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Abstract. The single nucleotide polymorphisms (SNPs) are believed to
determine human differences and, to some degree, provide biomedical
researchers a possibility of predicting risks of some diseases and explain-
ing patients’ different responses to drug regimens. With the availability
of millions of SNPs in the Hapmap Project, although large amount of
information about SNPs is available, the tremendous size also causes a
major challenge for research on SNPs. Inspired from the recent research
work on population classification by Park et al (2006), we attempt to
find as few SNPs as possible from the original nearly 4 millions SNPs to
classify the 3 populations in the Hapmap genotype data. In this paper,
we propose to first use a modified t-test measure to rank SNPs, and then
combine the ranking result with a classifier, e.g., the support vector ma-
chine, to find the optimal SNP subset. Compared with Park et al’s result,
our proposed method is more efficient in ranking features and classifying
the three populations, i.e., we obtained perfect classification using only
11 SNPs in comparison with 82 SNPs used by Park et al.

1 Background

A single nucleotide polymorphism (SNP, pronounced as “snip”) is a small ge-
netic variation occurring within a person’s DNA sequence. For example, when
the DNA sequence AAATCCGG is changed to AAATTCGG, the variation,
i.e., the replacement of the single nucleotide C by the single nucleotide T , is
called an SNP variation. SNPs are the most common type of genetic variations
in the human genome, very stable from generation to generation [4] and are be-
lieved to determine the human difference between any two unrelated individuals,
e.g., different physical traits, different predispositions to diseases, and different
responses to medicine. Therefore, SNPs can be effective biological markers for
scientists to diagnose disease and track population ancestry.

Much research work on SNPs has already been explored, such as searching
for genetic regions associated with complex diseases [8, 17], summarizing and
analyzing SNPs for cost-effective genotyping [1, 7, 32]. These work can be cate-
gorized into association studies on SNPs. Usually association studies are based
on the fact that SNPs in close proximity on the same chromosome are often cor-
related, which is measured by ‘linkage disequilibrium’ (LD) [2]. Therefore, the
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correlation between SNPs is always used to selecting the optimal subset of SNPs
(also referred as the tagging SNPs). For example, Bafna et al. [1] and Hall et al.
[7] searched for the SNPs with predictive power and determined neighborhoods
for those predictive SNPs based on the correlation between SNPs. Then Bafna et
al. [1] and Hall et al. [7] proposed the notion of informativeness, which measures
how well a single SNP or a set of SNPs predict another single SNP or another set
of SNPs within the neighborhoods. Finally, based on the informativeness mea-
sure, Bafna et al. [1] and Hall et al. [7] optimally selected the most informative
subset of SNPs (tag SNPs) with the minimum size. Eran et al. [8] proposed a pre-
diction accuracy measure to measure how well the value of an SNP is predicted
by the values of only two closest tag SNPs, and utilized dynamic programming
to find the set of tag SNPs which had the maximum prediction accuracy. For
quickly finding a small number of tag SNPs, Eran et al. [8] also utilized the
random sampling algorithm to randomly generate some sets of tag SNPs and
find the set of tag SNPs with the maximum prediction accuracy. Phuong et al.
[17] proposed to select tag SNPs by discarding redundant features, which was
based on the method of feature selection using feature similarity (FSFS) [15].
Phuong et al. [17] first grouped features into clusters in which each feature is
similar by the linkage disequilibrium (LD) measure γ2 [18] and then choose one
feature from each cluster as the representation of the cluster.

Other research such as tracking population history also has been developed,
which is categorized into population studies on SNPs. For example, Rosenberg
et al. [19] proposed to select genetic markers with highest informativeness for in-
ference of individual ancestry. In 2005, Rosenberg proposed to select informative
marker panels for population assignment. He used genotypes from eight species,
i.e., carp, cat, chicken etc., as the experiment data, and compared five proposed
multivariate algorithms to select efficient marker panels. All the five approaches
are based on a performance function, which is used to measure the probability of
correctly assigning individuals to its populations. The probability is the optimal
rate of correct assignment (ORCA) in [19]. Although this algorithm is approx-
imately a performance function, he pointed out that the algorithm can not be
realistically realized if some terms in the ORCA are large. With the development
of the Hapmap Project (www.hapmap.org), Park et al [16] proposed a different
way to select informative SNPs to classify the three populations, i.e., Utah res-
idents with ancestry from Northern and Western Europe (CEU), Yoruban in
Ibadan, Nigeria in West Africa (YRI), and Han Chinese in Beijing together with
Japanese in Tokyo (CHB+JPT). They proposed to adopt the nearest shrunken
centroid method (NSCM) to rank SNPs for each class. That is, each SNP has
three ranking scores for three populations. If the three scores of one SNP have
great variance, this SNP will have great power for classifying the three popula-
tions. Or otherwise. In this way, they obtain the result of using the top 82 SNPs
from nearly 4 millions SNPs to completely classify the three populations.

Inspired from the research work by Park et al (2006), we attempt to find as
few SNPs as possible from the original nearly 4 millions SNPs to classify the 3
populations in the Hapmap genotype data. In this paper, we propose to firstly
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rank SNPs according to a feature importance ranking measure, i.e., a modified
t-test, where the higher the ranking value, the stronger the corresponding clas-
sification power. Secondly, from the ranking list, we randomly choose different
numbers of top ranked SNPs, e.g., 2, 5, 7, 10 and so on, test them through a
classifier, e.g., the support vector machine (SVM) [25, 26] and determine the
SNP subset which has the smaller size and highest classification accuracy.

2 Methods

In many existed feature selection algorithms, feature ranking is often used to
show which input features are more important [6, 28] so as to improve the ef-
ficiency of feature selection process, especially when a great number of features
are involved. Therefore, feature ranking is used in our experiment to determine
each feature’s classification power. In this paper, we will adopt a t-test ranking
measure modified from [3, 23, 27].

2.1 Modified T-test

The t-test, also called as the student t-test [3], is originally used to evaluate
whether the means of two classes are statistically different from each other by
calculating a ratio between the difference of two class means and variability of
the two classes. It was adopted by [11, 21] to rank features (genes) for microarray
data and for mass spectrometry data [31, 13]. We notice that the original t-test is
only limited to 2-class problems. In order to extend the original t-test to multi-
class problems, Tibshirani et al. [23] developed the nearest shrunken centroid
method, i.e., calculating a t-statistic value (1) for each gene of each class. This
t-statistic value measured the difference between the mean of one class and
the mean of all the classes. The difference is standardized by the within-class
standard deviation.

tic =
xic − xi

Mc · (Si + S0)
(1)

S2
i =

1
N − C

C∑

c=1

∑

j∈c

(xij − xic)2 (2)

Mc =
√

1/nc + 1/N (3)

Here tic denotes the t-statistics value for the i-th feature of the c-th class. xic

denotes the i-th feature’s mean value in the c-th class and xi indicates the i-th
feature’s mean value for all classes. xij represents the i-th feature of the j-th
sample. N is the total number of all the samples for all the C classes and nc is the
number of samples for the c-th class. Si is the within-class standard deviation
and S0 is set to be the median value of Si for all the features. This t-statistic
value of [23] measured the deviation between each class and the mean of all
classes and was used to constitute a classifier. The authors did not refer to using
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the t-statistic of each class to rank features for all the classes. In the following
work [27], Wang et al. extended the t-statistic algorithm to rank features for all
the classes. That is, the t-score (t-statistic value) of feature i is calculated as the
greatest t-score for all classes:

ti = max

{
|xic − xi|

McSi
, c = 1, 2, ...C

}
(4)

However, (4) still can not be used to deal with our data. It is because of the
non-numerical type. For example, if two alleles for one SNP are A and T , its
feature values are expressed as AA, AT and TT . If representing them simply by
three numerical values, e.g., 1, 2 and 3, and making the calculation according
to (4), it will be meaningless. We proposed to use vectors to represent different
feature values and thereby obtained the modified t-test (5), which can deal with
our problem. In the following, we generalized the t-score of each feature in 3
steps:

1. Suppose the feature set is F = (f1, ..., fi, ..., fg), and feature i has mi different
nominal values represented as fi = (x(1)

i , x
(2)
i , ..., x

(mi)
i )

2. Transform each nominal feature value into a vector with the dimension mi,
i.e., x

(1)
i ⇒ X

(1)
i ={0, . . . , 0, 1}, x

(2)
i ⇒ X

(2)
i ={0, . . . , 1, 0}, . . . , x

(mi)
i ⇒

X
(mi)
i ={1, . . . , 0, 0}.

3. Replace all the numerical features in (1) and (2) with the format of vectors
(see (5) and (6)).

ti = max

{∣∣Xic − Xi

∣∣
McSi

, c = 1, 2, ..., C

}
(5)

Xic and Xi are two row vectors indicating the i-th SNP’s mean status in the
c-th class and mean status for all the classes.

∣∣Xic − Xi

∣∣ denotes the Euclidean
distance of the two vectors.

S2
i =

1
N − C

C∑

c=1

∑

j∈c

(X ij − Xic)(X ij − Xic)T (6)

Here X ij is a row vector denoting the i-th SNP in the j-th class. (Xij −
Xic)(X ij − Xic)T is a scalar.

The ranking rule is: the greater the t-scores, the more relevant the features.

2.2 The Classifier

The classifier in our experiment will be used twice. In the first time, we will use
a classifier to test different feature subsets, formed from the ranking list with top
ranking values, and determine a candidate feature subset. In the second time, we
again need to test different feature subsets generated from the candidate feature
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subset, and find the optimal feature subset, i.e., the one with the best classifi-
cation accuracy and minimum size. Considering the importance of the classifier,
we would like to choose the support vector machine (SVM) [25] as the classifier
because of its very good performance, such as effectively avoiding overfitting
and accomodating large feature spaces, and successfully used in bioinformatics
[14, 27]. Since Hsu et al. [9] indicated that RBF kernel is generally a first choice
and Keerthi et al. [12] showed that the linear kernel is special case of the RBF
kernel, we choose the RBF kernel for the SVM in our experiment. During the
classification process, the kernel parameter γ and the penal parameter ν [9] are
determined through a double cross-validation method [5]. For example, for a
10-fold cross validation method, we first separate the original samples into 10
equal subsets, each time having one subset as the testing set, and the other nine
subsets as the training set. Then for the training set, we use the 10-fold cross
validation one more time.

3 Experiments and Discussion

3.1 Experimental Data and Its Preprocessing

The genotype data is downloaded from the the directory of (/Index of/genotypes/
latest ncbi build36/rs strand/non-redundant) on the website (http://www.
hapmap.org/genotypes/), which contains data files with genotypes submitted by
HapMap genotyping centers to the HapMap Data Coordination Center (DCC)
to date. From the column 12 to the last column, data files provide observed geno-
types of samples (one genotype per column) with sample identifiers in column
headers (Coriell catalog numbers, example: NA10847) and duplicate samples
having .dup suffix. The genotypes are provided for each chromosome of each
population, i.e., chromosomes 1-22, chromosome X and Y, and four populations:
CEU, YRI, JPT and HCB. Here CEU represents Utah residents with ances-
try from northern and western Europe. YRI represents Yoruba individuals from
Ibadan and Nigeria. Each of the two populations has 90 reference individuals
(samples) which are comprised of 30 father-mother-offspring trios. JPT repre-
sents Japanese individuals from Tokyo, and HCB means Han Chinese individuals
from Beijing. Each of these two populations has 45 samples and the individuals
in each of the populations are unrelated. For efficient experiments, we remove the
children samples from the CEU and YRI populations to make sure all the sam-
ples involved in the experiment are unrelated. Thus the total number of samples
used in our experiment is 210. Usually the JPT and CHB can be classified as
one population (denoted as JPT+CHB) because of their similar DNA sequence.
In this paper, we will carry out two respective classifications on the original 4
populations and the 3 populations, i.e., CEU, YRI, JPT+CHB.

Combining all the features together from the 24 chromosomes (Chromosome
1, 2, ..., 22, X and Y), we have nearly 4 million SNPs involved in the experiment.
SNPs are usually expressed as strings of two or more alleles, e.g., AT or ATCG.
SNPs with two alleles are called as bi-allelic SNPs and SNPs with 3 or 4 alleles
are called as multi-allelic SNPs. If the alleles consisting of one SNP are the same,
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e.g., AA or TT , this type of SNPs are called homozygous. Or they are called as
hyterozygous, e.g., AT . Although some locus show us there may be 3 or 4 alleles
at those positions, e.g., 4 alleles A/T/C/G at one SNP position, their real feature
values consist of only two alleles, e.g., A/T . These are the error descriptions
existed in the data and have already been announced in the website. Therefore,
all data samples are strings of bi-allelic SNPs. Besides, we notice some features
have unknown value for some samples. In this case, instead of removing those
features from our experiment, we will replace them according to the rule adopted
by Park et al [16] in their experiment. That is, we replace the missing value with
the major allele of each population class. After this preprocessing, we need to
transform the nominal features into vectors as the modified t-test algorithm
required. For example, according to description of the generalized steps, AA is
represented by {0, 0, 1}, TT is represented by {0, 1, 0}, and AT is represented
by {1, 0, 0}. The three bits of vectors represent three different features (SNPs).
Therefore, the calculation between them will not lose the information of the
three different feature values.

3.2 Implementation

After using the modified t-test ranking measure, we have two experiments to
conduct, i.e., classification on 3 populations and 4 populations, respectively.
From the 210 samples, we randomly choose 40 samples from YRI and CEU,
respectively, and 30 samples from JPT and CHB, respectively, as the training
set. The 70 samples left are used as the testing set.

We first rank the SNPs of 24 chromosomes, respectively. Then from the 23
ranking lists (except chromosome Y which only has 49 SNPs) we choose their
top 100 SNPs to form a new feature subset with 2300 features together with the
49 features form Chromosome Y. According to their ranking scores, we re-rank
them again. In this way, we greatly reduce the number of features involved in
the experiment. Furthermore, this will not lead to loss of important information
and instead will facilitate to improve the efficiency of the experiment.

3.3 Results and Discussions

In Table 1, we provide the ranking result from the modified t-test ranking mea-
sure. It includes four types of information. The first column (Ranking NO.)
means the ranking order of top 11 features corresponding to their ranking scores.
The second column lists the 11 features’ names and the third column (Chromo-
some) provides the location of each SNP. The fourth and fifth column list the
ranking score of each SNP, respectively for 3-population and 4-population prob-
lem. Although the ranking list for 3 populations is the same as the one for 4
populations, ranking values are different for the two conditions. Based on the
ranking list in Table 1, we combine different number of features (see Table 2),
i.e., 2, 5, 7, 10, 11 and 20, and input them into the classifier, respectively. From
Table 2, we find out that 3 populations are completely classified (100% accu-
racy) when the top 11 features are input. While using the same 11 features to
classify the 4 populations, we obtain the accuracy 78.57% (55/70), in which 55
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Table 1. Top 11 features’ ranking list for the modified t-test ranking measure. SNP
names by boldface indicate that those SNPs’ combination leads to best classification.

Ranking
No.

Name of SNPs Chromosome Ranking value for
3 populations

Ranking value for
4 populations

1 rs11499 chr3 9.6017 9.5666
2 rs5825 chr4 8.1264 8.1022
3 rs4143483 chr4 7.2546 7.2281
4 rs1299386 chr7 7.2546 7.2281
5 rs1813166 chr7 6.7457 6.7210
6 rs2040513 chr7 6.7457 6.7210
7 rs4131595 chr7 6.7457 6.7210
8 rs289632 chr8 6.5661 6.5421
9 rs1785847 chr18 6.5661 6.5421
10 rs2474273 chrX 6.5661 6.5421
11 rs4120141 chrX 6.4379 6.4144

Table 2. Classification accuracy for different feature subsets formed from the ranking
list in Table 1. The number of SNPs that leads to the best classification is indicated
by boldface.

Number of features Accuracy for 3 populations Accuracy for 4 populations
2 70% (49/70) 55.71% (39/70)
5 70% (49/70) 55.71% (39/70)
7 70% (49/70) 57.14% (40/70)
10 98.57% (69/70) 57.14% (40/70)
11 100% (70/70) 78.57% (55/70)
20 100% (70/70) 78.57% (55/70)

of 70 testing samples are correctly classified. It means that CEU and YRI are
completely recognized and JPT and CHB are recognized as the third class.

4 Conclusion

In this paper, we proposed a modified t-test ranking measure to rank a large
amount of SNPs. This measure is able to deal with data with nominal features
in the form of vectors, which is the major superiority over the original t-test
ranking measure. Besides, we adopted the F-statistics ranking measure [24] on
the genotype data and compared the results with those obtained from the mod-
ified t-test ranking measure. The comparisons showed that the modified t-test
ranking measure is comparable with the F-statistics ranking measure. However,
due to space limitation, we will not present the comparisons in this paper. After
obtaining the ranked features, we utilize a classifier to determine an optimal
feature subset, which has the minimum size but leads to the highest classifica-
tion accuracy. The final results show that the modified t-test ranking method is
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efficient on determining the importance of the SNPs. Compared to the classifica-
tion method of Park et al[16], we obtained better result, i.e., perfect classification
of the 3 populations using only 11 SNPs, compared to 82 SNPs used in [16].
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