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Abstract 
 

In this paper, we propose a new model of Ant 
Colony Optimization (ACO) to solve the traveling 
salesman problem (TSP). In the new model, we 
introduce the experience value and a new structure 
called map, and the experience value is embodied in 
the reliability of the maps. Each ant takes a map; all 
ants are guided by the experience gaining from the 
maps so that the system based on the new model is able 
to converge into a near-optimum solution quickly. We 
have proposed an algorithm of MMAS based on the 
new model, tested the algorithm on several TSP 
instances and discussed parameter selection. We 
experimentally show that the algorithm based on the 
new model improves the converging speed and can find 
better solutions in comparison with the algorithm 
which does not use the new model. 
 
 
1. Introduction 
 

Ant Colony Optimization (ACO) is a metaheuristic 
for hard discrete optimization problems that was first 
proposed in the early 1990s [3]–[6]. The inspiring 
source of ACO is the foraging behavior of real world 
ants. Biologists noticed that blind ants can find the 
shortest path between food sources and their nests. 
Research also found out that ants deposit pheromone 
on the way while walking. The other ants can follow 
the previous pheromone by probability while passing 
by. The more the pheromone, the higher the probability 
with which the ants will follow. The indirect 
communication between the ants via the pheromone 
trails allows them to find shortest paths between their 
nests and food sources. This functionality of real ant 
colonies is exploited in artificial ant colonies in order 

to solve discrete optimization problems. 
The first ACO algorithm was introduced by Dorigo 

et al. [3] in 1991 and was called the Ant System (AS) 
[3], [4]. Dorigo and Gambardella proposed the Ant 
Colony System (ACS) [5], [6] later in 1996, while 
Stützle and Hoos proposed the MAX-MIN Ant System 
(MMAS) [10]. ACO has drawn much research attention 
and various extended versions of the ACO paradigm 
were proposed, such as the Best-Worst Ant System 
(BWAS) [15], the Rank based Ant System (RAS) [14] 
etc.. In general, the ACO approach attempts to solve an 
optimization problem by repeating the following two 
steps. 

1) Candidate solutions are constructed using a 
pheromone model; that is, a parametrized probability 
distribution over the solution space. 

2) The candidate solutions are used to modify the 
pheromone values in a way that is deemed to bias 
future sampling toward high-quality solutions. 

In this paper, we introduce a new model for 
implementing ACO algorithms. We call this model the 
Experience Model (EM) for ACO. The model is based 
on changing the probability of transition rule used in 
ACO algorithms so that it can reduce the blindness of 
all ants during the search process. In other words, the 
EM can make the most of the experience which is 
gained by ants in the former search. 

This paper is organized as follows: In section 2, we 
outline the TSP and some main ACO algorithms. In 
section 3, we introduce the EM. section 4 shows the 
running environment of our experiments. In section 5, 
we present some experimental results in which we 
show that an algorithm using the proposed model has a 
rather good performance. Finally, in section 6, we offer 
a summary and indicate directions for further research. 

 
2. Background 



 
2.1. The TSP 
 

The traveling salesman problem (TSP) is a 
prominent illustration of NP-hard. In this paper we use 
the TSP as benchmark [1]. The problem is: given a 
number of cities and the distance from any city to any 
other city, the goal is to find the shortest tour that visits 
each city exactly once and then returns to the starting 
city. In more formal terms, the goal is to find a 
Hamiltonian tour of minimal length on a fully 
connected graph. 
 
2.2. Main ACO Algorithms 
 

Several ACO algorithms have been proposed in this 
subsection. We use the TSP as a concrete example. 
 
2.2.1. Ant System  

AS is the first ACO algorithm proposed in the 
literature [3], [4]. In the AS, all the m ants which have 
constructed a solution at each iteration can update the 
pheromone. The pheromone value ijτ , which contacted 
with the edge between city i and city j, is updated as 
follows: 
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where ρ is the pheromone evaporate rate, m is the 
number of ants,  
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left on edge (i, j) by ant k:  
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where Q is a constant, is the length of the tour 
constructed by ant k. 

 kL

During constructing process, ants select the next city 
through a stochastic mechanism. The probability of 
moving from city i to city j is given by:  
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where pN(s ) is the set of suitable elements; that is, edge 
(i, l) where the parameter l is a city not yet visited by 
the ant k. The parameters α and β contact with the 
importance between pheromone and the heuristic 
information which was given by:  
 

1  ij ijd ,η =            (4) 

where the parameter shows the distance between 
cities i and j.  

ijd

 
2.2.2. Max-Min ant system 

The MMAS was introduced by Stützle et al. [10]–
[12]. Its characters are that only the best-acted ant can 
update the value of pheromone trail, and the rank of the 
pheromone are limited as the following formula： 

max

min

best(1 ) ,ij ij ij

τ

τ
τ ρ τ τ⎡= − ⋅ + ∆⎣ ⎤⎦            (5) 

where maxτ and minτ are the upper and lower bounds of 
the pheromone rank; the operator [ ]a

bx  is defined as 
follows: 
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and best
ijτ∆ is: 

bestbest 1   if ( , ) belongs to the best tour,
0         otherwise,ij

L i j
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where bestL is the length of the tour constructed by best 
ant. Alternatively bestL can be defined as the length of 
the best tour in current iteration , we call it : 
iteration-best，or the length of the best tour that the 
algorithm find so far from the beginning of the 
algorithm:

ibL

bsL . In fact, we use the combination of both 
models sometime.  

With respect to the value of the upper and lower 
bounds of pheromone, maxτ and minτ , we can figure them 
out on the basis of analytical experiments and fix them 
to the real condition. 
 
2.2.3. Ant colony system 

The ACS [5]–[7] introduces the local pheromone 
update into the algorithm. Only when each ant explores 
the last edge of its tour the algorithm updates the 
pheromone as:  

 
0(1 )  ,ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅             (8) 

 
where (0,1]ϕ∈ is the parameter about the pheromone 
decay rate, and 0τ is the initial value of pheromone. 

The local pheromone update gives the algorithm a 
character by decreasing the pheromone values on the 
visited edges, subsequent ants can be encouraged to 
explore other edges so that new different solutions 
might be found with greater probabilities. 

The offline pheromone update only executed by the 
last ant at the end of each iteration, called the 



iteration-best or best-so-far solution. However, there 
still a little different as formula (9) shows: 
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Here best1ij Lτ∆ = , where bestL can be either oribL bsL . 
In the ACS, ants use so-called pseudorandom 

proportional rule, the probability of an ant move from 
city i to city j is determined by a parameter  and a 
random variable q which is uniformly distributed over 
[ 0,1]:   
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3. Experience model (EM)  
 

Much of the outstanding ACO algorithms, such as 
ACS, MMAS etc., only make the optimization of the 
pheromone update rules. Ants move from a city to the 
next one under the influence of pheromone, and most 
of the ACO algorithms use the origin probability to 
guide the ants’ movement. Relying solely on 
pheromone, lots of experience gained by ants in the 
former search will be wasted, so the blindness of ants is 
inevitable. Here we introduce the experience model 
(EM). In the EM, we introduce a new ant model: ant 
with experience memory (Eant), and then discuss the 
state transition rule as follows:  

 
3.1. Eant 
 
  In the Eant model, we introduce a new structure 
called map. A map consists of two parts: 1. the 
best-so-far solution, a Hamiltonian tour of minimal 
length previously found, showing a ant which city is 
the best to move to in the previous search. 2. a new 
parameter , reliability of a map, showing a ant how 
credible the present best-so-far solution is for the 
moment. Each ant carries a map in the process of 
moving. When an ant chooses a city to move to, it will 
take the map for consideration. At the beginning of the 
search, the reliability of a map is at a low level, it 
means the experience value is small; ants are not 
experienced at the moment. As time passed, the 
experience value increases gradually, thus the 
reliability of a map is also on the rise bit by bit. When 
an ant wants to move from current city to another, it 
will look at the map and find the neighbor city in the 
best-so-far solution, then chooses the next city 
according to the EM state transition rule by the 

combined action of the map’s reliability and the 
pheromone. We use a new parameter  
(

mapR

mapA
[0,1]mapA ∈ ) to express the proportion of the 

reliability of a map to the pheromone. In other words, 
is regarded as the attraction of a map. mapA

  Intuitionisticly, the parameter values range 
from 0 to 1. At the beginning of an algorithm, the value 
of should be small, just closing to 0. In the 
progress of an algorithm, is growing larger. 
Towards the end of an algorithm, the value of is 
approaching 1. We define as a function of 
time:

mapR −

mapR

mapR

mapR

mapR
( )mapR F t= . Obviously, ( )F t is monotone 

increasing function. 
 
3.2. EM State Transition Rule  
 

In the EM, we make some modifications in the 
transition probability. When ant k is in city i and 
chooses city j to move to, there are two cases: 

1) If j has been previously visited, obviously the 
probability of going to city j is 0. 

2) If j has not been previously visited, the map will 
play a active role. In the best-so-far solution, city i has 
two neighboring cities, the two cities are taken 
seriously while the ant uses it’s map to select the next 
city. We define ( )Map s as the set formed by all edges of 
the best-so-far solution. The two different cases are the 
following: 

i. If , the best-so-far 
solution doesn’t make any impact on city j, the ant 
move from i to j by applying formula (3). 

edge ( , ) ( )i j Map s∈

ii. If , we give the 
transition probability a increment in order to make 
city j more attractive to the ant. 

edge ( , ) ( )i j Map s∉

Generally speaking, the EM can be used in any 
version of ACO algorithms. In algorithms based on EM, 
we use the following formula instead of formula (3): 
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  In order to facilitate the research, we let: 



max( ) ,mapR F t t t= =                         (12) 
where is the maximum time for each trial. maxt

For example, in the MMAS based on EM, an ant 
move from i to j according to formula (11), and in the 
ACS based on EM the transition probability from i to j 
is as follows: 
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use formula (11)           otherwise.
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4. Experiment Environment 
 

The running environment of the experiments is in 
Table I. Our programme is coded in Linux C. 

 
Table I 

Experiment Environment 
 

CPU RAM OS  
Double Core Intel Pentium 

D 3.00G 
DDR 
1G 

Red Flag 
Linux 

 
5. Experimental Study  
 

In this section, we choose MMAS for instance. All 
the tests reported in this section are based, where not 
otherwise stated, on five TSP instances: the KroA100 
problem, the Lin318 problem, the Rat783 problem, the 
Pcb1173 problem and the Pr2392 problem [1]. 
 
5.1. Parameter Setting 
 

The abbreviation parameters in Table II and Table III 
come from the ACOTSP program which is coded by 
Stützle [2]. The following default value of the 
parameters of MMAS series were given by Stützle et al. 
[10]: m: the number of ants, m = 25;  α: the relative 
importance of the trail, α = 1;  ρ: trail persistence, ρ = 
0.8;  β: the relative importance of the visibility, β = 2. 
We implemented the algorithm of MMAS based on EM 
(EMMAS) and tested 20 values for the new 
parameter while all the other parameters used 
above values. The values tested were:

mapA

mapA ∈ 
{0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,
0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}. Intuitively, the value 
of should be small. When , the algorithm 
becomes the standard MMAS; and the algorithm is 
unstable while is getting nearer to 1. Fig. 1 shows 
the average length of the best found tour in different 
value of the parameter . We can read from Fig. 1 
that the average length of the best found tour is shorter 

while is in the interval [0, 0.1]. 

mapA 0mapA =

mapA

mapA

mapA

 (a) On the Rat783 problem 

 (b) On the Pcb1173 problem 

 (c) On the Pr2392 problem 
 

Fig. 1.  Average length of the best found tour in 
different based on 3 TSP instances. mapA



In order to compare the stability of algorithms, we 
use the standard deviation of the best found tour 
(Stddev-Best): 

2
best-i best

1
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n
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L L

n
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where best-iL is the best found tour in a trial, and bestL is 
the average length of the best found tour. The standard 
deviation is small means that the algorithm is stable. In 
Fig. 2, we present the Stddev-Best in different value 
of  on the Pr2392 problem. It is obvious that the 
Stddev-Best is becoming larger when tend towards 
1, that means the algorithm is getting more and more 
unstable. In Table II, we can see the optimal value 
of is 0.05. We use this value as the default value.  

mapA

mapA

mapA

 
(a) The best on Pr2392 

 
(b) The worst on Pr2392 

 
Fig. 3.  EMMAS find better solutions in a shorter 
time compared with MMAS whether in the best or 
the worst condition. Test problem: Pr2392. 

Table II 
Average length of the best found tour based on 3 

TSP instances while  [0,0.1]mapA ∈

 
The value 

of  mapA
Average-Best 

on Rat783 
Average-Best 
on Pcb1173 

Average-Best 
on Pr2392 

0.01 8814.1 57069.7 380086.0 
0.02 8814.1 57044.8 379988.7 
0.03 8810.0 57050.4 379961.1 
0.04 8810.3 57041.9 379929.7 
0.05 8809.0 57023.3 379788.4 
0.06 8811.6 57052.9 379972.1 
0.07 8812.5 57036.4 379922.9 
0.08 8814.7 57021.6 380001.3 
0.09 8815.1 57052.4 380052.4 

 
Fig. 2.  Standard Deviation in different . 

Test problem: Pr2392. 
mapA

 
5.2. EMMAS in Comparison with MMAS 
 

We ran a set of trials in both the EMMAS and the 
MMAS and then we compared the two algorithms. The 
default value of the parameters was used for a 
maximum of 60 seconds per each trial for 10 
independent trials. The results are given in Fig. 3 and 
Table III. In Fig. 3 we compared the best and the worst 
condition in both the EMMAS and the MMAS based 
on the Pr2392 problem (the best means the condition 
the best results the algorithms found in 10 independent 
trials while the worst means the worst results in 10 
independent trials). We can see that at the early stage, 
the speed of the approximation to the optimum solution 
of the EMMAS is faster than the speed of the MMAS. 
It means that the EMMAS converges faster than the 
MMAS. In the end, the EMMAS can find better 
solution contrast with the MMAS whether in the best 
or the worst condition. 

Table III shows some statistics, the statistical



Table III 
Comparison of EMMAS with MMAS on 5 TSP instances. Average over 10 trials 

 
  On KroA100 On Lin318 On Rat783 On Pcb1173 On Pr2392 

Best Known 21282 42029 8806 56892 378032 
Average-Best 21282 42029 8809 57023.3 379788.4 

Average-Iterations 1.7 155.4 856.3 497.4 219.6 EMMAS 

Stddev-Best 0 0 3.13 95.13 372.1 
Best Known 21282 42029 8806 56892 378032 
Average-Best 21282 42029 8814.3 57079.3 380149.7 

Average-Iterations 2.4 316.3 403.2 365.4 209.3 MMAS 

Stddev-Best 0 0 5.08 115.96 374.07 
 
comparison has told us that the EMMAS has surpassed 
the MMAS in the average length of the best found tour 
based on 5 TSP instances. In Table III, we can easily 
find out that the Stddev-Best of the EMMAS is smaller 
than that of the MMAS. In other words, the EMMAS is 
more stable than the MMAS. 
 
6. Conclusion 
 

This paper analyzes the Basic Ant Colony Algorithm 
and points out the shortcoming: the blindness of ants. 
To address the problem, we have proposed the 
experience model (EM) for ACO, and then compared 
the result of the MMAS based on EM with the original 
MMAS and made some analyses. In the experience 
model, the map can speed up the convergence, but the 
attraction of maps should be small in order to avoid 
premature convergence. We experimentally proved this 
model to be more efficient and stable. It demonstrates 
that simulating some human action(such as experience) 
can improve the performance of an ACO algorithm. In 
the end, how to analyze this model in theory and how 
to simulate more human actions are the future research 
content of us. 
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