3785 non-secretory 
proteins; the Gram-positive dataset, 269 secretory 
proteins and 306 non-secretory proteins; the Gram-
negative dataset, 613 secretory proteins and 721 non-

secretory proteins. We can get these data from the 
internet freely. 
 
3. Methods 
 

In our study, we take two steps to treat this problem. 
Firstly, we discriminate a query protein whether it is a 
secretory or non-secretory protein. If it is a secretory 
protein, we will deduce its cleavage site according to 
the second steps. 
 
3.1. Discriminating secretory proteins from 
non-secretory proteins 
 

According to the fact that most signal peptides are 
among the first 50 residues, we simplify the problem by 
using their first 50 residues as Chou did [14]. That is, 
given a protein P, we can express it as: 

1 2 3 4 49 50....P R R R R R R=                                              (1) 
where 1R represents the 1st residue of the 
protein P , 2R the 2nd residue, and so forth. To make 
sure whether the protein P  is secretory or non-
secretory, we attempt to construct a feature vector to 
represent it. In the feature vector, the information of 
amino acid compositions and PseAAs is included. The 
PseAAs are adopted to reveal the degree of the long 
distance interactions between residues along the whole 
sequence [13]. The feature vector is made up of two 
parts. Before constructing the first part, the sequence is 
divided into two same length segmentations. By this 
way, the rate of prediction is improved [16] [17]. Here 
the amino acid compositions which are the occurrence 
frequencies of different residues are calculated on both 
segmentations respectively. Suppose the numbers of 
different residues appearing in some segmentation 
are 1 2 20, ,...,n n n . And then the amino acid compositions 
vector of the segmentation is defined in equation (2). 

1 1 2 20[ , ,..., ]
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L is the length of the protein. After that, the two 
segmentations are merged together to form a whole 
sequence 1V , 

1 11 12[ ]V V V=                                                         (3) 
where 11 12,V V mean the occurrence frequencies of the 
first and second segmentation of the first part. The 
physicochemical properties of the residues are 
considered in the second part of the feature vector in 
order to involve some information about long distance 
interactions between residues. We use two kinds of 
physicochemical properties in this paper (listed in 
Table 1). Because we have tried to add other properties 



used by Li et al. [17] into the feature vector, but the 
rate of prediction is not improved. The values of these 
properties can be obtained from the amino acid index 
database (AAindex) [18]. In order to construct the 
feature vector, we substitute the amino acid residues 
with the normalized amino acid indexes, using the 
normalization procedure described by equation (4) to 
(6). More about the procedure can be found in Chou's 
hybridization space methods [19] [20] [21]. 
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Table 1. The two physicochemical properties used in 

this work 

Properties description Reference 

Hydrophilicity value Hopp-Woods (1981) 

Consensus normalized 
hydrophobicity Eisenberg (1984) 

where ( )i
kp , 1 k L≤ ≤ is the i th normalized amino acid 

index of the k th residue in the sequence. Then using 
equation (7) (8), we calculate the set of values of auto 
correlation functions )2,1(2 =jV j for each property, 
where T  is a constant. 

2 [ (1), (2),..., ( )], ( 1, 2)j j j jV R R R T j= =                     (7) 
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where )1)(( TRi ≤≤ ττ is called auto correlation 
function. Now we get the second part of the feature 
vector 2V , expressed as equation (9).  

2 21 22[ ]V V V=                                                             (9) 
Finally, the complete feature vector V  in equation (10) 
has formed, with a 40 2T+  dimensions vector.      

1 2[ ]V VV=                                                               (10) 
For each element up of the feature vectorV , we also 
use the equation (11) proposed by Chou to normalize it. 
Finally, the new feature vector is used as the input of 
SVM. 
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The values of T  used in our paper for each group of 
dataset are listed in Table 2. 
 

3.2. SVM classifiers 
 

The SVM learning system, first proposed by Cortes 
and Vapnik [26], is based on statistical learning theory. 
Compared with other machine learning systems, a 
growing attraction for SVM in bioinformatics has 
emerged recently and resulted in better performance for 
many tasks [22][23][24]. Wide applications of them 
attribute to their many attractive features. They have an 
ability to jump out from the local minima; they have the 
acceptable speed and scalability; they can collect 
effectively the information included in the training set. 
This is the reason we adopt them here. 

In this research, the publicly available LIBSVM 
software is used [25].  As the depiction above, we make 
the feature vectors of the proteins as inputs to LIBSVM 
for training. In the process of training, we choose the 
radial basis function (RBF) as the kernel function, 
given by the equation (12). And we cite a grid search 
approach to find a good parameter combination for C 
and γ, where C is the cost parameter of SVM and γ is 
the parameter in RBF kernel function.  

2( , ) exp( || || )K u v u vγ
→ → → →

= − −                                   (12) 
In order to save time, we use five-fold cross-

validation method to find the best (C, γ). For each 
group of dataset, the best (C, γ) in our experiment is 
listed in Table 2. And the results in Table 3 are 
obtained by the jackknife method with the best (C, γ). 

 
Table 2. The value of T and the best (C, γ) for 

dataset in the experiment 
   T (C, γ) 
Gram-positive 15 (2^9,2^3) 
Gram-negative 9 (2^10,2) 
Eukaryotic 20 (2^11,2) 

 
3.3. Identifying cleavage sites of signal peptides 
 

In an N-terminal signal peptide, there is only one 
cleavage site locating at the position between the last 
residue of the signal peptide and the first residue of the 
mature protein. Thus once we find the cleavage site, the 
corresponding signal peptide is identified. The scaled 
window approach [12] and the improved PWM [8] are 
adopted for this study. Suppose a window with a scale 
of 1 2,..., 3, 2, 1, 1, 2,...,ξ ξ− − − − + + +  . Chou called this 
window as “scaled window” and symbolized 
as 1 2[ , ]ξ ξ− + . Segments, which are generated when 
sliding the scaled window 1 2[ , ]ξ ξ− + along protein 
sequences, can be generally expressed as: 

1 1 2 2( 1) 3 2 1 1 2 ( 1)... ...R R R R R R R R Rξ ξ ξ ξ− − − − − − + + + − +
               (13) 



where 
1

R ξ−  represents the residue at the scale 1ξ−  , 1R−  
the residue at the scale 1− , and 1R+ the residue at the 
scale 1+ , and so forth. For a sequence consisting of L  
residues, we can see 1 2( ) 1Lφ ξ ξ= − + +  different 
sequences by the rule depicted above. Among 
the φ sequence segments generated from the same 
protein, only the one is deemed as the secretion-
cleavable segment, while all the other segments deemed 
as non-secretion-cleavable segments. All the secretion-
cleavable segments form a positive set symbolized 
by S + , and all the non-secretion-cleavable segments 
form a negative set S − . Unlike what PrediSi [8] did, the 
set S − here is derived from only secretory proteins, 
because we have discriminated them from non-
secretory proteins in the first step. In addition, we have 
to note that the set S − is far larger than S + , following 
the procedure above. Considering the unbalance 
between S + and S − , we divide S −  into φ  parts. That is, 
all the segments which have the same distance from N-
terminal of proteins are gathered in the same group. 
Therefore, we can get ( 1)φ + PWMs. Now the problem 
is, for a query protein, how to determine the one that is 
cleavable among its φ  segments. To realize this, for 
each of the φ  segments, we can define a score function 
similar to PrediSi [8], given by: 
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where ( )j
jS

P R+  is the probability of amino acid jR  

emerging at the position j ( )1 2,...,j ξ ξ= − +  for the 

secretion-cleavable segments and ( )
k

j
jS

P R−
 the 

corresponding probability for the non-secretion-
cleavable segment in kS −  . The values of ( )j

jS
P R+  can 

be calculated from a positive training dataset S + , 
consisting of only secretion cleavable segments, and the 
values of ( )

k

j
jS

P R−
 can be calculated from a negative 

training dataset ( 1,..., )jS j φ− = , consisting of only non-

cleavable segments. And 0P is a frequency correction 
factor to adjust the amino acid bias proposed by 
PrediSi [8] (it is set to 0.05, the random frequency for 
each of the 20 native amino acids). This formulation in 
equation (13) is the same with the PWM [8] expect for 
the expression of ( )

k

j
jS

P R−
. Thus according to the score 

of equation (13), the cleavage site of the query protein 
is predicted. It locates at the site with which its score is 
the highest. However, in the process of experiment, 
some protein sequences contain non-basic amino acids, 
because of failing to observe which amino acid residue 
occurs at this position. In this condition, we set all non-
basic amino acids as the 21st amino acid. We also find 
some values of ( )j

jS
P R+ or ( )

k

j
jS

P R−
equal to zero. 

Considering that they will affect the experiment results, 
so we set them equal to 0.05amino acid under this 
condition. 

 
Table 3. Success rate comparison by both the self-consistency test and jackknife test on the datasets 

Test 
method 

Dataset 

Success rate in 
discriminating secretory from 

non-secretory proteins 

Success rate in identifying signal 
peptide cleavage site 

PrediSi 
[8] (%) 

Signal-
CF [14] 

(%) 

Ours 
(%) 

PrediSi 
[8] (%) 

Signal-
CF [14] 

(%) 

Ours (%) 
(13,2) (14,3) (14,2) 

Self-
consistency 

Gram-positive 97.9 99.3 99.0 74.4 82.2 77.3 80.7 - 
Gram-negative 97.2 99.6 99.5 84.2 89.6 87.9 88.1 87.4 

Eukaryotic 98.3 99.4 99.2 71.9 78.1 79.6 79.4 - 

Jackknife 
Gram-positive 94.6 98.1 98.6 60.2 67.3 67.3 66.2 - 
Gram-negative 91.2 94.4 97.2 80.3 84.2 84.0 83.4 84.7 

Eukaryotic 92.5 94.5 98.3 70.8 75.4 78.2 77.9 - 
 

4. Results and discussion 
 

To discuss the performance of the methods used in 
this paper, the comparison with PrediSi [8] and Signal-
CF [14] is made. In order to compare with them, we 
also adopt two test methods, Self-consistency and 
Jackknife. In the self-consistency test, the training data 
and the testing data are the same one. In the jackknife 

test, each protein in the benchmark dataset is extracted 
out in turn as a “test protein” and all the remaining 
proteins are treated as the train proteins. In table 3, the 
results with the method of PrediSi [8] were calculated 
by Chou to compare with them under the same datasets. 
This is important in this area for prediction tasks. So 
we perform our methods on the same datasets. We can 
see our results are better than PrediSi [8] whether in 



discrimination secretory proteins from non-secretory 
proteins or identification cleavage sites. For 
discriminating secretory proteins from non-secretory 
proteins, Signal-CF [14] used the PseAA model and the 
OET-KNN classifier. In our methods, before using the 
PseAA model, we firstly divide the sequences into two 
segments. By this way, we find the results are better 
than those from only treating the protein as the whole 
one and train the datasets with the SVM classifier. Our 
results are slightly lower than Signal-CF [14] when 
testing by the self-consistency, but higher than those 
when using the jackknife test on this problem. It is 
known that Matthews’s correlation coefficient is a 
widely used and useful tool for measuring the 
performance of classification problems in 
bioinformatics. So we also calculate them on the given 
datasets respectively. And it is 0.94 for Gram-negative, 
while it reaches as high as 0.97 for Gram-positive and 
Eukaryotic. As for the identification signal peptide 
cleavage sites, our result is the best on the Eukaryotic 
dataset. The reason that our results are not high is our 
cutting all protein sequences length as 50 and the 
limitation width of windows, as a result some signal 
peptides are excluded and we consider them as wrong 
prediction. In spite of these limitations, our results can 
compare with the signal-CF [14] results. As other 
methods have found, we also find the best results are at 
where the window is (13, 2) or (14, 3). For gram-
negative dataset, (14, 2) is the best window (See Table 
3). During the process of experiment, we also find the 
differences between the cleavage sites that have higher 
scores are very small and most of cleavage sites are 
among these first ones. This encourages us to extract 
more physicochemical features to improve the rate of 
identifying the cleavage sites in the future work. 
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