
An Ant Colony Optimization Algorithm Based on the Experience Model

Wenjun Pan1, and Lipo Wang2

1 College of Information Engineering, Xiangtan University, Xiangtan, Hunan, China.
Email: WJpan_xtu@yahoo.cn

2 Scholl of Electrical and Electronic Engineering, Nanyang Technology University,
Block S1,50 Nanyang Avenue, Singapore 639789

Email: Elpwang@ntu.edu.sg

Abstract

In this paper, we propose a new model of Ant
Colony Optimization (ACO) to solve the traveling
salesman problem (TSP). In the new model, we
introduce the experience value and a new structure
called map, and the experience value is embodied in
the reliability of the maps. Each ant takes a map; all
ants are guided by the experience gaining from the
maps so that the system based on the new model is able
to converge into a near-optimum solution quickly. We
have proposed an algorithm of MMAS based on the
new model, tested the algorithm on several TSP
instances and discussed parameter selection. We
experimentally show that the algorithm based on the
new model improves the converging speed and can find
better solutions in comparison with the algorithm
which does not use the new model.

1. Introduction

Ant Colony Optimization (ACO) is a metaheuristic
for hard discrete optimization problems that was first
proposed in the early 1990s [3]–[6]. The inspiring
source of ACO is the foraging behavior of real world
ants. Biologists noticed that blind ants can find the
shortest path between food sources and their nests.
Research also found out that ants deposit pheromone
on the way while walking. The other ants can follow
the previous pheromone by probability while passing
by. The more the pheromone, the higher the probability
with which the ants will follow. The indirect
communication between the ants via the pheromone
trails allows them to find shortest paths between their
nests and food sources. This functionality of real ant
colonies is exploited in artificial ant colonies in order

to solve discrete optimization problems.
The first ACO algorithm was introduced by Dorigo

et al. [3] in 1991 and was called the Ant System (AS)
[3], [4]. Dorigo and Gambardella proposed the Ant
Colony System (ACS) [5], [6] later in 1996, while
Stützle and Hoos proposed the MAX-MIN Ant System
(MMAS) [10]. ACO has drawn much research attention
and various extended versions of the ACO paradigm
were proposed, such as the Best-Worst Ant System
(BWAS) [15], the Rank based Ant System (RAS) [14]
etc.. In general, the ACO approach attempts to solve an
optimization problem by repeating the following two
steps.

1) Candidate solutions are constructed using a
pheromone model; that is, a parametrized probability
distribution over the solution space.

2) The candidate solutions are used to modify the
pheromone values in a way that is deemed to bias
future sampling toward high-quality solutions.

In this paper, we introduce a new model for
implementing ACO algorithms. We call this model the
Experience Model (EM) for ACO. The model is based
on changing the probability of transition rule used in
ACO algorithms so that it can reduce the blindness of
all ants during the search process. In other words, the
EM can make the most of the experience which is
gained by ants in the former search.

This paper is organized as follows: In section 2, we
outline the TSP and some main ACO algorithms. In
section 3, we introduce the EM. section 4 shows the
running environment of our experiments. In section 5,
we present some experimental results in which we
show that an algorithm using the proposed model has a
rather good performance. Finally, in section 6, we offer
a summary and indicate directions for further research.

2. Background

2.1. The TSP

The traveling salesman problem (TSP) is a
prominent illustration of NP-hard. In this paper we use
the TSP as benchmark [1]. The problem is: given a
number of cities and the distance from any city to any
other city, the goal is to find the shortest tour that visits
each city exactly once and then returns to the starting
city. In more formal terms, the goal is to find a
Hamiltonian tour of minimal length on a fully
connected graph.

2.2. Main ACO Algorithms

Several ACO algorithms have been proposed in this
subsection. We use the TSP as a concrete example.

2.2.1. Ant System

AS is the first ACO algorithm proposed in the
literature [3], [4]. In the AS, all the m ants which have
constructed a solution at each iteration can update the
pheromone. The pheromone value ijτ , which contacted
with the edge between city i and city j, is updated as
follows:

1
(1) ,

m
k

ij ij ij
k

τ ρ τ τ
=

= − ⋅ + ∆∑ (1)

where ρ is the pheromone evaporate rate, m is the
number of ants,

k
ij τ∆ is the quantity of the pheromone

left on edge (i, j) by ant k:

Q if edge (,) is in the tour of ant ,
0 otherwise,

kk
ij

L i j
τ

⎧
∆ = ⎨

⎩

k
 (2)

where Q is a constant, is the length of the tour
constructed by ant k.

 kL

During constructing process, ants select the next city
through a stochastic mechanism. The probability of
moving from city i to city j is given by:

N()

 if N(),

0 otherwise,

p
il

ij ij p
ijk

il ilij c s

c s
p

α β

α β

τ η
τ η

∈

⎧ ⋅
∈⎪

⋅= ⎨
⎪
⎩

∑ (3)

where pN(s) is the set of suitable elements; that is, edge
(i, l) where the parameter l is a city not yet visited by
the ant k. The parameters α and β contact with the
importance between pheromone and the heuristic
information which was given by:

1 ij ijd ,η = (4)

where the parameter shows the distance between
cities i and j.

ijd

2.2.2. Max-Min ant system

The MMAS was introduced by Stützle et al. [10]–
[12]. Its characters are that only the best-acted ant can
update the value of pheromone trail, and the rank of the
pheromone are limited as the following formula：

max

min

best(1) ,ij ij ij

τ

τ
τ ρ τ τ⎡= − ⋅ + ∆⎣ ⎤⎦ (5)

where maxτ and minτ are the upper and lower bounds of
the pheromone rank; the operator []a

bx is defined as
follows:

 if ,
[] if ,

 otherwise;

a
b

a x a
x b x b

x

>⎧
⎪= <⎨
⎪
⎩

 (6)

and best
ijτ∆ is:

bestbest 1 if (,) belongs to the best tour,
0 otherwise,ij

L i j
τ

⎧
∆ = ⎨

⎩
 (7)

where bestL is the length of the tour constructed by best
ant. Alternatively bestL can be defined as the length of
the best tour in current iteration , we call it :
iteration-best，or the length of the best tour that the
algorithm find so far from the beginning of the
algorithm:

ibL

bsL . In fact, we use the combination of both
models sometime.

With respect to the value of the upper and lower
bounds of pheromone, maxτ and minτ , we can figure them
out on the basis of analytical experiments and fix them
to the real condition.

2.2.3. Ant colony system

The ACS [5]–[7] introduces the local pheromone
update into the algorithm. Only when each ant explores
the last edge of its tour the algorithm updates the
pheromone as:

0(1) ,ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅ (8)

where (0,1]ϕ∈ is the parameter about the pheromone
decay rate, and 0τ is the initial value of pheromone.

The local pheromone update gives the algorithm a
character by decreasing the pheromone values on the
visited edges, subsequent ants can be encouraged to
explore other edges so that new different solutions
might be found with greater probabilities.

The offline pheromone update only executed by the
last ant at the end of each iteration, called the

iteration-best or best-so-far solution. However, there
still a little different as formula (9) shows:

(1) if (,) belongs to the best tour,

 otherwise.
ij ij

ij
ij

i jρ τ ρ τ
τ

τ

− ⋅ + ⋅∆⎧⎪=⎨
⎪⎩

 (9)

Here best1ij Lτ∆ = , where bestL can be either oribL bsL .
In the ACS, ants use so-called pseudorandom

proportional rule, the probability of an ant move from
city i to city j is determined by a parameter and a
random variable q which is uniformly distributed over
[0,1]:

0q

0N()
 argmax { } if ,

use formula (3) otherwise.

p
il

il ilc s
q q

j
βτ η

∈
⎧ ⋅ ≤⎪= ⎨
⎪⎩

 (10)

3. Experience model (EM)

Much of the outstanding ACO algorithms, such as
ACS, MMAS etc., only make the optimization of the
pheromone update rules. Ants move from a city to the
next one under the influence of pheromone, and most
of the ACO algorithms use the origin probability to
guide the ants’ movement. Relying solely on
pheromone, lots of experience gained by ants in the
former search will be wasted, so the blindness of ants is
inevitable. Here we introduce the experience model
(EM). In the EM, we introduce a new ant model: ant
with experience memory (Eant), and then discuss the
state transition rule as follows:

3.1. Eant

 In the Eant model, we introduce a new structure
called map. A map consists of two parts: 1. the
best-so-far solution, a Hamiltonian tour of minimal
length previously found, showing a ant which city is
the best to move to in the previous search. 2. a new
parameter , reliability of a map, showing a ant how
credible the present best-so-far solution is for the
moment. Each ant carries a map in the process of
moving. When an ant chooses a city to move to, it will
take the map for consideration. At the beginning of the
search, the reliability of a map is at a low level, it
means the experience value is small; ants are not
experienced at the moment. As time passed, the
experience value increases gradually, thus the
reliability of a map is also on the rise bit by bit. When
an ant wants to move from current city to another, it
will look at the map and find the neighbor city in the
best-so-far solution, then chooses the next city
according to the EM state transition rule by the

combined action of the map’s reliability and the
pheromone. We use a new parameter
(

mapR

mapA
[0,1]mapA ∈) to express the proportion of the

reliability of a map to the pheromone. In other words,
is regarded as the attraction of a map. mapA

 Intuitionisticly, the parameter values range
from 0 to 1. At the beginning of an algorithm, the value
of should be small, just closing to 0. In the
progress of an algorithm, is growing larger.
Towards the end of an algorithm, the value of is
approaching 1. We define as a function of
time:

mapR −

mapR

mapR

mapR

mapR
()mapR F t= . Obviously, ()F t is monotone

increasing function.

3.2. EM State Transition Rule

In the EM, we make some modifications in the
transition probability. When ant k is in city i and
chooses city j to move to, there are two cases:

1) If j has been previously visited, obviously the
probability of going to city j is 0.

2) If j has not been previously visited, the map will
play a active role. In the best-so-far solution, city i has
two neighboring cities, the two cities are taken
seriously while the ant uses it’s map to select the next
city. We define ()Map s as the set formed by all edges of
the best-so-far solution. The two different cases are the
following:

i. If , the best-so-far
solution doesn’t make any impact on city j, the ant
move from i to j by applying formula (3).

edge (,) ()i j Map s∈

ii. If , we give the
transition probability a increment in order to make
city j more attractive to the ant.

edge (,) ()i j Map s∉

Generally speaking, the EM can be used in any
version of ACO algorithms. In algorithms based on EM,
we use the following formula instead of formula (3):

()

N()

N()

if N()
 and

edge (,) (),

if N()
and

(1)
edge (,) ()

p
il

p
il

p
il

p
ij

ij ij

il ilc N s

p
k ij

ij ij map map il ilij c s

map map il ilc s

c s

i j Map s

c sR Ap

R A
i j Map s

α β

α β

α β α β

α β

τ η
τ η

τ η τ η

τ η

∈

∈

∈

∈
⋅

⋅
∈

∈⋅ + ⋅ ⋅ ⋅=

+ ⋅ ⋅
∉

∑

∑
∑

.

(11)

,

 0 otherwise

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

 In order to facilitate the research, we let:

max() ,mapR F t t t= = (12)
where is the maximum time for each trial. maxt

For example, in the MMAS based on EM, an ant
move from i to j according to formula (11), and in the
ACS based on EM the transition probability from i to j
is as follows:

0N()
argmax { } if ,

use formula (11) otherwise.

p
il

il ilc s
q q

j
βτ η

∈
⎧ ⋅ ≤⎪= ⎨
⎪⎩

 (13)

4. Experiment Environment

The running environment of the experiments is in
Table I. Our programme is coded in Linux C.

Table I

Experiment Environment

CPU RAM OS
Double Core Intel Pentium

D 3.00G
DDR
1G

Red Flag
Linux

5. Experimental Study

In this section, we choose MMAS for instance. All
the tests reported in this section are based, where not
otherwise stated, on five TSP instances: the KroA100
problem, the Lin318 problem, the Rat783 problem, the
Pcb1173 problem and the Pr2392 problem [1].

5.1. Parameter Setting

The abbreviation parameters in Table II and Table III
come from the ACOTSP program which is coded by
Stützle [2]. The following default value of the
parameters of MMAS series were given by Stützle et al.
[10]: m: the number of ants, m = 25; α: the relative
importance of the trail, α = 1; ρ: trail persistence, ρ =
0.8; β: the relative importance of the visibility, β = 2.
We implemented the algorithm of MMAS based on EM
(EMMAS) and tested 20 values for the new
parameter while all the other parameters used
above values. The values tested were:

mapA

mapA ∈
{0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,
0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}. Intuitively, the value
of should be small. When , the algorithm
becomes the standard MMAS; and the algorithm is
unstable while is getting nearer to 1. Fig. 1 shows
the average length of the best found tour in different
value of the parameter . We can read from Fig. 1
that the average length of the best found tour is shorter

while is in the interval [0, 0.1].

mapA 0mapA =

mapA

mapA

mapA

 (a) On the Rat783 problem

 (b) On the Pcb1173 problem

 (c) On the Pr2392 problem

Fig. 1. Average length of the best found tour in
different based on 3 TSP instances. mapA

In order to compare the stability of algorithms, we
use the standard deviation of the best found tour
(Stddev-Best):

2
best-i best

1
()

Stddev-Best=

n

i

L L

n
=

−∑
 (14)

where best-iL is the best found tour in a trial, and bestL is
the average length of the best found tour. The standard
deviation is small means that the algorithm is stable. In
Fig. 2, we present the Stddev-Best in different value
of on the Pr2392 problem. It is obvious that the
Stddev-Best is becoming larger when tend towards
1, that means the algorithm is getting more and more
unstable. In Table II, we can see the optimal value
of is 0.05. We use this value as the default value.

mapA

mapA

mapA

(a) The best on Pr2392

(b) The worst on Pr2392

Fig. 3. EMMAS find better solutions in a shorter
time compared with MMAS whether in the best or
the worst condition. Test problem: Pr2392.

Table II
Average length of the best found tour based on 3

TSP instances while [0,0.1]mapA ∈

The value

of mapA
Average-Best

on Rat783
Average-Best
on Pcb1173

Average-Best
on Pr2392

0.01 8814.1 57069.7 380086.0
0.02 8814.1 57044.8 379988.7
0.03 8810.0 57050.4 379961.1
0.04 8810.3 57041.9 379929.7
0.05 8809.0 57023.3 379788.4
0.06 8811.6 57052.9 379972.1
0.07 8812.5 57036.4 379922.9
0.08 8814.7 57021.6 380001.3
0.09 8815.1 57052.4 380052.4

Fig. 2. Standard Deviation in different .

Test problem: Pr2392.
mapA

5.2. EMMAS in Comparison with MMAS

We ran a set of trials in both the EMMAS and the
MMAS and then we compared the two algorithms. The
default value of the parameters was used for a
maximum of 60 seconds per each trial for 10
independent trials. The results are given in Fig. 3 and
Table III. In Fig. 3 we compared the best and the worst
condition in both the EMMAS and the MMAS based
on the Pr2392 problem (the best means the condition
the best results the algorithms found in 10 independent
trials while the worst means the worst results in 10
independent trials). We can see that at the early stage,
the speed of the approximation to the optimum solution
of the EMMAS is faster than the speed of the MMAS.
It means that the EMMAS converges faster than the
MMAS. In the end, the EMMAS can find better
solution contrast with the MMAS whether in the best
or the worst condition.

Table III shows some statistics, the statistical

Table III
Comparison of EMMAS with MMAS on 5 TSP instances. Average over 10 trials

 On KroA100 On Lin318 On Rat783 On Pcb1173 On Pr2392

Best Known 21282 42029 8806 56892 378032
Average-Best 21282 42029 8809 57023.3 379788.4

Average-Iterations 1.7 155.4 856.3 497.4 219.6 EMMAS

Stddev-Best 0 0 3.13 95.13 372.1
Best Known 21282 42029 8806 56892 378032
Average-Best 21282 42029 8814.3 57079.3 380149.7

Average-Iterations 2.4 316.3 403.2 365.4 209.3 MMAS

Stddev-Best 0 0 5.08 115.96 374.07

comparison has told us that the EMMAS has surpassed
the MMAS in the average length of the best found tour
based on 5 TSP instances. In Table III, we can easily
find out that the Stddev-Best of the EMMAS is smaller
than that of the MMAS. In other words, the EMMAS is
more stable than the MMAS.

6. Conclusion

This paper analyzes the Basic Ant Colony Algorithm
and points out the shortcoming: the blindness of ants.
To address the problem, we have proposed the
experience model (EM) for ACO, and then compared
the result of the MMAS based on EM with the original
MMAS and made some analyses. In the experience
model, the map can speed up the convergence, but the
attraction of maps should be small in order to avoid
premature convergence. We experimentally proved this
model to be more efficient and stable. It demonstrates
that simulating some human action(such as experience)
can improve the performance of an ACO algorithm. In
the end, how to analyze this model in theory and how
to simulate more human actions are the future research
content of us.

7. References

[1] TSPLIB:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/T
SPLIB95/tsp
[2] ACO Public Software:
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-softwa
re.html
[3] A. Colomi, M. Dorigo, and V. Maniezzo, “Distributed
optimization by ant colonies,” Proceedings of the 1st
European Conference on Artificial Life, pp.134-142, 1991.
[4] M. Dorigo, V. Maniezzo and A. Colorni, “Ant System:
Optimization by a colony of cooperating Agents,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
vol.26, no.2, pp.29–41, 1996.
[5] M. Dorigo and L.M. Gambardella, “Ant Colony System:
A cooperative learning approach to the traveling salesman
problem,” IEEE Transactions on Evolutionary Computation,

vol.1, no.1, pp.53–66, 1997.
[6] M. Dorigo and L.M. Gambardella, “Ant colonies for the
traveling salesman problem,” BioSystems, vol.43, no.2,
pp.73-81, 1997.
[7] M. Dorigo, G. Di Caro and L.M. Gambardella, “Ant
algorithms for discrete optimization,” Artificial Life, vol.5,
no.2, pp.137–172, 1999.
[8] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant
algorithms and stigmergy,” Future Generation Computer
Systems, vol.16, no.8, pp.851–871, 2000.
[9] M. Dorigo, M. Birattari, and T. Stützle, “Ant Colony
Optimization: Artificial Ants as a Computational Intelligence
Technique,” IEEE Computational Intelligence Magazine,
vol.1, no.4, pp.28–39, 2006.
[10] T. Stützle and H.H. Hoos, “Improving the Ant System:
A detailed report on the MAX–MIN Ant System,” FG
Intellektik, FB Informatik, TU Darmstadt, Germany, Tech.
Rep. AIDA–96–12, Aug. 1996.
[11] T. Stützle and H. H. Hoos, “The MAX–MIN ant system
and local search for the traveling salesman problem,” in
Proceedings of the 1997 IEEE International Conference on
Evolutionary Computation (ICEC’97), T. Bäck, Z.
Michalewicz, and X. Yao, Eds. Piscataway, NJ: IEEE Press,
1997, pp.309–314.
[12] T. Stützle and H. H. Hoos, “The MAX–MIN ant
system,” Future Generation Computer Systems, vol.16, no.8,
pp.889–914, 2000.
[13] T. Stützle and M. Dorigo, “A Short Convergence Proof
for a Class of Ant Colony Optimization Algorithms,” IEEE
Transactions on Evolutionary Computation, vol.6, no.4,
pp.358–365, 2002.
[14] B. Bullnheimer, R.F. Hartl, and C. Strauss, “A new
rank-based version of the Ant System: A computational
study,” Central European Journal for Operations Research
and Economics, vol.7, no.1, pp.25–38, 1999.
[15] O. Cordón, I.F. de Viana, F. Herrera, and L. Moreno, “A
new ACO model integrating evolutionary computation
concepts: The best-worst Ant System,” in Proc. ANTS 2000,
M. Dorigo et al., Eds., IRIDIA, Université Libre de Bruxelles,
Belgium, pp.22–29, 2000.
[16] Bifan Li, Lipo Wang, and Wu Song, “Ant Colony
Optimization for the Traveling Salesman Problem Based on
Ants with Memory,” in ICNC 2008, Shandong University,
China, pp.496–501, 2008.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html

