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Abstract—We present a method to compute the delay-constrained multicast routing tree by employing chaotic neural networks. The

experimental result shows that the noisy chaotic neural network (NCNN) provides an optimal solution more often compared to the

transiently chaotic neural network (TCNN) and the Hopfield neural network (HNN). Furthermore, compared with the bounded shortest

multicast algorithm (BSMA), the NCNN is able to find multicast trees with lower cost.

Index Terms—Multicast routing, noise, chaos, constrained Steiner tree (CST), neural networks.
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1 INTRODUCTION

MULTIMEDIA communications and data delivery [1], [2],
[3], [4] motivated research in multicast routing,

resource reservation, and network architecture development.
Along with progresses in audio, video, and data storage
technologies, multicast routing is becoming more and more
popular in recent years. The multicast routing problem is also
called the Steiner tree problem, which aims to minimize the
total cost of a multicast tree, and is known to be NP-complete
(nondeterministic polynomial-time complete) [5].

For a real-time application, the routing algorithm needs
to find an optimal multicast route that can offer sufficient
resources to guarantee the required quality of service (QoS)
[6], [7], [8]. This problem is called QoS-constrained multi-
cast routing and was also proved to be an NP-complete
problem [5]. Furthermore, QoS requirements may be
interdependent, i.e., one factor has effects on another,
which makes the problem more complicated.

QoS-constrained multicast routing problems include
routing with the bandwidth requirement [6], many-to-many
multicast routing [9], [10], and dynamic routing (the node
may join or leave the network at any instance of time) [11].
We focus on delay-constrained multicast routing (DCMR),
which aims to find an optimal tree between a source and a
set of destinations while each path is subject to a given
delay constraint. This is also called the constrained Steiner
tree (CST) problem.

1.1 Review of the CST Problem

Kompella et al. [12] presented the first heuristic for the CST
problem. It is a source-based heuristic, which assumes that
the source node can obtain topology information about the
communication network through the routing protocol. This
algorithm failed frequently in cases where the link delays

and delay constraints take noninteger values [13]. Besides,
this heuristic may be impracticable when applied to directed
communication networks [13]. Widyono [14] proposed four
CST heuristics based on the constrained Bellman-Ford (CBF)
algorithm and a merge algorithm. The constrained adaptive
ordering (CAO) heuristic is the best among them. Sun and
Langendoerfer [15] proposed another heuristic for the CST
problem. It constructs a CST by merging a minimum cost
tree with a minimum delay tree, where the trees are found
by Dijkstra’s algorithm. Parsa et al. proposed the bounded
shortest multicast algorithm (BSMA) [16], [17]. In the first
place, BSMA also finds the minimum-delay multicast tree
through Dijkstra’s algorithm. Then, the cost of the so-called
superedge to each destination is reduced monotonously
through a kth-shortest path algorithm [18], while the update
must satisfy the delay constraint until no further optimiza-
tion in the total cost is possible. Salama et al. [13] evaluated
all these heuristic algorithms (Kompella et al.’s, CAO, and
BSMA) under a high-speed networking environment and
found that the BSMA is the best in terms of the total cost of
the final multicast tree. However, compared with the
constrained optimal minimum Steiner tree (COPT) algo-
rithm presented by Manyem [19], BSMA’s final costs are
around 3 percent-7 percent more expensive than optima
found by the COPT, respectively. The COPT is implemented
by a branch-and-bound technique and therefore needs a
very long execution time. As a result, the COPT may not be
applicable in real time.

1.2 Review of Neural Networks for Routing
Problems

By defining proper energy (cost) functions and deriving
associated weights between neurons, one can use neural
networks (NNs) to solve routing problems [20]. After
Hopfield presented the Hopfield NNs (HNNs) [21] in
1982, many researchers have been exploring and improving
the performance of HNNs on versatile applications. How-
ever, the HNN is easily trapped at local minima, especially
in large networks [22]. To overcome this, Nozawa [23]
proposed a chaotic NN by adding negative self-feedbacks
into HNNs. The transiently chaotic NN (TCNN) proposed
by Chen and Aihara [24] has been further developed in
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recent years, such as introducing some time-dependent
parameters for richer dynamics [25], [26]. Wang et al. [27],
[28] proposed stochastic chaotic simulated annealing
(SCSA) by noisy chaotic NNs (NCNNs) with the addition
of a decaying stochastic noise into the TCNN. Compared
with TCNNs, NCNNs can solve the traveling salesman
problem (TSP) more efficiently [27], [28].

The formulation of the energy function for NNs on
routing problems was first proposed by Ali and Kamoun [29]
and then improved in [30] and [31]. Pornavalai et al. [32]
applied the HNN on the CST problem of an eight-node
communication network. They modified the energy function
of the unconstrained unicast routing problem to suit the
delay-constrained unicast routing problem in the first step
and then changed this energy function to solve the DCMR
problem. These two steps are realized through f-type
neurons and LP-type neurons, which we will deliberate in
detail in Section 3.1.

1.3 Noise and Chaos for Combinatorial
Optimization

As we use NCNNs and TCNNs in this paper, we now
briefly review effects of noise and chaos on optimization.
Both chaotic dynamics and noise have gained extra
attention from scientists. Aihara [33] reviewed chaos
engineering from various aspects such as system models,
applications, and hardware implementations of chaotic
NNs. Delgado-Restituto and Rodriguez-Vazquez [34] sur-
veyed techniques of integrated chaos generators at both
system and circuit levels.

Bucolo et al. [35] brought forward the question “does
chaos work better than noise?” In their work, effects of chaos
and random noise on different applications were investi-
gated and compared. The authors concluded that “even a
general answer cannot be formulated, the benefits of chaos are
often evident.” Pavlovic et al. [36] employed stochastic noise
to enhance the HNN. The experiment result on the image
classification problem confirmed the expected improve-
ment. The NCNN model has both decaying noisy and
chaotic dynamics [27], [28], which helps to improve the
ability of the NN model to reach global optima.

The rest of the paper is organized as follows: In Section 2,
we review the formulation of the CST problem. In Section 3,
we review the NCNN model and the energy function for
the CST problem, followed by the presentation of NN
dynamics. Simulation results and performance comparison
are given in Section 4. Finally, we conclude this paper in
Section 5.

2 PROBLEM FORMULATION

The DCMR problem [32], or the CST problem, aims to find a
tree rooted at the source s and spanning to all destinations
in group D such that

1. the total cost of the tree is minimum and
2. the delay from the source to each destination is not

greater than a required delay constraint.

In the formulation proposed by Pornavalai et al. [32], an
n-node communication network with D destinations is
formulated onto D� n� n matrices. Matrix m is used to
compute the constrained unicast route from source node s
to destination m ðm ¼ 1; . . . ; DÞ. Each element in a matrix is

treated as a neuron, and neuron mxi (element xi in
matrix m) describes the link from node x to node i for
destination m in the communication network.
Pxi is used to characterize the connection status of the

communication network:

Pxi ¼
1; if the arc from node x to node i

does not exist;
0; otherwise:

8<
: ð1Þ

The routing solution is described by the final output V
ðmÞ
xi

of neuron mxi as follows:

V
ðmÞ
xi ¼

1; the arc from node x to node i is
on the final tree for destination m;

0; otherwise:

8<
: ð2Þ

The cost of a link from node x to node i is denoted by
Cxi � 0. For nonexistent arcs, Cxi ¼ 0. Lxi denotes a real
positive delay on the link from node x to node i. We assume
that link costs and link delays are independent. For
example, a cost could be a measure of the amount of buffer
space or channel bandwidth used, and link delays could be
a combination of propagation, transmission, and queuing
delays. We also assume that the routing protocol will collect
state information of the communication network (e.g., the
group membership, available resources, and application
requirements) and deliver this information throughout the
communication network.

3 THE NCNN FOR THE CST PROBLEM

The dynamic equations for NCNNs [27], [28] are

U
ðmÞ
xi ðtþ 1Þ ¼ kU ðmÞxi ðtÞ þ

XN
y¼1

XN
j¼1

wyj;xiV
ðmÞ
yj ðtÞ

þ Ixi � zxiðtÞ V ðmÞxi ðtÞÞ � I0

h i
þ nðtÞ;

ð3Þ

V
ðmÞ
xi ¼ g

ðmÞ
xi U

ðmÞ
xi

� �
¼ 1

1þ e�U
ðmÞ
xi =�

ðmÞ
xi

; ð4Þ

where the variables are

. U
ðmÞ
xi : internal state of neuron xi in matrix m,

. V
ðmÞ
xi : output of neuron xi in matrix m,

. �
ðmÞ
xi : the steepness parameter of the transfer function
ð� � 0Þ.

. zxiðtþ 1Þ: ð1� �1ÞzxiðtÞ,

. A½nðtþ 1Þ�: ð1� �2ÞA½nðtÞ�,

. k: damping factor of the nerve membrane
ð0 � k � 1Þ,

. Ixi: input bias of neuron xi,

. zxiðtÞ: self-feedback neuronal connection weight
ðzxiðtÞ � 0Þ,

. I0: positive parameter,

. nðtÞ: random noise with a uniform distribution in
½�A;A�,

. A½n�: noise amplitude,

. �1, �2: damping factors for the time-dependent
neuronal self-coupling and the random noise,
respectively. ð0 � �1; �2 � 1Þ.
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In the absence of noise, i.e., nðtÞ ¼ 0, the NCNN
reduces to the TCNN of Chen and Aihara [24]. When
solving the combinatorial optimization problem through
the NN method, the connection weights of the NN can be
obtained from

XN
y¼1

XN
j¼1

wyj;xiV
ðmÞ
yj ðtÞ þ Ixi ¼ �

@E

@V
ðmÞ
xi

: ð5Þ

Here, E denotes the energy function (cost function), which
depends on the problem to be solved. The minimum
value of the energy function should correspond to the
neuron outputs that represent an optimal solution of the
application. For example, in our work, the final neuron
outputs should stand for an optimal delay-constrained
multicast tree.

Fig. 1 shows the dynamics of the TCNN and the
NCNN, respectively. Compared with the TCNN, the
NCNN explores a wider searching space because of
the additional noise. Hence, the NCNN is more capable

of jumping out of local minima and therefore providing
better solutions.

3.1 Energy Function

Our energy function is based on the work of Pornavalai
et al. [32]. In their model, the final outputs of neurons are
first pushed toward zero or one through an energy termPn

x¼1

Pn
i¼1;i 6¼x V

ðmÞ
xi ð1� V

ðmÞ
xi Þ and then set to zero (one) if

less (greater) than a threshold 0.5. Here, we do not add
this term to the energy function but rather use the
average value of all the outputs as the threshold to
determine the final neuron state, i.e., all outputs above
the average value are set to one and zero otherwise.

The total energy function E is the sum of energy
functions for the delay-constrained unicast routing to each
destination:

E ¼
X
m2D

EðmÞ; ð6Þ

EðmÞ ¼ �1E
ðmÞ
1 þ �2E

ðmÞ
2 þ �3E

ðmÞ
3 þ �4E

ðmÞ
4;LP : ð7Þ

Here, EðmÞ is the energy function of matrix m, which is
used to find the constrained unicast route from source
node s to destination m. f�i; i ¼ 1; 2; 3; 4g are the
weighting coefficients.
Em

1 is the total cost of the unicast route [32]:

E
ðmÞ
1 ¼

Xn
x¼1

Xn
i¼1;i 6¼x

Cxif
ðmÞ
xi ðV ÞV

ðmÞ
xi ; ð8Þ

f
ðmÞ
xi ðV Þ ¼

1

1þ
Pn

j¼1;j6¼m;j2D V
ðjÞ
xi

: ð9Þ

The connections among the neurons in different
matrices are not directly from the outputs but through
some special neurons, i.e., f-type neurons [32] that
have an input-output function specified in (9). These
f-type neurons help to reduce the cost term E

ðmÞ
1 in

proportion to the number of the unicast routes that are
using the same link. Through the connections expressed by
function f

ðmÞ
xi ðV Þ, outputs of the neurons from different

matrices that represent the same link in the communication
network try to cooperate together to minimize the cost of
the whole multicast route.
E
ðmÞ
2 [32] creates a virtual link from destination m to

source s and requires that the number of incoming links is
equal to the number of outgoing links for every node in the
communication network:

E
ðmÞ
2 ¼ 1� V ðmÞms

� �
þ
Xn
x¼1

Xn
i¼1;i 6¼x

V
ðmÞ
xi �

Xn
i¼1;i 6¼x

V
ðmÞ
ix

( )2

: ð10Þ

E
ðmÞ
3 [32] penalizes neurons that represent nonexisting

links of the network:

E
ðmÞ
3 ¼

Xn
x¼1

Xn
i¼1;i 6¼x

PxiV
ðmÞ
xi : ð11Þ
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Fig. 1. A comparison of dynamics of (a) the NCNN and (b) the TCNN.
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E
ðmÞ
4 [32] is used to satisfy the delay constraint, which is

an inequality constraint:

Xn
x¼1

Xn
i¼1;i6¼x

LxiV
ðmÞ
xi � � V

ðmÞ
xi 2 f0; 1g; ð12Þ

E
ðmÞ
4;LP ¼

Z
hðzÞdz;

hðzÞ ¼
0; if z � 0;

z; otherwise;

�

where

z ¼
Xn
x¼1

Xn
i¼1;i6¼x

LxiV
ðmÞ
xi ��: ð13Þ

Here, � is the delay bound. A linear programming (LP)-

type neuron [32] receives the delay of the current

established route and the delay constraint as inputs. The

transfer function of the LP-type neuron is denoted as hðzÞ.
The LP neuron contributes positively only when the delay

constraint is violated. In other words, the minimization of

the energy function will force this term to approach zero,

i.e., the delay of the path must not be greater than the delay

constraint.

3.2 The Structure of the NN

Substituting the energy function in (3) with (7), we obtain

the network dynamics, i.e., the difference equation of the

NN, as follows:

U
ðmÞ
xi ðtþ 1Þ ¼ kU ðmÞxi ðtÞ � �1Cxif

ðmÞ
xi ðV Þð1� �xm�isÞ

� �2

h
� �xm�is þ

Xn
y¼1;y 6¼x

V ðmÞxy � V ðmÞyx

� �

þ
Xn

y¼1;y6¼i
V
ðmÞ
iy � V ðmÞyi

� �i
� �3Pxið1� �xm�isÞ � �4Lxið1� �xm�isÞhðzÞ

� ziðtÞ V ðmÞxi ðtÞ � I0

h i
þ nðtÞ;

ð14Þ

where

�ab ¼
1; if a ¼ b;
0; otherwise:

�

The connection strengths and the bias terms are derived

through a simple comparison of (3) and (14):

wyj;xi ¼ ��2�xy þ �2�xj � �2�ij þ �2�iy; ð15Þ

Ixi ¼ � �1Cxif
ðmÞ
xi ðV Þð1� �xm�isÞ þ �2�xm�is

� �3Pxið1� �xm�isÞ � �4Lxið1� �xm�isÞhðzÞ:
ð16Þ

Equation (16) can also be written concisely as

Ixi ¼
�2; if ðx; iÞ ¼ ðm; sÞ;
��1Cxif

ðmÞ
xi ðV Þ � �3Pxi
��4LxihðzÞ; otherwise 8ðx 6¼ iÞ:

8<
:

No terms in the connection matrix depend on the cost of
links and the network topology. The costs are mapped onto
the biases [37], so the connection matrix is independent of
the changes in the flow of the communication network. The
advantage is immense because one does not need to change
the internal parameters of the NN to adapt to the changes in
the environment. Thus, the hardware implement of the NN
is a general one, independent of the topology or link costs of
the communication network.

4 SIMULATION RESULTS

The communication networks used in the simulation are
constructed randomly with a graph generator (based on the
method proposed by Waxman [38]). A communication
network with n nodes is randomly placed on a Cartesian
coordinate. The cost and delay of an arc from node x to
node i, i.e., Cxi and Lxi, are randomly generated. Fig. 2a
presents an example of a randomly generated 50-node
network. Fig. 2b shows the delay-constrained optimal
multicast tree found by the NCNN for the 50-node network.
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Fig. 2. (a) A 50-node network used in our simulations, with an average

degree (the number of links for a node) of four. (b) The delay-

constrained optimal multicast tree found by the NCNN for the 50-node

network with one source node (circle) and five destinations (black dots).
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The source node is shown as a circle, and the destination
nodes are shown as dark dots.

The algorithm is implemented in VC++ and run on a
Linux cluster (16-node dual Xeon 3.06-GHz, Intel IA32).
Values for the coefficients in our model are chosen as in [28]
to have rich dynamics and be able to converge in 8,000 steps:
�xi¼�¼0:004, independent of neuron location xi. k ¼ 0:9999,
and I0 ¼ 0:65. Initial internal states Uxið0Þ are randomly
generated between [�1, 1]. The algorithm is stopped when
the value of the energy function does not change by more
than a threshold value (0.0002) in three consecutive updates.
The final neuron outputs are decoded to the multicast tree
through the prior definition in (2). We assume that the
average value of the neuron outputs is VAvg; if Vxi � VAvg,
then Vxi ¼ 1, i.e., the neuron is on, which means that the link
from node x to node i in the communication network is
chosen to be in the final optimal tree, and vice versa.

The initial self feedback zxið0Þ [24], [28] and the initial
amplitude of random noise A½nð0Þ� [28] are set properly
to keep the balance of every term in (3). �1 determines
the length of transient chaos [24], and �2 determines the
cooling schedules of noise [28]. We set zxið0Þ ¼ zð0Þ ¼ 0:1,
A½nð0Þ� ¼ 0:02, and �1 ¼ �2 ¼ 0:0001 in our simulations,
unless otherwise specified.

We set the weighting coefficients in the energy function
based on the principles described in [32] as follows:

�1 ¼ 150; �2 ¼ 5;000; �3 ¼ 5;000; �4 ¼ 200:

For different instances, e.g., different network sizes,
destination numbers, or delay bounds, these network
parameters (actually only �1 and �4) are tuned through trial
and error on a small scale. To improve the solution, we need
to slightly reduce �1 if the cost of the final tree is large, and
we need to increase �4 when the delay bound is strict. We
will discuss the effects of various noise levels A½nð0Þ� and

different weighting constants �1 and �4, while fixing �2 and
�3 at 5,000, later in this section. The parameters �2 and �3 are
instance independent. The �2 term promotes completeness
of the route, and the �3 term prevents the use of nonexisting
links. To prevent infeasible solutions, we set �2 and �3 at
5,000, which is much greater than �1 and �4.

The proposed algorithm is run 1,000 times on a randomly
generated topology and randomly assigned link parameters
for each instance (1-12). In all the cases, algorithm
converged to stable states within 4,000-6,000 iterations.
The statistical results are shown in Table 2.

The performance of the NCNN is compared with that of
the TCNN and HNN (Fig. 3). From the HNN to the TCNN
and from the TCNN to the NCNN, the network dynamics
become more and more complex, and as a result, the
model can reach the global optimal solution more
frequently. However, the searching time increases. In a
real application, one may choose the model, as well as the
complexity of the dynamic, depending on the preference of
the client.

We investigate the performance of NCNNs with differ-
ent settings of noise levels A½nð0Þ� and the weighting
constants �1 and �4. Results are shown in the Tables 3, 4,
and 5. The Local minima rate shows the percentage of
simulations in which the NN finds solutions within the
delay constraint but the solutions are not global optima. The
Infeasible rate means the percentage of the simulations in
which the solutions do not satisfy the delay constraint or the
algorithm does not converge. In the previous tables and
figures in this paper, the weighting coefficients are properly
set, and the “Infeasible rates” are zero.

As the noise level goes high, the computation time
increases, the chance to reach the global optima is also
enhanced, and there are more infeasible solutions if the
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Fig. 3. Comparisons of the performance of NCNNs, TCNNs, and HNNs:

the horizontal axis is the instance number. The route optimality denotes

the percentage at which the network reached the optimal solution in the

1,000 runs.

TABLE 1
Specifications of the Randomly Generated Geometric Instances
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additive noise is too much. The tuning of weighting
coefficients in the energy function is an important issue
related to the efficiency when solving optimization pro-
blems with NNs. The NN is more capable to reach the
global optima when the weighting coefficient for the cost
term, i.e., �1, is larger. However, if �1 is too large, the

solution may not satisfy the delay constraint, or the NN
does not even converge.

To compare the chaotic NN with the BSMA, we run
both of them on instances 1-10 in Table 1. Since the
BSMA is a deterministic heuristic algorithm, it will reach
the same solution every time. We compare this result

WANG ET AL.: DELAY-CONSTRAINED MULTICAST ROUTING USING THE NOISY CHAOTIC NEURAL NETWORKS 87

TABLE 2
Results for the HNN, TCNN, and NCNN for Instances 1-12

“sd” stands for “standard deviation.”

TABLE 3
Performance Comparison of the NCNN Models with Different Noise Levels for the 30-Node Network

�1 ¼ 150 and �4 ¼ 200. “sd” stands for “standard deviation.”

TABLE 4
Performance Comparison of the NCNN Models with Different Weighting Constants �1 for the 30-Node Network

�4 ¼ 200 and A½nð0Þ� ¼ 0:02. “sd” stands for “standard deviation.”
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with the optimal route cost achieved by TCNNs and
NCNNs. The comparison is shown in the histogram in
Fig. 4. Though the chaotic NN cannot promise to reach
the global optima in every run, it indeed can find a
better solution (with a smaller route cost) compared with
the BSMA.

The COPT algorithm [19], which is implemented by the

branch-and-bound technique, can be applied to only small

communication networks because of the long computation

time. The optimal results from the NCNN and TCNN on

instances 1-3 are the same with those obtained by the COPT

algorithm.

5 CONCLUSION

In this paper, we review previous work on the DCMR

problem and its formulation as an energy minimization

problem that is solvable by NNs. Equations governing the

dynamics of NNs have been discussed. The DCMR problem

in communications desires 1) satisfaction of the delay

constraint on the paths from the source to each destination

and 2) minimum cost of the multicast tree. In the cases that

we have studied, the NCNN finds global optima more

frequently compared to the TCNN and the original HNN

model. The cost of the multicast tree found by the chaotic
NNs is equal to if not less than the one obtained by the
BSMA. Results from the COPT algorithm showed that
chaotic NNs, i.e., TCNNs and NCNNs, are able to find the
global optima.

In the future, we will focus on the improvement of the
NCNN and the application on many-to-many multicast
routing problems or dynamic routing. To utilize the parallel
processing ability of NNs, we will also explore the
hardware implementation of the NCNN. The NN model
is also applicable to the communication networks with
asymmetric link characteristics or with variable delay
constraints for different destinations. We will also look into
these issues.
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