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Abstract. We study the Rough Set theory as a method of feature selec-
tion based on tolerant classes that extends the existing equivalent classes.
The determination of initial tolerant classes is a challenging and impor-
tant task for accurate feature selection and classification. In this paper
the Expectation-Maximization clustering algorithm is applied to deter-
mine similar objects. This method generates fewer features with either a
higher or the same accuracy compared with two existing methods, i.e.,
Fuzzy Rough Feature Selection and Tolerance-based Feature Selection,
on a number of benchmarks from the UCI repository.

1 Introduction

The problem of reducing dimensionality has been investigated for a long time
in a wide range of fields, e.g., statistics, pattern recognition, machine learn-
ing, and knowledge discovery. In order to reduce the input dimensionality, there
exist two main approaches, i.e., feature extraction and feature selection (FS).
Feature extraction maps the primitive feature space into a new space with a
lower dimensionality. Two of the most popular feature extraction approaches in-
clude Principal Components Analysis [13], and Partial Least Squares [2]. There
are numerous applications of feature extraction in the literature, such as image
processing [9], visualization[29], and signal processing [21]. In contrast, the FS
approach chooses the most informative features from the original features ac-
cording to a selection method, e.g., t -statistic [17], f -statistic [15], correlation
[34], separability correlation measure [7], or information gain [32]. The irrelevant
and redundant features in the dataset lead to slow learning and low accuracy.
Finding the subset of features that are enough informative is NP complete. Some
heuristic algorithms are proposed to search through the feature space. The se-
lected subset can be evaluated from some issues, such as the complexity of the
learning algorithm and the accuracy.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 272–282, 2008.
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The Rough Set (RS) theory can be used as a tool to reduce the input dimen-
sionality and to deal with vagueness and uncertainty in datasets. The reduction
of attributes is based on data dependencies. The RS theory partitions a dataset
into some equivalent (indiscernibility) classes, and approximates uncertain and
vague concepts based on the partitions. The measure of dependency is calculated
by a function of the approximations. The dependency measure is employed as
a heuristic to guide the FS process. In order to obtain a significant measure,
proper approximations of the concepts are required. Hence, the initial partitions
play an important rule. Given a discrete dataset, it is possible to find the in-
discernibility classes; however, in case of datasets with real-valued attributes,
it is impossible to say whether two objects are the same, or to what extent
they are the same, using the indiscernibility relation. A number of research
groups [6, 20, 26, 27, 28, 30] extended the RS theory using the tolerant or
similarity relation (termed tolerance-based Rough Set). The similarity measure
between two objects is delineated by a distance function of all attributes. Two
objects are considered to be similar when their similarity measure exceeds a sim-
ilarity threshold value. Finding the best threshold boundary is both important
and challenging. [14] used genetic algorithms to find the best similarity thresh-
old. [8, 10, 22, 23, 25] used fuzzy similarity to cope with real-valued attributes. In
this paper we use Expectation-Maximization (EM) [3, 5, 16, 24, 33, 35] cluster-
ing algorithm to determine the tolerance classes. The EM algorithm is a general
statistical method for finding the maximum likelihood estimations of parameters
in probabilistic models. In particular it can be applied in clustering problems.
The EM algorithm allows for overlapping clusters and it is robust to noise and
to highly skewed data.

The paper is organized as follows. Section 2 summarizes basics of the RS
theory. A brief overview of the mixture model and EM algorithm is represented
in section 3. In Section 4, the proposed method of feature selection using the RS
theory and EM clustering algorithm is outlined. Section 5 shows the potential
of the proposed method on some real datasets. We discuss our results and draw
some conclusions in the final section.

2 Basics of the Rough Set Theory

Let T (U, A, C, D) be a decision table, where U is a universe of objects, A is a set
of primitive features, C is a set of conditional attribute, D is a decision attribute
or class label, and C, D ⊆ A. For an arbitrary set P ⊆ A, an indiscernibility
relation is defined as follows,

IND(P ) = {(x, y) ∈ U × U : ∀a ∈ P, a(x) = a(y)} (1)

If P ⊆ C and X ⊆ U then the lower and upper approximations of X , with
respect to P , are respectively defined as follow,

PX = {x ∈ U : [x]IND(P ) ⊆ X} (2)

PX = {x ∈ U : [x]IND(P ) ∩ X �= φ} (3)
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where
[x]IND(P ) = {y ∈ U : a(y) = a(x), ∀a ∈ P} (4)

is the equivalence class of x in U/IND(P ).
A P -positive region of D is a set of all objects from the universe U which

can be classified with certainty to one class of U/IND(D) employing attributes
from P ,

POSP (D) =
⋃

x∈U/IND(D)

PX (5)

A dependency of D on P is defined as,

γp(D) =
|POSP (D)|

|U | . (6)

where |A| is the cardinality of a set A.
A feature a ∈ C is dispensable in P , if γp(D) = γp−a(D); otherwise a is an

indispensable attribute in P with respect to D. An arbitrary set B ⊆ C is called
independent if all its attributes are indispensable.

From these definitions a reduct set of features can be defined as follows, a set
of features R ⊆ C is called the reduct of C, if R is independent and POSR(D) =
POSC(D). In other words, the reduct is a set of attributes that conserves the
partitions generated by C.

In [4] the QUICKREDUCT algorithm for determining the reduct set is pro-
posed. It is a heuristic algorithm that avoids exhaustively generating all possible
subsets. The greedy algorithm starts with an empty set and in each iteration adds
the attribute that results in the greatest increase in the rough set dependency
metric to the reduct set.

3 Mixture Model and EM Algorithm

The mixture model is an effective representation of the probability density func-
tion and consists of k component density functions. The objective of a mixture
model is to fit the density functions to a given dataset to approximate the data
distribution. The EM alogrithm can be used in solving the problem of the mix-
ture models where Θ is the model parameters, and unknown-random variable
Y = {yi}N presents each object belongs to which model. That means yi = k
if the i − th object belongs to the component k. The EM algorithm allows for
overlapping clusters hence each object can belong to more than one component.
The EM algorithm is outlined in the Appendix.

Let D be a dataset with m objects and d attributes and x ∈ D be an object
in the dataset. The mixture model probability density function, evaluated at x,
is defined as follows,

p(x|Θ) =
k∑

l=1

Wl.p(x|θl) (7)

where
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– Wl is the fraction of data points belonging to the cluster l, and
∑k

l=1 Wl = 1.
– p(x|θl) is the cluster or component distribution models the records of the

l-th cluster.
– θl is the model parameters of density function of cluster l. In case of Gaussian

distribution, θl is the mean (μl) and covariance matrix (Σl).

The complete-data log-likelihood expression for this density from the data X
and Y is given by:

log(L(Θ|X, Y )) = log(P (X, Y |Θ)) =
N∑

i=1

log(P (xi|yi)P (y)) =
N∑

i=1

log Wyip(xi|θyi) (8)

In this work a Gaussian distribution is used. The EM algorithm is used to deter-
mine the value of mean (μl), covariance matrix (Σl), and sampling probability
(Wl) for each cluster. The attribute set will affect the distribution of data and
lead to the different model parameters.

The algorithm is as follows,

1. E Step. For each object x ∈ D, compute the membership probability of x
in each cluster l = 1 · · ·k at iteration j:

p(yi|xi, μ
j , Σj) =

W j
yi

.p(xi|μj
yi

, Σj
yi

)

p(xi|μj , Σj)
(9)

2. M Step. Update mixture model parameters for each cluster l = 1, 2, · · · , k
that maximize the value of Q(Θ, Θ(j)):

W j+1
l =

1
N

∑

x∈D

pr(l|x) (10)

μj+1,l =
∑

x∈D x.pr(l|x)∑
x∈D pr(l|x)

(11)

Σj+1,l =
∑

x∈D pr(l|x)(x − μj+1,l)(x − μj+1,l)T

∑
x∈D pr(l|x)

(12)

3. If |Lj −Lj+1| ≤ ε, stop. Else set j = j+1 and go to 1. Lj is the log likelihood
of the mixture model at iteration j,

Lj =
∑

x∈D

log(prj(x)) =
∑

x∈D

log(
k∑

l=1

W j
l .prj(x|μj

l , Σ
j
l )) (13)

4 Proposed Method

In the proposed method, each cluster represents a tolerance class. The tolerance
classes that are generated by the EM clustering algorithm for an object x are
defined as:

ClusP (x) = {Y ∈ U | x, and Y belongs to the same cluster} (14)
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4.1 Approximations and Dependency

In a similar way to the original RS theory, the lower and upper approximations
are then delineated as follow,

PX = {x ∈ U : ClusP (x) ⊆ X} (15)

PX = {x ∈ U : ClusP (x) ∩ X �= φ} (16)

Based on this, the positive region and dependency functions can respectively be
defined as follow,

POSP (D) =
⋃

x∈U/IND(D)

PX, (17)

γ́P (D) =
|POSP (D)|

|U | (18)

Following the above definitions, a feature selection algorithm can be constructed
that uses the tolerance-based degree of dependency, γP (D), to evaluate the signif-
icance of feature subsets. The proposed FS algorithm are presented in Figure 1.

EM-CLUSTERING-REDUCT(C, D).
Inputs :
C, the set of all conditional attributes;
D, the set of decision attributes;
Output :
R, the Reduct Set

(1) R = φ
(2) γ́best = 0
(3) do
(4) γ́tmp = γ́best

(5) T = R
(6) for x in (C − R)
(7) if γ́R∪{x}(D) > γ́T (D)
(8) T = R ∪ {x}
(9) γ́best = γ́T (D)
(10) R = T
(11) until γ́best == γ́tmp

(12) return R

Fig. 1. EM Clustering QuickReduct

4.2 An Illustrative Example

In this section, a simple example is used to demonstrate the procedure of the
proposed method (see Table 1). There are three continuous conditional attributes
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Table 1. Example Table

Object a b c q

1 -0.4 -0.3 -0.5 0

2 -0.4 0.2 -0.1 1

3 -0.3 -0.4 -0.3 0

4 0.3 -0.3 0 1

5 0.3 -0.3 0 1

6 0.2 0 0 0

and a crisp-valued class attribute in the dataset. In this example, the number of
clusters is set to 3.

The greedy algorithm starts with an empty reduct set. It checks each attribute
separately and chooses the attribute that has the highest dependency degree. In
this example the attribute c is chosen with the dependency degree of 0.33. Then
the attribute c is added to the reduct set.

U/clust{q} = {{1, 3, 6}, {2, 4, 5}}

U/clus{a} = {{3}, {4, 5, 6}, {1, 2}}

γ́a =
|{3}|

|{1, 2, 3, 4, 5, 6}| =
1
6

= 0.17

U/clust{b} = {{1, 3, 4, 5}, {6}, {2}}

γ́b =
|{2, 6}|

|{1, 2, 3, 4, 5, 6}| =
2
6

= 0.33

U/clust{c} = {{3}, {2, 4, 5, 6}, {1}}

γ́c =
|{1, 3}|

|{1, 2, 3, 4, 5, 6}| =
2
6

= 0.33

R ← {c}

The hill climbing forward selection algorithm chooses other attributes in the
reduct set as follow,

U/clust{a,c} = {{1, 3}, {4, 5, 6}, {2}}

γ́a,c =
|{1, 2, 3}|

|{1, 2, 3, 4, 5, 6}| =
3
6

= 0.5

U/clust{b,c} = {{1, 3}, {4, 5}, {2, 6}}
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γ́b,c =
|{1, 2, 4, 5}|

|{1, 2, 3, 4, 5, 6}| =
4
6

= 0.67

R ← {b, c}

U/clust{a,b,c} : {{1, 3}, {4, 5, 6}, {2}}

γ́a,b,c =
|{1, 2, 3}|

|{1, 2, 3, 4, 5, 6}| =
3
6

= 0.5

Finally, it returns {b, c} as the reduct set which has the same size as the reduct
set provided by the Fuzzy Rough Feature Selection (FRFS) and tolerance based
FS methods in [11].

5 Simulation Result

In order to evaluate the proposed method, we applied it to a number of real
datasets from the UCI repository [1] in Table 2. The EM clustering algorithm
from the Weka software [31] was chosen where the number of clusters was selected
empirically. The obtained reducts are evaluated via the accuracy of classification.
J48, JRIP, and PART classifier in the Weka [31] are chosen as the classifier
algorithms.

The obtained accuracies are compared with the accuracy of the FRFS and
Tolerance-based FS in [11]. In [12] the FRFS method is compared with other
FS methods (such as Relief-F, PCA, and entropy-based approaches) and has
been shown that the FRFS method outperformed them. Hence in this paper,
the proposed method is compared with only the FRFS and Tolerance-based FS.
Table 3 shows the average classification accuracy of 10-fold cross validation as a
percentage. The classification algorithms are performed on the original dataset
and reduced datasets were obtained by the feature selection algorithms, i.e., the
FRFS [11], the Tolerance-based FS [11], and the proposed method.

Table 2. Reduct Size For FRFS, Tolerance, and EM Clustering Methods

Dataset Objects Features Reduct Size
FRFSa Tol.b EMRSc

Glass 214 10 9 7 5
Heart 270 14 11 10 3
Ionosphere 230 35 11 10 5
Iris 150 5 5 4 4
Water2 390 39 11 8 3
Wine 178 14 10 8 8
a FRFS : Fuzzy Rough Set Feature Selection [11].
b Tol. : Tolerance-based Feature Selection [11].
c EMRS : The proposed method, i.e., Feature Selection

using the RS theory and EM algorithm
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Table 3. Classification Accuracies(%) For Unreduced, FRFS, Tolerance, and Cluster-
ing Methods

CAa J48 JRIP PART������Dataset
FSb

Originalc FRFSd Tol.e EMRSf Originalc FRFSd Tol.e EMRSf Originalc FRFSd Tol.e EMRSf

Glass 67.29 69.63 69.16 69.16 69.16 67.76 67.76 69.16 67.76 68.22 69.62 69.16

Heart 76.67 78.89 80.37 79.59 79.63 81.85 82.59 79.59 73.33 78.52 80.37 79.59

Ionosphere 87.83 91.30 87.39 88.32 86.96 86.52 86.96 86.61 88.26 91.30 86.52 90.03

Iris 96.00 96.00 96.00 96.00 95.33 95.33 94.67 95.33 94.00 94.00 95.33 95.33

Water2 83.33 80.26 81.79 81.77 81.03 80.51 82.31 81.57 85.64 82.56 81.28 82.34

Wine 94.38 92.14 94.94 94.94 91.57 90.45 94.38 92.7 93.82 93.82 94.38 94.38
a CA : Classification Algorithm.
b FS : Feature Selection Algorithm used for each Classification Algorithm.
c Original : Original dataset.
d FRFS : Fuzzy Rough Set Feature Selection [11].
e Tol. : Tolerance-based Feature Selection [11].

f EMRS : The proposed method, i.e., Feature Selection using the RS theory and EM algorithm

It is evident from Table 2 that the proposed method generated fewer features
compared with the two other FS methods. For the J48 classifier, the clustering
based FS improved the average accuracy of the unreduced datasets except for
the water2 dataset. The proposed method either unchanged or improved upon
the performance of the reduced datasets with the other two FS algorithms in
all but in the Ionosphere dataset. For the JRip classifier, the proposed method
maintained the average accuracy of the unreduced datasets in all. It either im-
proved or maintained the performance of the reduced dataset with the other two
FS algorithms in all but two cases. For PART, the proposed method improved
the average accuracy of unreduced datasets in all except the water2 dataset. It
has the same behavior as the other two FS methods.

Overall, the proposed algorithm produced a smaller number of attributes com-
pared to the other two FS algorithms and the average accuracy of classifiers is
improved or in a few instances remains unchanged. For example, in the water2
dataset the proposed method chose 3 features among 39 features whereas the
FRFS chose 10 and the Tolerance-based FS method chose 8 features. In addition,
the proposed method has a similar average accuracy compared with the other
two approaches.

6 Conclusion

In this work the EM clustering algorithm was applied to deal with the problem of
determining initial tolerant classes to obtain a significant classification accuracy.
Through some experiments, it was concluded that the proposed method gener-
ated a smaller size of feature sets in all datasets compared with the
FRFS [11] and tolerance-based FS methods [11]. Beside that, the proposed
method either improved or unchanged the average accuracy in all except a few
datasets. For future work, an improvement of searching algorithm for finding the
reduct set with the new definition of approximations is required. In Addition,
an evaluation of the proposed method through experimental comparisons with
the other methods in the literature is recommended.
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Appendix: EM Algorithm

Maximum Likelihood (ML) is a famous method for finding the model parameters
for complete data. In case of incomplete data, the EM algorithm can be used
for determining the parameters. Assume X is some observation data which is
incomplete, and Z = (X, Y ) be a complete data with the density function,

p(z|Θ) = p(x,y|Θ) = p(y|x, Θ)p(x|Θ) (19)

The complete data likelihood is defined as,

L(Θ|Z) = L(Θ|X, Y ) = p(X, Y |Θ). (20)
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The problem is to find Θ which makes the maximume likelihood for the com-
plete data. In this case the unknown-random variable Y leads to have a variable
likelihood. The EM algorithm is used for finding the parameters in 2 steps namely
Expectaion Step (E-step) and Maximization Step (M-step).

In the E-step, the expected value of log-likelihood of the complete data is
determined as follow,

Q(Θ, Θ(i−1)) = E[log(p(X, Y |Θ)|X, Θ(i−1))] =∫

y∈Υ

log p(X,y|Θ)f(y|X, Θ(i−1))dy (21)

where the notations are as follow,

X Observed-incomplete data and is constant.
Θ(i−1) Current estimation of the parameter Θ and is constant.
Y Unlnown-Random variable with a presumably governed

by an underlying distribution f(y|X, Θ(i−1)).
Θ Normal variable. The objective is to adjust Θ to obtain

the maximum likelihood for the complete data Z.
Then, the M-step is applied to determine the value of the Θ in the iteration i
that maximizes the expected value of log-likelihood of the complete data,

Θ(i) = arg max
Θ

Q(Θ, Θ(i−1)). (22)

The EM algorithm iterates both steps alternatively till converge.
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