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Abstract—Multilayer feed-forward neural networks are widely
used based on minimization of an error function. Back-
propagation is a famous training method used in the multilayer
networks but it often suffers from a local minima problem. To
avoid this problem, we propose a new back-propagation training
based on chaos. We investigate whether randomicity and ergodic-
ity property of chaos can enable the learning algorithm to escape
from local minima. Validity of the proposed method is examined
by performing simulations on three real classification tasks,
namely, the Ionosphere, the Wincson Breast Cancer (WBC), and
the credit-screening datasets. The algorithm is shown to work
better than the original back-propagation and is comparable with
the Levenberg-Marquardt algorithm, but simpler and easier to
implement comparing to Levenberg-Marquardt algorithm.

I. INTRODUCTION

Multilayer feed-forward neural networks are widely used
and are based on minimization of an error function. The basic
learning method for the feed-forward networks is the back-
propagation (BP) algorithm [2]. BP learning uses the gradient
descent procedure to modify the connection weights such that
the network can approximate a subjective function. Although
BP works well for many problems, such as classification and
function approximation, it often suffers from the local minima
problem. Assorted methods have been proposed for the BP to
avoid being entrapped into the local minima, such as Adaptive
Learning Rate, Levenberg-Marquardt algorithms [4], etc. In
this paper we propose a new method for BP learning with
chaos. Chaos has some important properties e.g., randomicity
and ergodicity, which make chaos useful for a wide range of
fields, e.g., mathematics, physics, engineering, and economics.

Some methods have been proposed which embed chaotic
dynamics into the neural network. Nozawa [3] showed the
existence of chaos in Euler approximation of the Hopfield
network [1] by adding a negative self-feedback connection.
Chaotic simulated annealing (CSA) is proposed by Chen and
Aihara [5] and uses a sufficiently large negative self-feedback
to a Hopfield neural network and gradually reduces the self-
feedback. Wang and Smith [6] suggested reducing the time
step rather than the self-feedback in CSA. In [8], Wang et al.
proposed stochastic chaotic simulated annealing, by adding a
stochastic noise into CSA.

In this paper we study the effects of chaos in improving the
performance of BP learning. We study whether randomicity
and ergodicity property of chaos can enable the BP networks
to escape from the local minima and settle down in global
optimal points.

The paper is organized as follows. Section 2 summarizes the
basics of the BP theory. In Section 3, the proposed method of
back-propagation learning based on chaos is outlined. Section
4 shows the potential of the proposed method on classifying
three real datasets, namely, the Ionosphere [9], the Winc-
son Breast Cancer (WBC) [9], and the credit-screening [11]
datasets. We discuss our results and draw some conclusions
in the last section.

II. BASIC THEORY OF BP

Multilayer neural networks (MLN) [2] consist of one input
layer, one output layer, and one or more hidden layers. Each
layer contains a set of neurons and is fully connected with
an adjacent layer. Each connection link is represented by a
weight. The goal of MLN learning is approximation of a
subjective function. It adjusts the weights such that the dis-
crepancies between the network outputs and the target values
are minimized. This process is called supervised learning. The
MLN Learning includes two phases. The first phase is the
feed-forward stage which calculates the network outputs in
response to the corresponding inputs. In this phase the connec-
tion weights are fixed. The input signals propagate through the
network’s layer during the feed-forward phase. Each neuron
performs a transfer function which is differentiable and non-
decreasing. The most commonly used transfer function is the
sigmoid function as follows,

f(x) =
1

1 + e−x
(1)

The second phase, BP, modifies the connection weights. In
this phase an error signal will be obtained by comparing the
network outputs with the target values. Then, the error signal
spreads backward in the network layers and the weights are
adjusted. The most popularly used error function is the mean
squared error (MSE) that is given by:

E =
1
n

n∑
p=1

m∑
i=1

(ŷpi − tpi)2 (2)

where the notations are:

n number of training samples
m output vector dimension
ŷpi network output of i-th neuron for pattern p
tpi target value of i-th component for pattern p
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BP applies a gradient descent procedure to minimize the
error function E as follows,

∆Wij = −η ∂E

∂Wij
(3)

where the notations are:

Wij connection weight between neurons i and j
η learning rate

Two phases perform alternatively till the subjective function
can be approximated with the smallest error. Sometimes BP
be entrapped in the local minima which stops the learning in a
suboptimal point. We propose a new method for BP learning
based on chaos to avoid the local minima problem. The details
of the proposed method are discribed in the next section.

III. BACK-PROPAGATION WITH CHAOS

Chaos describes the aperiodic behavior of nonlinear dy-
namic systems. It is highly sensitive to the initial conditions.
Chaotic dynamics may appear random, but are deterministic,
meaning that the dynamic behaviors can be predicted by their
initial conditions. In this paper we investigate how chaos can
enable the back-propagation learning to escape from the local
minima. We propose the following formula for updating the
connection weights instead of (3),

∆Wij(t+ 1) = −η(t)
∂E

∂Wij(t)
(4)

η(t+ 1) = (1− β)η(t) (5)

where β (0 ≤ β ≤ 1) is the damping factor of the time-
dependent η(t).

In order to observe the chaos behavior in the network,
η(0) should be chosen sufficiently large and β should be
sufficiently small. Both of them are problem dependent and
should be chosen empirically. With choosing a large learning
rate, the network jumps through the weight space. Hence the
network can trace the larger space of the weights and reach
the global minimum. We then gradually reduce the learning
rate to stabilize the network.

However, with choosing a very large η, the network may
fall in the saturation region and the learning process becomes
too slow to converge to any local minima. In order to avoid
it, we need to restrict the weights to a special range such as
(−α, α) i.e., if the weight becomes greater than α, we map
it to α and if the weight becomes less than −α, it is mapped
to −α, where α is problem dependent. In the next section we
describe some experimental simulation on some real datasets.

IV. SIMULATION RESULTS

In order to verify the effectiveness of the BP with chaos
we compared it with some famous algorithms, such as the
standard BP, the Adaptive Learning Rate (ALR), and the
Levenberg-Marquardt algorithms [4] (LM). The BP, ALR,
and LM algorithms are those included in the Matlab. We

have applied the proposed method to three real classification
problems, namely, the Ionosphere, the Wincson Breast Cancer
(WBC), and the credit-screening datasets.

All data were standardized into mean value of zero and
variance of one. We randomly divided data into 3 parts i.e.,
60% as the training, 20% as the test, and 20% as the validation
set. The training and validation sets are used for finding the
structure of network and tuning the initial parameters. The
input attributes were rescaled to the range (−1.0, 1.0) by a
linear function. The target outputs were encoded using a 1-
of-m output representation for the m classes. The tangent
hyperbolic function was used as the transformation function
in all layers as follows,

tanh(x) =
ex − e−x

ex + e−x
(6)

Hence the target outputs were mapped to the range (−0.9, 0.9)
using a linear function. The parameter β was set to 0.001 for
all three datasets. In the following, we explain the simulation
results for the three datasets.

A. Ionosphere dataset

The problem is classification of radar returns from the
ionosphere. The dataset was created by Johns Hopkins Uni-
versity. The radar data was collected by a system in Goose
Bay, Labrador. There were 351 examples in total and 34
attributes used to represent the pattern. All attributes were
continuous. Each pattern belonged to two classes: ’good’ or
’bad’, which were free electrons in the ionosphere. This dataset
was obtained from the UCI repository [9].

Finding the optimal structure of a network is a challenging
job. We applied the LM algorithm to 10 different network
topologies to find the best structure of the network with the
same initial parameters [7]. Then, we chose the smallest topol-
ogy which had the least generalization error. The following
structure were examined, 33-2-2, 33-4-2, 33-8-2, 33-16-2, 33-
2-2-2, 33-6-3-2, 33-4-4-2, 33-8-4-2, 33-8-8-2, and 33-16-8.
We chose 33-6-3-2 (33 inputs, 6 hidden neurons in the first
layer, 3 hidden neurons in the second layer, and 2 outputs) as
the structure of the network which had the smallest test error.

Each algorithm had some initial parameters that needed to
be tuned before the learning stage. We tuned the parameters for
each algorithm using a 10-fold cross validation procedure and
selected those parameters which had the smallest test error.
Table I represents the tuned parameters for each algorithm.
For comparing the algorithms, we called each algorithm on
100 trials with different initial weights and the same network
topology, and the tuned parameters. All initial weights were
randomly chosen from a uniform distribution in the range
(−2.0, 2.0).

In order to avoid the overfitting problem, we let the network
learning complete 3000 epochs for each trial. Then, the ad-
justed weights with the minimal validation error were returned.
In Figure 1, the chaos behavior of the BP is observed. As
shown in the figure, it is obtained that the proposed method
enables the BP to escape from the local minima.

6



TABLE I
TUNED PARAMETERS FOR THREE DATASETS

Algorithm Parameters Ionosphere WBC Credit-screening

BP Lra 0.7 0.1 0.9

ALR Lra 0.05 0.05 0.9
Lr decb 0.1 0.1 0.5
Lr incc 1.4 1.2 1.05

LM Mud 10 20 20
Mu dece 0.5 0.1 0.9
Mu incf 5 20 20

BP with chaos η(0)g 5 5 5
Alphah 0.7 0.9 1.2

a Lr : Learning rate
b Lr dec : Lr decreasing factor
c Lr inc : Lr increasing factor
d Mu: The initial value of µ
e Mu dec : Mu decreasing factor
f Mu inc : Mu increasing factor
g η(0) : The initial value of learning rate
h Alpha: Weight range
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Fig. 1. Average Learning Curve for the Ionosophere dataset

TABLE II
AVERAGE MSE ERROR FOR THE IONOSOPHERE DATASET

Algorithm Training set Validation set Test set

BP 0.1671± 0.19 0.3759± 0.20 0.4698± 0.19

ALR 0.0928± 0.09 0.3058± 0.11 0.4137± 0.12

LM 0.0669± 0.08 0.264± 0.09 0.3849± 0.09

BP with chaos 0.0094± 0.01 0.2259± 0.04 0.3272± 0.04

Average learning error for the training, the test, and the
validation sets are presented in Table II. The results demon-
strate that the proposed method has a smaller learning error
for all training, test, and validation sets than the original back-
propagation. Chaos can noticeably improve the training error
compared to all other algorithms. The test and validation errors
are a little better than LM algorithm and dramatically less than
the BP errors.
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Fig. 2. Average Learning Curve for the WBC dataset

B. Wincson Breast Cancer(WBC) dataset

It was originally obtained by W. H. Wolberg at the Univer-
sity Wisconsin Hospitals, Madison [10]. The dataset contained
699 examples i.e., 458 patterns belonged to the benign and
241 patterns belonged to the malignant class. There were 10
integer attributes in this set including the class attribute. This
dataset was obtained from the UCI repository [9].

In order to find the best network structure, the same proce-
dure as the Ionosphere dataset was applied. Here we examined
the following topologies, 9-2-2, 9-4-2, 9-8-2, 9-16-2, 9-24-2,
9-32-2, 9-2-2-2, 9-4-2-2, 9-4-4-2, 9-8-4-2, 9-8-8-2, and 9-16-
8-2. Among them the 9-2-2-2 (9 inputs, 2 hidden neurons
in the first layer, 2 hidden neurons in the second layer, and
2 outputs) structure is chosen for the following procedures.
Then, the initial parameters were tuned for each algorithm as
we had done for the Ionosphere dataset. Table I shows the
tuned parameters for each algorithm.

For comparing the algorithms, each algorithm was called
on 100 trials with different initial weights but the same
network structure and tuned parameters. All initial weights
were randomly chosen from a uniform distribution in the
range (−2.0, 2.0). We let the network learning complete 3000
epochs and then returned the adjusted weights of network with
minimal validation error to avoid the overfitting problem. The
chaos behavior of the BP is represented in Figure 2. It is
obtained that the BP with chaos has the least average MSE
test error.

Table III shows the average learning error for the training,
the test, and the validation sets. The results demonstrate that
the proposed method has a smaller learning error for all three
sets. Chaos can noticeably improve the test and validation
errors in contrast with all other algorithms. The training error
is as good as the LM and the ALR errors and less than the
BP training error.

C. credit-screening dataset

The problem was to classify the approval or non-approval
of a credit card to a customer. It had a good mix of attributes:
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TABLE III
AVERAGE MSE ERROR FOR THE WBC DATASET

Algorithm Training set Validation set Test set

BP 0.3103± 0.41 0.2974± 0.41 0.2884± 0.41

ALR 0.1923± 0.32 0.1909± 0.32 0.1738± 0.32

LM 0.1017± 0.18 0.1039± 0.18 0.0978± 0.19

BP with chaos 0.094± 0.005 0.064± 0.004 0.043± 0.004

TABLE IV
AVERAGE MSE ERROR FOR THE CREDIT-SCREENING DATASET

Algorithm Training set Validation set Test set

BP 0.2984± 0.04 0.3642± 0.02 0.3037± 0.03

ALR 0.3094± 0.07 0.3685± 0.05 0.3054± 0.06

LM 0.296± 0.04 0.3745± 0.03 0.3076± 0.03

BP with chaos 0.2237± 0.02 0.4081± 0.04 0.3487± 0.03

continuous, nominal with small numbers of values, and nom-
inal with larger numbers of values. There were totally 690
examples and 52 attributes. Each pattern belonged to either the
approval or the non-approval class. 44% of samples belonged
to the positive class. This dataset was obtained from Proben1
benchmark datasets [11].

The same procedure as the Ionosphere dataset was used for
finding the best network structure. Here 51-2-2-2 structure (51
inputs, 2 hidden neurons in the first layer, 2 hidden neurons
in the second layer, and 2 outputs) with the smallest test error
was selected among the following structures, 51-2-2, 51-4-2,
51-8-2, 51-16-2, 51-2-2-2, 51-4-2-2, 51-4-4-2, 51-8-4-2, 51-8-
8-2, and 51-16-8-2. Then, the initial parameters were tuned for
each algorithm as we had done for the Ionosphere dataset. The
tuned parameters for each algorithm are presented in Table I.

For comparing the algorithms, we called the algorithms
on 100 trials with different initial weights but the same
network structure and tuned parameters. All initial weights
were randomly chosen from a uniform distribution in the range
(−2.0, 2.0). We let network learning complete 3000 epochs.
Then we returned the adjusted weights of network with min-
imal validation error to avoid the over fitting problem. Table
IV shows the average learning errors. The result demonstrates
that all algorithms have the same behavior. The data may have
had a flat local minimum that all algorithms were not able to
avoid.

V. CONCLUSION

MLN [2] uses BP as a learning algorithm, but the BP
often suffers from the local minima problem. In this pa-
per, we proposed a new method for the BP learning with
chaos. We investigated whether randomicity and ergodicity of
chaos can enable the BP algorithm to escape from the local
minima. We started the learning with a significantly large
learning rate. Then it was gradually reduced to stablize the
network at a global minimum. This method does not require
any additional computing and does not change the network
topology compared to the original BP. The proposed method
also requires as much memory as the original BP. We applied

the proposed method to three real classification datasets. For
evaluating the proposed method, we compared it with three
famous learning algorithms i.e., the BP, the ALR, and the LM
[4] algorithms. The proposed method had a smaller learning
error than all other three algorithms for the Ionosphere and the
WBC datasets. The proposed method was not able to handle
the flat local minima problem such as the minima in the credit-
screening dataset. The algorithm is shown to work better than
the original BP and is comparable with the LM, but simpler
and easier to implement comparing to the LM algorithm.
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