
Computers and Mathematics with Applications 57 (2009) 1024–1029

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Minimizing interference in satellite communications using transiently
chaotic neural networks
Wen Liu, Lipo Wang ∗
College of Information Engineering, Xiangtan University, Xiangtan, Hunan, China
School of Electrical and Electronic Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore

a r t i c l e i n f o

Keywords:
FAP
Satellite communications
Neural network
Optimization

a b s t r a c t

The frequency assignment problem (FAP) in satellite communications is solved with
transiently chaotic neural networks (TCNN). The objective of this optimization problem
is to minimize cochannel interference between two satellite systems by rearranging the
frequency assignments. For an N-carrier–M-segment FAP problem, we construct a TCNN
consisting ofN×M neurons. The performance of the TCNN is demonstrated through solving
a set of benchmark problems, where the TCNN finds comparative if not better solutions as
compared to the existing algorithms.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

One important research direction in wireless communication is interference minimization, so as to guarantee a desired
level of quality of service. The frequency rearrangement is an effective complement alongside the technique for reducing
the interference itself. For both intersystem interference and intrasystem interference [1], frequency rearrangements
take advantage of carrier interleaving and are effective in practical situations. Early efforts have focused on various
analyticalmethods for evaluations of cochannel interference [2,3], rather than systematicmethods for optimizing frequency
assignments and for reducing cochannel interference. Among diverse formulations and objectives of frequency assignment
problems (FAP) [4,5], we focus on frequency assignments in satellite communications in this paper. The objective of
the satellite FAP is to minimize the cochannel interference between two satellite systems by rearranging the frequency
assignments. This NP-complete problem is difficult to solve, especially for large-size problems, but is growing in importance,
since we increasingly depend on satellites to fulfill our communications needs.
Some seminal work has been done in this area:

• Mizuike and Ito [1] proposed segmentation of the frequency band and presented a method based on the branch-and-
bound approach.
• Funabiki and Nishikawa [6] proposed a gradual neural network (GNN), where the cost optimization is achieved by a
gradual expansion scheme and a binary neural network is in charge of constraints in the problem.
• Salcedo-Sanz et al. combined the Hopfield network with simulated annealing (HopSA) [7] and the genetic algorithm
(NG) [8] to solve the problem.

On another hand, in the development history of modern computation technology, bio-inspired neural networks [9], due
to their intrinsic operation functions, have played a very important role. Derived from some aspects of neurobiology and
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adapted to integrated circuits, neural networks have been used widely in various fields such as optimization, linear and
nonlinear programming, pattern recognition [10–12] and so on.
On the basis of Hopfield neural networks (HNN) [13,14], chaotic neural networks were presented by Nozawa [15,

16] through adding negative self-feedback connections into Hopfield networks. The simulation for several combinatorial
optimization problems showed that chaotic search is efficient in approaching the global optimum or sub-optima. As a kind
of complicated nonlinear dynamics, chaos has beenwidely investigated by not only mathematicians and physicists, but also
engineers, economists, and scientists fromvarious disciplines [17–19]. Chaotic dynamics have several special characteristics,
such as:
1. a sensitivity to initial conditions,
2. determinism, as the system function is well defined,
3. long term unpredictability.

Chaotic dynamics [20] is a complex behavior which can be generated by a finite set of deterministic nonlinear equations
with a simple system. Chaos is globally stable and locally unstable [21]. A lot of research in recent years has focused on
developing techniques to harness chaos when it is undesirable or to generate chaos so that the useful function of a chaotic
systemcanbeutilized. Chen andAihara [22] proposed a transiently chaotic neural network (TCNN) by introducing a decaying
negative self-feedback. The dynamics of the newmodel are characterized as transient chaos. Numerical experiments on the
traveling salesman problem (TSP) and the maintenance scheduling problem showed that the TCNN has high efficiency for
converging to globally optimal solutions.
The TCNN, which is also known as chaotic simulated annealing [10], is not problem-specific but a powerful general

method for addressing combinatorial optimization problems (COPs) [23–25]. With autonomous decreases of the self-
feedback connection, TCNNs are more effective in solving COPs compared to the HNN. In this paper, we solve the FAP in
satellite communications through the TCNN, and simulation results show that the performance of the TCNN is comparative
with existing heuristics.
This paper is organized as follows.We review the TCNN in Section 2. The formulation of the TCNN on the FAP is described

in Section 3. Parameter settings and simulation results are presented in Section 4. Finally, we conclude the contribution of
this paper in Section 5.

2. Transiently chaotic neural networks

The TCNN [22] model is described as follows:

xij(t) =
1

1+ e−yij(t)/ε
(1)

yij(t + 1) = kyij(t)+ α

[
N∑

p=1,p6=i

M∑
q=1,q6=j

wijpqxpq(t)+ Iij

]
− z(t)

[
xij(t)− I0

]
(2)

z(t + 1) = (1− β)z(t) (3)

where the variables are:

yij internal state of neuron ij;
xij output of neuron ij;
ε the steepness parameter of the transfer function (ε ≥ 0);
k damping factor of the nerve membrane (0 ≤ k ≤ 1);
α the positive scaling parameter for inputs;
wijpq the weight of connection from neuron ij to neuron pq;
Iij input bias of neuron ij;
z(t) self-feedback neuronal connection weight (z(t) ≥ 0);
I0 positive parameter;
β damping factor for the time-dependent neuronal self-coupling (0 ≤ β ≤ 1).

wijpq is confined to the following conditions [14]:

N∑
p=1,p6=i

M∑
q=1,q6=j

wijpqxpq(t)+ Iij = −∂E/∂xij (4)

where E denotes the energy function, which is designed to have the minimum value at the optimal solution of the
combinatorial optimization problem.Weights of connection betweenneurons (wijpq) are derived by Eq. (4) so that the energy
function will decrease monotonically as neurons update after the self-feedback interaction vanishes (z = 0).
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3. Problem formulation

Weuse the FAP formulation given by [1] and used in [6–8]. As indicated in [1], the objective of the FAP includes two parts,
i.e., minimization of the largest interference after reassignment and minimization of the total accumulated interference
between systems.
We continue using the neural network formulation given by Funabiki and Nishikawa [6]. An N-carrier–M-segment FAP

between two systems is formulated on an N ×M neural network. At the end of the neural computing, neuron outputs will
decide the assignment in the following way:

xij =
{
1, then carrier i is assigned to segment j;
0, no assignments. (5)

The energy function for the TCNN of the FAP [1,6,26] is defined as

E1 =
N∑
i=1

(
M∑
j=1

xij − 1

)2
. (6)

This term is to ensure that every segment in system 2 must be assigned to one and at most one segment in system 1.

E2 =
N∑
i=1

M∑
j=1

N∑
p=1
p6=i

j+ci−1∑
q=j−cp+1

xijxpq. (7)

This E2 term is to ensure that all segments of one carrier in system 2 should be assigned to consecutive segments in
system 1 in the same order. Here ci denotes the carrier length of carrier i. If carrier i is assigned to segment j, any other
carrier must not be assigned to segments from j to (j + ci − 1). The first segment of carrier p(p 6= i) should be assigned
to the segment before (j − cp + 1) or after (j + ci − 1). As (j − cp + 1) may be negative and (j + ci − 1) may exceed the
total number of the segments, i.e.,M , the formulation in (7) has errors and produces program bugs during simulations. We
revised the second term of the energy function as follows:

E ′2 =
N∑
i=1

M∑
j=1

N∑
p=1
p6=i

min(j+ci−1,M)∑
q=max(j−cp+1,1)

xijxpq. (8)

where max(x, y) is the larger value between (x, y) and min(x, y) is the smaller value between (x, y). TheW1 andW2 terms
are designed to guarantee that the solution is a feasible one.
We add the following convergence term into the energy function to force the neuron outputs to approach to 0 or 1 [26]:

E3 =
N∑
i=1

M∑
j=1

xij(1− xij). (9)

The E4 term optimizes the interference after the frequency rearrangement.

E4 =
N∑
i=1

M∑
j=1

dijxij (10)

where dij is the element on row i column j of the cost matrix D. Cost matrix D = (dij, i = 1, . . . ,N; j = 1, . . . ,M) is
computed from the interference matrix E(I) [6]. If the carrier length for carrier i is 1, i.e., ci = 1, then line i for carrier i in
the cost matrix is the same as that in the interference matrix for carrier i. If ci > 1, then we choose the largest value in the
diagonal line for each j.
The total energy function is given by the summation of four parts E1, E ′2, E3, and E4:

E =
W1
2

N∑
i=1

(
M∑
j=1

xij − 1

)2
+
W2
2

N∑
i=1

M∑
j=1

N∑
p=1
p6=i

min(j+ci−1,M)∑
q=max(j−cp+1,1)

xijxpq

+
W3
2

N∑
i=1

M∑
j=1

xij(1− xij)+
W4
2

N∑
i=1

M∑
j=1

dijxij. (11)

whereWi, i = 1, . . . , 4, are weighting coefficients. The choices of these parameters are based on the rule that all terms in
the energy function should be comparable in magnitude, so that none of them dominates [5]. The balance of each term in
the energy function is crucial to parameter selection.
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Table 1
Specifications of the FAP instances used in the simulation.

# Number of carriers N Number of segmentsM Range of carrier length Range of interference

1 4 06 1–2 5–55
2 4 06 1–2 1–9
3 10 32 1–8 1–10
4 10 32 1–8 1–100
5 10 32 1–8 1–1000
6 18 60 1–8 1–50
7 30 100 1–8 1–100
8 50 200 1–8 1–1000

The neuron output is continuous between 0 and 1. We convert the continuous output xij to discrete neuron output xbij as
follows [27]:

xbij =

1, if xij >
1
NM

N∑
p=1

M∑
q=1

xpq(t);

0, otherwise.

(12)

Substituting the energy function in (2) with (4) and (11), we obtain the network dynamics, i.e., the difference equation
of the neural network as follows:

yij(t + 1) = kyij(t)−W1

(
M∑
q=1

xiq − 1

)
−
W2
2

N∑
p=1
p6=i

min(j+ci−1,M)∑
q=max(j−cp+1,1)

xpq

−
W3
2
(1− 2xij)−

W4
2
dij − z(t)

[
xij(t)− I0

]
. (13)

4. Simulation results

We simulate the TCNN for the FAP on eight benchmarks. The specifications of the eight benchmarks are listed in Table 1.
Benchmarks 1–5 are from [6] and 6–8 are from [7]. Once the difference of the energy function value between two iteration
steps is smaller than a threshold (0.00001) in three consecutive steps or the number of iteration steps exceeds a predefined
number (15000 in our simulation), the iteration is terminated.
Initial inputs of neural networks yij(0)(i = 1, . . . ,N, j = 1, . . . ,M) are randomly generated from [−1, 1]. Parameters

for the neural network are chosen as follows [22]:

ε = 0.004, k = 0.999, α = 0.0015, β = 0.001, z(0) = 0.1.

The weight coefficients of the energy functionWi, i = 1, . . . , 4, are chosen as follows:

W1 = 1.0, W2 = 1.0, W3 = 0.7, W4 = 0.0002.

It is necessary to tune these coefficients to obtain better performance of the TCNN. Alongwith the growing problem size, the
value of theW4 term increases, and so do the differences between the numerical values of theW1 term andW2,W3 terms.
Hence, we slightly decreaseW2 andW3, but increaseW4 as the problem size grows.
To investigate the efficiency of the TCNN, the algorithm is run 1000 times with different randomly generated initial

neuron states on each of eight benchmarks. Table 2 shows the results, including the best largest interference IL, the rate for
reaching the optimum (‘‘Opt rate’’), the average error from the optimal result (‘‘Ave. error’’), the convergence rate η (the
ratio at which the neural network finds a feasible solution in 1000 runs), and the total interference IT when the optimum of
the largest interference is found. The average numbers of iteration steps T and standard deviations are also shown in this
table. The convergence rate denotes the rate for the neural network finding a feasible solution at the end of the iterations.
The results show that the TCNN is effective in reducing the largest interference and total interference by rearranging the

frequency assignment. Take problem 4 for example, which is a 10-carrier–32-segment FAP; the optimal largest interference
is 64 with an optimal rate at 16.7%. The best total interference found by the TCNN is 919. The algorithm takes 2383 iteration
steps on average, and the TCNN converges to a feasible solution in 87.5% of the 1000 random runs.
The comparison of the TCNN with the GNN [6] and the HopSA [7] is shown in Table 3. Results from the GNN and the

HopSA are from references [6,7]. As the authors in [7] did not publish the average value, only the best result is included
in Table 3. We show that the TCNN is comparable with the GNN and the HopSA in terms of the largest interference and
outperforms them in terms of the total interference, especially on large-size problems.
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Table 2
The performance of the TCNN in eight instances. # denotes the instance number. IL is the best largest interference and IT is the best total interference. ‘‘Opt.
rate’’ stands for the rate for the TCNN reaching the optimum in the 1000 runs. ‘‘Ave. error’’ denotes the average error from the optimum. T is the average
number of iteration steps. η is the convergence rate. ‘‘SD’’ stands for ‘‘standard deviation’’.

# IL IT T ; mean± SD η (%)
Best Opt. rate (%) Ave. error

1 30 32.1 5.4 100 426.5± 81 100
2 4 48.8 0.8 13 829.4± 117 100
3 7 21.6 1.3 85 2485± 153 96.4
4 64 16.7 10.5 919 2383± 264 87.5
5 697 18.6 53.8 7 574 2342± 280 61.0
6 49 26.7 28.3 963 2651± 391 53.7
7 98 21.3 1.2 3 889 3716± 389 67.1
8 994 27.4 3.9 60587 4839± 447 52.2

Table 3
Comparison of simulation results (largest interference and total interference) obtained by the TCNN, GNN and HopSA for instances 1 to 8. ‘‘SD’’ stands for
‘‘standard deviation’’.

# GNN [6] HopSA [7] TCNN
Largest Total Largest Total Largest Total
Best Mean Best Mean Best Mean± SD Best Mean± SD

1 30 31.5 100 100.8 N/A N/A 30 35.4± 4.6 100 112.6± 13.7
2 4 4.9 13 15.4 N/A N/A 4 4.8± 0.4 13 15.4± 0.8
3 7 8.1 85 99.4 N/A N/A 7 8.4± 1.3 85 90.6± 16.7
4 64 77.1 880 982.0 84 886 64 74.1± 12.5 880 1045± 125
5 640 766.8 8693 9413.9 817 6851 697 749± 73.8 7 574 8527± 238
6 49 N/A 1218 N/A 48 1002 49 77.3± 9.3 963 1126± 132
7 100 N/A 4633 N/A 98 4093 98 99.2± 1.2 3 889 4722± 282
8 1000 N/A 70355 N/A 988 61330 994 998± 3.9 60587 70340± 2295

5. Conclusion

Wesolve the FAP in satellite communications through the TCNN. The objective of this NP-complete optimization problem
is to minimize cochannel interference between two satellite systems by rearranging frequency assignments. The TCNN
model consists ofN×M transiently chaotic neurons for anN-carrier–M-segment problem.With rich and complex dynamics,
the TCNN has more chance of jumping out of local optima to reach the global optimum compared with the HNN. Simulation
results on eight benchmark problems show that the TCNN can find better solutions compared to the previousmethods, with
low computational cost.
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