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Abstract

To improve neural network algorithms for the shortest
path routing problem (SPRP), we propose a solution using
a noisy Hopfield neural network (NHNN), i.e., by adding
decaying stochastic noise to the continuous Hopfield neural
network (HNN). We also modify the energy function for the
SPRP. Simulation results show that our approach achieves
better route optimality compared to other algorithms that
employ the HNN.

1 Introduction

For the shortest path routing problem (SPRP) [2–4, 9],
Ali and Kamoun [3] formulated the problem onto a Hop-
field neural network (HNN) and simulated the algorithm
on a 5-node network with satisfactory results. Park and
Choi [9] introduced a new term into the energy function
proposed by Ali and Kamoun [3] so that the flow is one-
directional to the destination, but at the same time this term
made connection weights of the neural network dependent
on the topology of the communication network. Araujo et
al [4] proposed a new formulation and extended the HNN to
a two-layer architecture. They enhanced reliability but im-
paired the ability to reach optima. Ahn et al [2] added two
new terms into Park-Choi energy function to avoid possible
loops. Although the simulation showed improvements over
other approaches, its energy function has seven terms and it
is hard to tune the associated seven parameters.

A number of authors have explored adding noise to the
recurrent neural network in order to improve network per-
formance. Jim et al [7] presented a detailed investigation
on the effects of injecting synaptic noise to recurrent neu-
ral networks and analyzed several injection methods. They
added different kinds of noise onto synaptic connection
weights of the neural network and showed several bene-
fits, such as improvements on generalization and conver-

gence. Das and Olurotimi [5, 8] analyzed noisy recurrent
neural networks in both continuous and discrete cases. They
showed that knowledge about the behavior of neural net-
works in the presence of noise would be helpful in design
and parameter selection. Wang et al [10, 11] proposed a
noisy chaotic neural network and successfully applied the
new model to the traveling salesman problem and the chan-
nel assignment problem. In this letter we use a noisy Hop-
field neural network (NHNN) to improve HNN’s ability to
reach the global optimal solution, while retaining the mer-
its of Ali and Kamoun’s model, i.e., model simplicity and
the ability to adapt to changes in the communication net-
work topology, the source or the destination node, and link
costs. This analysis is necessary as thermal noise is inher-
ent in analog implementations, especially in very large scale
integration (VLSI) implementations.

2 The shortest path routing problem

2.1 Problem formulation

The SPRP aims to find a path in a communication net-
work from source node s to destination node d such that the
total cost on the path is minimum. Here, we use the formu-
lation proposed in [3].

Considering a communication network with n nodes, the
neural network is arranged on an n× n matrix, with all di-
agonal elements removed and every element of the matrix
is treated as a neuron. The neuron of row x and column i
describes the link from node x to node i in the communica-
tion network. Pxi characterizes the connection topology of
the communication network: if the arc from node x to node
i does not exist, Pxi = 1; otherwise, Pxi = 0.

The routing solution is described by the final output Vxi

of neuron (x, i) as follows:

Vxi =
{

1, if the arc from node x to node i is on the final path;
0, otherwise.



The cost of an arc from node x to node i is denoted by
Cxi, which is a real non-negative number. For non-existing
arcs, Cxi = 0.

2.2 Energy function

We modify the energy function based on the one pro-
posed by [3] and [9].
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where γx = 1, if x = s; γx = −1, if x = d; otherwise,
γx = 0. {µi, i = 1, 2} are the weighting constants. The µ1

term aims at minimizing the cost on the route. The µ2 term
is the constraints with two parts. The first part is used to
satisfy the requirement that for each single node except the
source and the destination, the number of incoming links
is equal to the number of outgoing links. The second part
penalizes neurons that represent non-existing links in the
communication network. There are only two parameters
needed to be balanced in this model, which makes tuning
of parameters more efficient.

We have discarded the fourth term of the energy function
used in [3] which forces the outputs of the neural network
to approach either 0 or 1. We feel that this term is not nec-
essary as other constraint terms can achieve the same ob-
jective. The third and fifth terms in [3] are combined here
as in [9], and furthermore, we have combined all the con-
straint terms so that there are only two parameters in the
energy function to tune.

3 A noisy Hopfield neural network

A noisy Hopfield neural network (NHNN) is obtained
by adding decaying stochastic noise into the continuous
HNN [6]:

dUxi(t)
dt

= −1
τ

Uxi(t) (3)

+
N∑

y=1

N∑

j=1,j 6=y

w(yj−>xi)Vyj(t) (4)

+ Ixi + n(t) (5)
Vxi = fxi(Uxi) (6)

1
1 + e−Uxi/εxi

(7)

where τ is a circuit time constant. Ixi is the input bias of
neuron (x, i). εxi (ε ≥ 0) is the steepness parameter of the
neuronal output function. n(t) is the random noise.

− ∂E

∂Vxi
=

N∑
y=1
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j=1,j 6=y

w(yj−>xi)Vyj(t) + Ixi (8)

In this paper, we consider random noise n(t) with uniform
and Gaussian distribution. For uniform distribution, n(t)
is uniformly chosen from the range (−A[n], A[n]), where
A[n] is the noise amplitude. For exponential decaying,
A[n(t + 1)] = (1− β)A[n(t)], β (0 ≤ β ≤ 1) is the damp-
ing factor. For linear decaying, A[n(t)] = A[n(0)] − κt,
where κ is the slope of linear decaying. As for Gaussian
noise, n(t) follows Gaussian distribution with mean 0 and
initial variance σ2(0) = 1. We reduce the variance by
σ2(t + 1) = (1 − β)σ2(t). Hence as time goes on, the
chance to have a large noise value decreases.

The connection weights and bias terms are derived by
substituting the energy function in Eqn. 8 with Eqn. 1:

w(yj−>xi) = −µ2[δxy − δxj + δij − δiy] (9)

Ixi = −µ1

2
Cxi(1− δxmδis) +

µ2

2
δxmδis(10)

− µ2

2
Pxi(1− δxmδis) (11)

where δij is the Kronecker delta. No terms in the connec-
tion matrix depend on the cost of links or the topology of
the communication network. Thus the connection matrix
is independent of any changes in the communication net-
work. The cost term is mapped into the bias. The benefit
is immense because there is no need to adjust internal pa-
rameters of the neural network to adapt to changes in the
environment, therefore the hardware implement of the neu-
ral network is a general one [3].

4 Simulation Results

Firstly, we run the NHNN with exponentially decaying
uniform noise on 10000 randomly generated 20-node net-
work topologies with a Linux cluster (16-node dual Xeon
3.06 GHz, Intel IA32). The cost of an arc from node x to
node i , i.e., Cxi, is randomly generated and normalized.

As in [1], the parameters in our model are chosen as fol-
lows: εxi = ε = 1, independent of neuron location (x, i).
τ = 1, ∆t = 10−4, and β = 0.001. Initial inputs of
the neural network Uxi(0) are randomly generated between
[−0.001, 0.001]. At the end of each iteration, we set each
neuron on or off according to its output value. If Vxi ≥ 0.5,
the neuron is on, i.e., Vxi = 1, which means the link from x
to i is chosen in the final optimal tree, and vice versa.

We compare the performance of NHNNs with different
initial noise amplitudes (from 0.0 to 5.0) in Table 1. Ac-
cording to [2,3] and our experience on the routing problem,



Table 1. Performance comparison of different
noise levels.

Noise level 0.0 0.5 1.0 2.0 3.0 5.0

Route opt % 71.46 82.64 89.42 92.73 90.89 84.25

Table 2. Performance comparison of different
µ1 with µ2 fixed at 2500

.

µ1 100 150 200 250 300

Route opt % 88.02 94.49 95.32 93.68 92.73

the weighting constants are initially set to µ1 = 300 and
µ2 = 2500. Here, the route optimal rate denotes the ratio at
which the algorithm reached the optimal solution in 10000
runs, in comparison with Dijkstra’s results. Adding noise
helps the neural network reaching the global optima: with-
out noise, the optimal rate is 71.46%; when the initial noise
amplitude A[n(0)] = 2.0, the optimal rate is 92.73%, with
more than 20% improvement. However, if the noise ampli-
tude is too high, the route optimal rate starts to decrease.
The algorithm fails to find a valid solution if the algorithm
does not converge to the optimal solution, as we are using
soft constraints, where penalty terms are added to the ob-
jective function directly.

We also investigate the sensitivity of the model to the
weighting coefficients in Table 2. According to [1, 9], we
varies µ1 from 100 to 300 while fixing µ2 at 2500. The
initial noise amplitude is fixed at A[n(0)] = 2.0. The setting
of those weighting coefficients is problem-specific and is
carried out by trial-and-error. We found that when µ2 is
fixed at 2500 the model performs the best at µ1 = 200 and
the route optimal rate reaches 95.32%. As there are only
two weighting constants, it is not difficult to find the proper
weighting constants by trial-and-error.

Similarly, we also analyze the effect of weighting coeffi-
cient µ2 in Table 3 by varying µ2 from 1500 to 3500 while
fixing µ1 at 200. From Tables 2 and 3, we can see that the
performance of the NHNN is not sensitive to the setting of
connection weights. Therefore the tuning of these two pa-
rameters for a good performance is not difficult.

We further investigate NHNNs for the SPRP on networks
with 30, 50, and 80 nodes. The Performance of the pro-
posed NHNN and those of Park and Choi [9] and Ahn [1,2]
are compared in Table 4. The NHNN reaches global optima
more effectively.

To know more about the effect of the additive noise in the

Table 3. Performance comparison of different
µ2 with µ1 fixed at 200.

µ2 1500 2000 2500 3000 3500

Route opt % 89.12 92.81 95.32 96.18 95.04

Table 4. Performance comparison between
Park and Choi, Ahn and our proposed ap-
proach.

Network size 20 30 50 80
Park and Choi [9] 72.14 67.35 50.18 41.12

Ahn [2] 78.72 71.16 62.40 50.77
NHNN 96.18 88.37 79.91 62.90

HNN, for the uniformly distributed noise, we have done a
comparison of performance brought by noise with different
decaying laws (exponential and linear) and different decay-
ing rates. Results are shown in Table 5. µ1 and µ2 are set
to 200 and 3000, respectively. It is evident that exponential
decay works better than linear decay in terms of the proba-
bility to reach optima and parameter sensitivity.

Also, we simulate NHNNs using random noise with
Gaussian distribution. When using Gaussian noise, we
gradually decrease the variance of the distribution, which
is different from the case with uniform noise distribution.
Hence the probability to have a small value noise increases
as iteration goes on. As shown in Table 6 and Table 5, Gaus-
sian noise is comparable to uniform noise in performances.

5 Conclusion

We proposed a solution using noisy Hopfield neural net-
works for the shortest path routing problem. We simplify

Table 5. Performance (Route opt %) compar-
ison of different noise amplitude decreasing
laws and rates.

Network size 20 30 50 80

uni-

exponen-
β = 0.01 91.17 83.87 75.42 54.76
β = 0.001 96.18 88.37 79.91 62.90

tial β = 0.0001 71.73 63.90 54.93 48.55
form

linear
κ = 0.0001 69.08 58.74 43.79 36.77
κ = 0.0002 86.35 79.70 62.41 51.35
κ = 0.0005 72.27 66.38 51.30 42.76



Table 6. Performance (Route opt %) com-
parison of different kinds Gaussian additive
noise.

Network size 20 30 50 80
β = 0.1 82.08 72.75 57.30 51.26
β = 0.01 88.16 83.52 64.85 59.47
β = 0.001 90.08 87.12 67.10 62.80
β = 0.0001 62.52 52.06 34.18 30.25

the energy function for the problem so there are only two
weighting constants to tune. We also evaluated effects of
different noise distributions and decaying rates, as well as
the sensitivity of the neural network model to the values of
weighting constants. Adding the decaying noise enhances
the route optimal rate for the SPRP, compared with other
heuristics based on the HNN.

Acknowledgment

We sincerely thank the editors and reviewers for care-
fully reading the paper and for many constructive comments
that have helped to significantly improve the paper.

References

[1] C. W. Ahn, R. S. Ramakrishna, A genetic algorithm
for shortest path routing problem and the sizing of
populations, IEEE Transactions on Evolutionar com-
putation 6 (6) (2002) 566–579.

[2] C. W. Ahn, R. S. Ramakrishna, C. G. Kang, I. C. Choi,
Shortest path routing algorithm using hopfield neu-
ral network, Electronics Letters 37 (19) (2001) 1176–
1178.

[3] M. K. M. Ali, F. Kamoun, Neural networks for short-
est path computation and routing in computer net-
works, IEEE Transactions on Neural Networks 4 (6)
(1993) 941–954.

[4] F. Araujo, B. Ribeiro, L. Rodrigues, A neural network
for shortest path computation, IEEE Transactions on
Neural Networks 12 (5) (2001) 1067–1073.

[5] S. Das, O. Olurotimi, Noisy recurrent neural network:
The continuous-time case, IEEE Transactions on neu-
ral networks 9 (5) (1998) 913–936.

[6] J. J. Hopfield, Neural networks and physical systems
with emergent collective computational abilities, Proc.
Nat. Academy Science 79 (1982) 2554–2558.

[7] K. Jim, C. L. Giles, B. Horne, An analysis of noise in
recurrent neural networks: Convergence and general-
ization, IEEE Transactions on neural networks 7 (6)
(1996) 1424–1438.

[8] O. Olurotimi, S. Das, Noisy recurrent neural network:
The discrete-time case, IEEE Transactions on neural
networks 9 (5) (1998) 937–946.

[9] D. C. Park, S. E. Choi, A neural network based multi-
destination routing algorithm for communication net-
work, in: Proc. of 1998 IEEE Int. Joint Conf. on Neu-
ral Networks, 1998.

[10] L. P. Wang, S. Li, F. Y. Tian, X. J. Fu, A noisy chaotic
neural network for solving combinatorial optimiza-
tion problems: stochastic chaotic simulated annealing,
IEEE Transactions on System, Man, and Cybernetics-
Part B: Cybernetics 34 (5) (2004) 2119–2125.

[11] L. P. Wang, H. Shi, A gradual noisy chaotic neural
network for solving the broadcast scheduling problem
in packet radio networks, IEEE Transactions on neural
networks 17 (4) (2006) 989 – 1000.


