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Abstract. In this paper we proposed a new approach for interpretability
of the neuro-fuzzy systems. It is based on appropriate use of parametric
triangular norms with weights of arguments, which shape depends on
values of their parameters and weights. The use of those norms as aggre-
gation and inference operators increases precision of fuzzy system. Due
to that, the rule base can be simpler and easier to interpretation. How-
ever, interpretation of parametric triangular norms is not that obvious
as interpretation of nonparametric triangular norms such as algebraic
or minimal norms. Proposed approach is based on choosing values of
parameters from a set of values, where each value have its own interpre-
tation. Additionally, a modified tuning algorithm for selection both the
structure and structure parameters of fuzzy system with interpretability
criteria under consideration is proposed. Proposed approach were tested
on well-known nonlinear simulation problems.

Keywords: Nonlinear modeling · Fuzzy system · Interpretability
criteria · Accuracy

1 Introduction

The fuzzy systems (see e.g. [12,15–21,29,30,34,42,43,48,80,81,85,94–99]) are
based on fuzzy rules. In the past researchers paid attention to the accuracy of fuzzy
systems while ignoring issues of their interpretability. However, in the 1990 s they
started to notice the fact that a large number of rules or fuzzy sets in those rules is
not conducive to the readability of the rule base. Nowadays fuzzy system designers
are trying to reach an acceptable compromise between accuracy and interpretabil-
ity [31,38,54]. In the literature a number of papers on the subject of interpretabil-
ity of fuzzy systems can be found. Their authors have proposed among the others:
(a) solutions aimed at reducing the number of fuzzy rules [2,4,31,38,54], reduc-
ing the number of fuzzy sets [35], reducing the number of system inputs [4,92] and
reducing fuzzy system elements by merging [13,36], (b) solutions related to correct
c© Springer International Publishing Switzerland 2016
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notation of fuzzy rules [4,49], correct activation of fuzzy rules [54] and distinguish-
ability and interdependence of fuzzy sets [55,56,64], (c) solutions related to fuzzy
systems construction aimed at interpretability, based on additional weights of
importance of the rules, antecedences, consequences and system inputs [13,65,71],
parameterized triangular norms [13,28,68] and precise defuzzification mechanism
[13]. The literature abounds in numerous attempts to systematize solutions for
interpretability (e.g. [3,32,82]).

The solutions proposed in this paper can be summarized as follows: (a) it is
based on a use of parametric triangular norms with weights of arguments and
on appropriate use of values of weights of fuzzy system elements. Proposed idea
concerns choosing parameters values from a set of values, where each value have
its own interpretation; (b) in this paper a new algorithm for selection the struc-
ture and parameters of a fuzzy system, constructed on the basis of the golden
ball [60] algorithm is proposed. Moreover, the proposed algorithm takes into
account all the interpretability criteria and it belongs to the methods based on
populations [71]. The use of the learning algorithm also creates a good opportu-
nity to find an appropriate trade-off between interpretability and accuracy. It is
worth to note that many computational intelligence methods (see e.g. [1,5–9,22–
27,33,39–41,44,50,58,61–63,66,67,69,76–79,83,86,87,93]) are successfully used
in pattern recognition, modelling and optimization issues.

This paper is divided into following sections: in Sect. 2 a description of a fuzzy
system is presented. In Sect. 3 a description of proposed learning algorithm is
shown. The results of simulations are presented in Sect. 4, finally the conclusions
are described in Sect. 5.

2 Description of a Neuro-Fuzzy System

In this paper a typical multi-input, multi-output flexible fuzzy system of the
Mamdani-type is considered [13,14,70,71]. Neuro-fuzzy systems combine the
natural language description of fuzzy systems and the learning properties of
neural networks (see e.g. [11,46,47,84,88–91]). This system performs mapping
X → Y, where X ⊂ Rn and Y ⊂ Rm. The rule base of this system consists of
a collection of N fuzzy rules Rk, k = 1, . . . , N . Each rule Rk takes the following
form:

Rk :

⎡
⎣

⎛
⎝ IF

(
x1 is Ak

1

) ∣∣∣wA
1,k AND ... AND

(
xn is Ak

n

) ∣∣∣wA
n,k

THEN
(
y1 is Bk

1

) ∣∣∣wB
1,k , ...,

(
ym is Bk

m

) ∣∣∣wB
m,k

⎞
⎠ ∣∣wrule

k

⎤
⎦ , (1)

where n is the number of inputs, m is the number of outputs, x̄ = [x̄1, . . . , x̄n]
∈ X is a vector of input signals, y = [y1, . . . , ym] ∈ Y is a vector of output lin-
guistic variables, Ak

1 , . . . , Ak
n are input fuzzy sets characterized by membership

functions μAk
i
(xi) (i = 1, . . . , n), Bk

1 , . . . , Bk
m are output fuzzy sets character-

ized by membership functions μBk
j

(yj) (j = 1, . . . ,m), wA
k,i ∈ [0, 1] are weights

of antecedents, wB
j,k ∈ [0, 1] are weights of consequences, and wrule

k ∈ [0, 1]
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are weights of rules. Fuzzy sets Ak
i and Bk

j represent linguistic variables (e.g.
‘very low’, ‘low’, ‘medium’, ‘high’, ‘very high’, ‘near [value]’). In this paper we
consider system based on Gaussian membership functions, which reflects well
the industrial, natural, medical and social processes; however, our solutions may
be related to any other membership function. The flexibility of the system is a
result of using: (a) weights in the rule base, (b) precise aggregation operators
of antecedences and rules (Sect. 2.2), (c) precise inference operators (Sect. 2.2),
and (d) a precise defuzzification process (Sect. 2.1).

2.1 Defuzzification Process

Defuzzification is used to determine output signals ȳj of fuzzy system for given
input signals. This is carried out as follows (with center of area method):

ȳj =

Rj∑
r=1

ȳdef
j,r ·

N↔
S∗

k=1

{ ↔
T ∗

{
τk (x̄) , μBk

j

(
ȳdef

j,r

)
; 1, wB

j,k, pimp
}

;wrule
k , pagr

}

Rj∑
r=1

N↔
S∗

k=1

{ ↔
T ∗

{
τk (x̄) , μBk

j

(
ȳdef

j,r

)
; 1, wB

j,k, pimp
}

;wrule
k , pagr

} , (2)

where
↔
T ∗ and

↔
S∗ are Aczél-Alsina parameterized triangular norms with weights

of arguments (Sect. 2.2), τk (x̄) is the activation level of the rule k, pimp is a
shape parameter of t-norm used for inference, pagr is a shape parameter of t-
conorm used for aggregation of inferences from rules, and ȳdef

j,r (r = 1, . . . , Rj)
are discretization points. In the system considered in this paper the number of
discretization points Rj for any output j does not have to be equal to the number
of rules N . It is creating a good opportunities for increasing the interpretability
and accuracy of the fuzzy system. This issue was discussed in detail in our
previous papers [13,14,51]. The activation level of the k-th rule τk (x̄) in the
formula (2) is determined for the input signals vector x̄ and it is defined as
follows:

τk (x̄) =
n↔
T ∗
i=1

{
μAk

i
(x̄i) ;wA

k,i, p
τ
}

, (3)

where pτ is a shape parameter of t-norm used for aggregation of antecedences.

2.2 Aggregation and Inference Operators

Use of parametrized-type triangular norms with weights of arguments considered
in this paper contributes indirectly to an increase of the interpretability of the
system (2). It results from high working precision of these operators, which
allows for achieving the expected accuracy of the system (2) with a smaller
number of rules N . In this paper a parametrized triangular norms with weights
of arguments of Aczél-Alsina type are used. They are defined as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

↔
T

∗
{a;w, p} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

drastic t − norm for p = 0
minimum t − norm for p = ∞

exp

(

−
(

n∑

i=1

(− ln (1 − w1 · (1 − a1)))
p

) 1
p

)

for p ∈ (0,∞)

↔
S

∗
{a;w, p} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

drastic t − conorm for p = 0
maximum t − conorm for p = ∞

1 − exp

(

−
(

n∑

i=1

(− ln (1 − wi · ai))
p

) 1
p

)

for p ∈ (0,∞)

,

(4)

where p is a shape parameter of norm, w1 . . . , wn ∈ [0, 1] are weights of arguments
a1, . . . , an ∈ [0, 1].

3 Description of a Learning Algorithm

The proposed learning algorithm belongs to so-called population-based algo-
rithms ([74]) and its purpose is to select the structure and the parameters of
the fuzzy system (2). Population-based algorithms can be defined as search pro-
cedures based on the mechanisms of natural selection and inheritance and they
use the evolutionary principle of survival of the fittest individuals. What differs
population algorithms from traditional optimization methods, among others, is
that they do not process task parameters directly, but their encoded form, they
do not conduct a search starting from a single point, but from a population of
points, they use only the objective function and not its derivatives, and they use
probabilistic selection rules. It is worth to notice that, the gradient algorithms
(see e.g. [72,73,75]) can also be applied to proposed interpretability criteria.

3.1 Encoding of Potential Solutions

Encoding of population of potential solutions used in the algorithm refers to the
Pittsburgh approach [37]. A single individual of the population (Xch) is therefore
an object that encodes the complete structure Xstr

ch of the fuzzy system (2), its
set parameters Xset

ch and real parameters Xpar
ch :

Xch =
{
Xstr

ch ,Xset
ch ,Xpar

ch

}
. (5)

Part Xstr
ch of the individual Xch encodes in a binary form the whole structure

of the fuzzy system (2):

Xstr
ch =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1, . . . , xn,
A1

1, ..., A
1
n, ..., ANmax

1 , ..., ANmax
n ,

B1
1 , ..., B1

m, ..., BNmax
1 , ..., BNmax

m ,
rule1, ..., ruleNmax,

ȳdef
1,1 , ..., ȳdef

1,Rmax, ..., ȳdef
m,1, ..., ȳ

def
m,Rmax

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
{
Xstr

ch,1, ...,X
str
ch,Lstr

}
, (6)
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where ch = 1, ..., Npop is the index of an individual in a population, Npop is the
number of individuals in a population, Nmax is the maximum number of rules
in the system (2), Rmax is the maximum number of discretization points in the
system (2) and Lstr is the number of the individual components Xstr

ch (referred as
genes from now on) is determined as Lstr = Nmax · (n+m+1)+n+Rmax ·m.
The principle adopted in the encoding genes of Xstr

ch is such that the gene with
value 0 of the individual Xstr

ch excludes the associated element from the system
structure (2) and vice versa.

Part Xset
ch of the individual Xch encodes the set parameters, which values have

direct impact on interpretability. Xset
ch contains: (a) weights of antecedences, con-

sequences and rules, and (b) parameters of triangular norms used for aggregation
of antecedences (pagr), inference of rules (pimp) and aggregation of inference of
rules (pτ ). Each of those parameters is chosen from a set of values. Each value
from set have its own interpretation. Part Xset

ch takes the following form:

Xset
ch =

⎧
⎪⎪⎨

⎪⎪⎩

wA
1,1, . . . , w

A
1,n, . . . , w

A
Nmax,1, . . . , w

A
Nmax,n,

wB
1,1, . . . , w

B
m,1, . . . , w

B
1,Nmax, . . . , w

B
m,Nmax,

wrule
1 , . . . , wrule

Nmax,
pτ , pimp, pagr,

⎫
⎪⎪⎬

⎪⎪⎭

=
{
Xset

ch,1, . . . , X
set
ch,Lset

}
,

(7)

where Lset = Nmax · (n + m + 1)+3 is the number of components of individual
Xset

ch . The set of possible values for weights is defined as follows:

setw = {0.0, 0.5, 1.0} , (8)

where value 0.0 can be interpretable as not important, values 0.5 as important,
and value 1.0 as very important. Additionally, when value 0.0 is chosen for an
element, it its treat as reduced from a system (2). For parametrized triangular
norms (4) the set of possible values was chosen to obtain similar behavior to the
non-parametrized norms (see Table 1). The set of possible values is defined as
follows:

setp = {0.00, 0.63, 1.00, 1.51, 10.00} . (9)

Table 1. The parameters that close behavior of triangular norm Aczél-Alsina to non-
parametrical norms.

Triangular norm Drastic �Lukasiewicz Algebraic Hamacher Minimum

Similarity parameter 0.00 0.63 1.00 1.51 10.00

Similarity level Identical Close Identical Close Close

Part Xpar
ch of the individual Xch encodes the real parameters of the fuzzy

system and it has the following form:
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Xpar
ch =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̄A
1,1, σ

A
1,1, . . . , x̄

A
n,1, σ

A
n,1, . . .

x̄A
1,Nmax, σA

1,Nmax, . . . , x̄A
n,Nmax, σA

n,Nmax,

ȳB
1,1, σ

B
1,1, . . . , ȳ

B
m,1, σ

B
m,1, . . .

ȳB
1,Nmax, σB

1,Nmax, . . . , ȳB
m,Nmax, σB

m,Nmax,

ȳdef
1,1 , . . . , ȳdef

1,Rmax, . . . , ȳdef
m,1, . . . , ȳ

def
m,Rmax

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
{

Xpar
ch,1, . . . , X

par
ch,Lpar

}
,

(10)
where x̄A

i,k, σA
i,k are membership function parameters of input fuzzy sets Ak

i ,
ȳB

j,k, σB
j,k are membership function parameters of output fuzzy sets Bk

j , and
Lpar = Nmax · (2 · n + 2 · m + 1) + Rmax · m is the number of components
of individual Xpar

ch . Those parameters are significantly affecting interpretability
of system (2), but there is no possibility to choose values of them from a set. In
this case, the interpretability criteria presented in our previous paper [51] can
be used.

3.2 Evaluation of Potential Solutions

The purpose of proposed algorithm is to minimize the value of the evaluation
function specified for the individual Xch in the following way:

ff (Xch) = T ∗
{

ffacc (Xch) ,ffint (Xch) ;
wffacc , wffint

}
, (11)

where component ffacc (Xch) specifies the accuracy of the system (2), com-
ponent ffint (Xch) specifies interpretability of the system (2) according to the
adopted interpretability criteria, wffacc ∈ [0, 1] represents weight of the compo-
nent ffacc (Xch), wffint ∈ [0, 1] represents weight of the component ffint (Xch)
(values of weights wffacc and wffint result from expectations of the user regarding
the ratio between the accuracy of the system (2) and its interpretability), and
T ∗ {·} is algebraic triangular norm with weights of arguments defined as:

T ∗ {a;w} =
n∏

i=1

(1 + (ai − 1) · wi). (12)

Component ffacc (Xch) in formula (11) is determined as follows:

ffacc (X) =
1
m

m∑
j=1

1
Z

Z∑
z=1

|dz,j − ȳz,j |
max

z=1,...,Z
{dz,j} − min

z=1,...,Z
{dz,j} , (13)

where Z is the number of rows of a learning sequence, dz,j is the desired output
value of output j for input vector z (z = 1, ..., Z), ȳz,j is the real output value
j calculated by the system for the input vector x̄z. Equation (13) takes into
account the normalization of errors at different outputs of the system (2) in
order to eliminate significant differences between them.
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The component ffint (Xch) represent the interpretability criteria, which
apply mostly to the component Xpar

ch . Those criteria allows to obtain: (a) correct
arrangement of fuzzy sets, (b) correct firing of the fuzzy rules, (c) cohesion of
fuzzy set shapes, (d) appropriate fitting of fuzzy rules to data etc. The examples
of interpretability criteria was considered in our previous papers (see e.g. [51]).

3.3 Processing of Potential Solutions

For selection the structure and parameters of the system (2) a modified golden
ball algorithm (GB) [60] is proposed. The GB algorithm was chosen due to
following advantages: (a) it allows for precise local search of the search space (due
to using multiple populations), (b) it allows for precise global search of the search
space (due to migration mechanism between populations), (c) it allows obtain
high performance (it is achieved thanks to separate learning parameters of each
population, which can be modified in case of giving bad results), (d) it allows
to obtain good diversity of solutions (due to competition mechanism between
populations).

The proposed algorithm works according to the following steps:

Step 1. Initialization. In this step a Npop individuals (players) of population
are randomly initiated and randomly assigned to Nteam populations (teams).
Each team obtains Npla = Npop/Nteam players (Npop should be multiplicity
of Nteam). Each player is evaluated using fitness function (11). Moreover, each
team gets randomly initiated set of parameters:

TEAMe = {pm, pc,mr} , (14)

where pm ∈ (0, 1) is team mutation probability, pc ∈ (0, 1) is team crossover
probability, mr ∈ (0, 1) is team mutation insensitivity, e = 1, ..., Nteam stands
for index of team.

Step 2. Teams traning. This step is carried out Nstep times for each team
separately. In the beginning, for each team a time variable t is set to 0.

Step 2.1. New players creation. In this step a Npla new players are created
for each team, according to evolutionary strategy (μ + λ) [71]. Those players are
created by cloning the players chosen via roulette wheel method [71] from actual
players of the team. If the condition TEAMe {pc} < Ur (0, 1) (where Ur (a, b)
stands for random value from range [a,b]) is met, those genes are additionally
crossovered with genes randomly chosen via roulette wheel method players from
players of the team. TEAMe {pc} stands for using field pc of team TEAMe.

Step 2.2. New players modification. In this step each gene Xpar
ch,g of newly

created players is mutated (when condition TEAMe {pm} < Ur (0, 1) is met)
according to following equation:

Xpar
ch,g := Xpar

ch,g +
(
X̄par

ch,g − Xpar
ch,g

)
·Ur (−1, 1) ·TEAMe {mr} · Nstep − t

Nstep
, (15)
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where range [Xpar
ch,g,X

par

ch,g] stands for minimum and maximum allowed value of
gene Xpar

ch,g, Nstep stands for maximum number of steps of teams training. It
is easy to notice that, the range of mutation is decreasing with each step of
teams training (due to increasing value t). In turn, for each gene Xstr

ch,g (when
condition Xstr

ch,g is TEAMe {pm} < Ur (0, 1) is met) a random value from set
{0, 1} is assigned. Genes Xset

ch,g are modified analogically to genes Xstr
ch,g. The new

values of genes coding weights are randomly chosen from set (8), and the new
values of triangular norms parameters (4) are randomly chosen from set (9).

Step 2.3. New players evaluation. After modification of genes from Step 2.2,
all new players are evaluated according to fitness function (11).

Step 2.4. Selection of team players. The selection of team players is inde-
pendent for each team and it lies on choosing Npla best players from both the
actual teams players and the newly created players from Step 2.1.

Step 2.5. Stop condition of teams traning. In this step a value t is incre-
mented. After that, the condition t < Nstep is checked. If this condition is met,
algorithm goes back to step 2.1, otherwise algorithm goes to next step (Step 3).

Step 3. League competition. In this step each TEAMe compete (playing
matches) Nmatch times with all teams. Each match consist of Natt attacks.
Each attack relies on comparing values of fitness function of randomly chosen
players from both teams. The player with better value of fitness function scores
one point for its team. The team with more (or equal) points gets a league point.
On the basis of league points the teams are sorted (from best to worst). It is
worth to mention that, the results of competition are determined by random
factor, which ensure appropriate migration between teams from next step.

Step 4. Players transfer. Players migration (transfer) between teems is based
on moving players between better and worst teams. Best team from best half
of the teams is transferring Nrep (Nrep < Npla) worst players with Nrep best
players from best team from worst half of the teams, etc. Thus, the last part of
this step will concern transfer between worst team from best half of the teams
with worst team from worst half of the teams.

Step 5. Changing training plans. In this step, a parameters (14) of worst
half of the teams are changed by averaging them with parameters from better
half of the teams (the parameters of best team from worst half of the teams are
averaged with parameters of best team from best half of teams, etc.).

Step 6. Stop condition. In this step a number of iterations of the algorithm is
checked. If this number reached value of Niter algorithm stops and best found
solution is presented, otherwise algorithm goes back to Step 2.
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4 Simulations

The set of nonlinear issues (see e.g. [52,53]) examined in the simulations is shown
in Table 2. The purpose of the simulations was to obtain systems of the forms
(2) characterized by the lowest values of elements of the form (13). In this paper
the following interpretability criteria were considered: (a) complexity criterium,
(b) reducing overlapping of fuzzy sets criterium, (c) increasing integrity of shape
criterium, and (d) increases complementarity criterium (for details see our pre-
vious paper [51]). In the simulations the algorithm described in Sect. 3 to select
its structure and parameters were used. The simulations were performed for five
different variants of weights of the evaluation function (11): from the one focused
on accuracy (W1) to the one focused on interpretability (W5) (see Table 3). A
set of the proposed algorithm parameters was selected experimentally as fol-
lowing: number of iterations Niter = 50, number of individual training steps
Nstep = 20, number of players Npop = 100, number of teams Nteam = 10,
number of matches Nmatch = 2, number of attacks Natt = 20 and number
of transfered players Nrep = 2. A set of parameters of the fuzzy system was
selected as following: maximum number of rules Nmax = 7, and maximum
number of discretization points Rmax = 21.

Each simulation (for each variant W1...W5) was repeated 100 times. The
obtained results were averaged and presented in Table 4 and in Fig. 1. The learn-

Table 2. Simulation problems discussed.

No Test set name Number of
input
attributes

Number of output
attributes

Number of
sets

Problem
label

1 Nelson
function
[57]

2 1 128 NF

2 Yacht Hydro-
dynamics
[59]

5 1 308 YH

3 Concrete
Slump [10]

7 3 103 CS

Table 3. A set of variants of the weights of the evaluation function (11).

Variant wffacc wffint Description

W1 0.90 0.10 focused on high accuracy

W2 0.70 0.30 focused on accuracy

W3 0.50 0.70 intermediate between W2 and W4

W4 0.30 0.70 focused on interpretability

W5 0.10 0.90 focused on high interpretability
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Fig. 1. Obtained trade-off between accuracy and interpretability for problem: (a) NF,
(b) YH, (c) CS.
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Fig. 2. Averaged learning process for problem: (a) NF, (b) YH, (c) CS. Filled circles
stands for best solutions from first iteration of proposed algorithm.

Table 4. Averaged simulation results for considered problems.

Simulation

problem

Evaluation

function

case Other authors

results [45,51]

W1 W2 W3 W4 W5

NF ffacc (·) 0.063 0.069 0.078 0.095 0.144 n/a

ffint (·) 0.643 0.386 0.360 0.322 0.270 n/a

RMSE 1.348 1.446 1.636 2.046 3.263 1.104 - 2.653

YH ffacc (·) 0.027 0.040 0.049 0.076 0.095 n/a

ffint (·) 0.652 0.416 0.365 0.321 0.287 n/a

RMSE 2.614 3.617 4.281 6.996 8.629 0.820 - 2.236

CS ffacc (·) 0.153 0.183 0.190 0.198 0.202 n/a

ffint (·) 0.646 0.346 0.310 0.288 0.268 n/a

RMSE 14.563 16.864 18.104 19.152 19.302 11.941 - 16.668

ing process was presented in Fig. 2. Typical examples of rules obtained for case
W3 (which represent balanced trade-off between accuracy and interpretability)
were presented in Fig. 3 and in Table 5. The notation of fuzzy rules examples
obtained for case W3 and shown in Fig. 3 were presented in Table 5.

The conclusions from the simulations can be summarized as follows: (a)
choosing specified values from set allow to obtain interpretable values of weights
and values of parameters of triangular norms, (b) obtained results are similar
(in a field of accuracy) to results presented by other authors, (c) use of variants



258 K. �Lapa et al.

x1

µ x( )1 input reduced

x2

µ x( )2 input reduced

a) c)

b)
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. 000
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p = 01 00.agr p =0.63imp p =10.00
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1B1
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2B1

R3

3A3
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x3

µ x( )3
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x6

µ x( )6
1,00

0,00

y1

µ y( )1
1,00

0,00

. 014 . 305

0. 71 . 160

. 5811- . 4985

x5

x4

µ x( )4 input reduced

µ x( )5 input reduced

R1

p =1.51agr p =1.51imp p = 01 00.

1A1

1A3

1A5

1A6

1B3
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2A4
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2B3
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3A2
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3B3

x1
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. 000
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. 001

. 000
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0. 01
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µ y( )1
. 001

. 000
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. 001

. 000
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. 000
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. 28951 . 24332
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. 34356 . 109011

. 152- . 8553

. 634- . 9588

. 7811 . 1805

x7

µ x( )7 input reduced

Fig. 3. Examples of obtained fuzzy sets (case W3) for problem: (a) NF, (b) YH, (c) CS.
Rectangles stands for weights of fuzzy sets and rules (filled rectangle - very important
value, half-filled rectangle - important value, empty rectangle - not important value).
Circles stands for discretization points.

W1-W5 allows to obtain diversified solutions (in a field of expected trade-off
between accuracy and interpretability).
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Table 5. Summary with examples of fuzzy rules in the form of (1) of the fuzzy system
(2) for variant W3 (Fig. 3).

NF

⎧
⎪⎨

⎪⎩

R1 : IF (x2 is medium |m ) THEN (y is medium |m ) |h
R2 : IF (x1 is near (47.78) |m ANDx2 is high |m ) THEN (y is low |m ) |h
R3 : IF (x2 is low |h ) THEN (y is high |h ) |h

YH

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R1 : IF
(

froude number is high |m
)

THEN
(

resistance is medium |h
)

|h
R2 : IF

(

froude number is low |h
)

THEN
(

resistance is low |h
)

|m

R3 : IF

(
l.displ. is near (7.57) |m AND

froude number is medium |h

)

THEN
(

resistance is high |h
)

|m

CS

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF

⎛

⎜
⎜
⎜
⎜
⎝

cement is low |m AND

fly ash is near (26.85) |m AND

sp is low |m AND

coarse aggr. is medium |m

⎞

⎟
⎟
⎟
⎟
⎠

THEN
(

str. is medium |m
)

|h

R2 : IF

⎛

⎜
⎜
⎜
⎜
⎝

cement is high |m AND

water is low |m AND

sp is high |m AND

coarse aggr. is high |m

⎞

⎟
⎟
⎟
⎟
⎠

THEN

⎛

⎜
⎝

slump is low |h AND

flow is low |h AND

str. is high |m

⎞

⎟
⎠ |m

R3 : IF

⎛

⎜
⎝

slag is near (34.38) |h AND

water is high |h AND

coarse aggr. is low |m

⎞

⎟
⎠THEN

⎛

⎜
⎝

slump is high |h AND

flow is high |m AND

str. is low |h

⎞

⎟
⎠ |h

5 Conclusions

In this paper a new approach for interpretability of neuro-fuzzy systems with
parametrized triangular norms was presented. In this approach, it is assumed
that, a part of parameters are selected from set of defined values, where each
of those values have its own interpretation. Those sets concerns weights (of
antecedences, consequences and rules) and parameters of parametrized triangu-
lar norms with weights of arguments. This approach required use of proper learn-
ing algorithm. Therefore, we proposed modified golden ball algorithm, which
allows to select parameters from set of values, select real values of parameters,
and select binary parameters. Proposed learning algorithm can be used to learn-
ing all types of systems, where both the parameters and the structure have to be
found. Obtained simulations results can be considered as good in a both fields
of accuracy and interpretability.
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Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI),
vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

13. Cpa�lka, K.: A new method for design and reduction of neuro-fuzzy classification
systems. IEEE Trans. Neural Networks 20, 701–714 (2009)

14. Cpa�lka, K.: On evolutionary designing and learning of flexible neuro-fuzzy struc-
tures for nonlinear classification. Nonlinear Anal. Series A. Theor. Methods Appl.
71(2009), e1659–e1672 (2009). Elsevier

15. Cpa�lka, K., �Lapa, K., Przyby�l, A., Zalasiński, M.: A new method for designing
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99. Zalasiński, M., Cpa�lka, K., Hayashi, Y.: New fast algorithm for the dynamic sig-
nature verification using global features values. In: Rutkowski, L., Korytkowski,
M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015.
LNCS, vol. 9120, pp. 175–188. Springer, Heidelberg (2015)


	New Approach for Interpretability of Neuro-Fuzzy Systems with Parametrized Triangular Norms
	1 Introduction
	2 Description of a Neuro-Fuzzy System
	2.1 Defuzzification Process
	2.2 Aggregation and Inference Operators

	3 Description of a Learning Algorithm
	3.1 Encoding of Potential Solutions
	3.2 Evaluation of Potential Solutions
	3.3 Processing of Potential Solutions

	4 Simulations
	5 Conclusions
	References


