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Abstract. In this paper we present a system intended for content-based
image retrieval tightly integrated with a relational database management
system. Users can send query images over the appropriate web service
channel or construct database queries locally. The presented framework
analyses the query image based on descriptors which are generated by the
bag-of-features algorithm and local interest points. The system returns
the sequence of similar images with a similarity level to the query image.
The software was implemented in .NET technology and Microsoft SQL
Server 2012. The modular construction allows to customize the system
functionality to client needs but it is especially dedicated to business
applications. Important advantage of the presented approach is the sup-
port by SOA (Service-Oriented Architecture), which allows to use the
system in a remote way. It is possible to build software which uses func-
tions of the presented system by communicating over the web service
API with the WCF technology.
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1 Introduction

Content-based image retrieval (CBIR) is part of a broader computer vision area.
Thanks to CBIR-related methods [1,5,6,13,14,20,21,23,27,33] we are able to
search for similar images and classify them [35,41]. To compare images we have
to extract some form of visual features, e.g. color [10,16,30], textures [3,8,12,37],
shape [11,15,39] or edges [43]. Other choice can be local invariant features [24-
26,28,36] with the most popular detectors and descriptors SURF [2], SIFT [24]
and ORB [34]. To find similar images to a query image, we need to compare all
feature descriptors of all images usually by some distance measures. Such com-
parison is enormously time consuming and there is ongoing worldwide research
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to speed up the process. Yet, the current state of the art in the case of high-
dimensional computer vision applications is not fully satisfactory. The literature
presents countless methods, e.g. [32] and they are mostly based on some form of
approximate search. Generally, when the amount of data is increasing, in a con-
sequence the compunctions are more complex. Moreover, the process of loading
images from storage requires more time.

Recently, the bag-of-features (BoF) approach [9,22,29,31,36,40,42] has
gained in popularity. In the BoF method, clustered vectors of image features
are collected and sorted by the count of occurrence (histograms). All individual
descriptors or approximations of sets of descriptors presented in the histogram
form must be compared. The information contained in descriptors allows for
finding a similar image to the query image. Such calculations are computation-
ally expensive. Moreover, the BoF approach requires to redesign the classifiers
when new visual classes are added to the system.

All these aforementioned methods require a large amount of data and
computing power to provide an appropriate efficiency. Despite applying some
optimization methods to these algorithms, the data loading process is time-
consuming. In the case of storing the data in the database, when a table contains
n records, the similarity search requires O(logan) comparisons. Image compari-
son procedure can take less time when some sorting mechanisms are applied in
a database management system. Noteworthy solutions are proposed by different
database products [4,19,38]. A system designed for the image classification task
based on fuzzy logic was presented in [18] and on BoF with a MS SQL Server
database was presented in [17]. The system structure allowed to modify crucial
components without resulting in interferences with the other modules. Thus,
authors of the current paper modify the system to adapt it to image retrieval
task, i.e. to detect similar images to the query image which was presented on
the system input.

MS SQL Server offers the FileTable mechanisms thanks to the SQL Server
FILESTREAM technology to store large files a filesystem. Modifying the content
of objects stored in a FileTable can be performed by adding, or removing data
from directories linked to this table and the changes are visible in the table
automatically.

The paper is organizes as follows. In Sect. 2 the proposed approach for system
architecture and functionality was presented. Section 3 contains examples of the
system response to query images.

2 Description of the Proposed System

The system described in this paper allows to search similar images to the query
image which was provided by a user or a client program. Users are able to inter-
act with our system by executing a stored procedure. There is also a possibility of
calling the methods from a WCF service in a remote way. This operation can be
performed in a client software. When the user interacts with the system locally,
the query images can by copied to a special directory called Test, which is the
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integral part of the database FileTable structure. As a consequence, the appro-
priate trigger is executed and adequate testing stored procedure is called. When
client software connects to our system remotely, it is necessary to transfer the
query image as stream over the network. The authors provided API mechanisms
to perform this kind of interaction.

2.1 Architecture of the System

The main target of the system are business applications that need a fast CBIR
functionality. It encapsulates computer vision algorithms and other mechanisms,
thus the user do not have to know how to implement them. MS SQL Server
2012 provides the UDT mechanism (User Defined Types) which was used for
crucial elements such as image keypoints, dictionaries, or descriptors. All UDT
types were programmed with custom serialization mechanisms. These types are
stored in assemblies included in the database which is linked to our system. The
software was based on .NET platform. Moreover, the additional advantage is
the use of the Filestream technology which is included in MS SQL Server. As
a consequence, reading high resolution images is much faster than with using
classical methods. The aforementioned technology provides the interaction with
image database, based on the content of appropriate folders (linked to FileTable
objects), designed to storing images. Placing new images in these folders fires
the adequate trigger. It gives the advantage of automatic initialization of the
corresponding database objects without additional operations. Users have to
indicate a query image to compare. As a result, the system returns the sequence
of images similar to the content of the query image. The process of extending the
set of indexed images in the database boils down to copying images to FileTable
directories. Then, the dictionary and descriptors are be generated automatically
after inserting the number of words for dictionary in an appropriate stored pro-
cedure. Figure 1 presents the architecture which was divided into four layers. In
the first layer, the user selects a query image for transferring to the system over
the remote WCF channel or by copying to the Test folder locally. After process-
ing the query image, user obtains the response as the sequence of similar images
(sorted in descending order from the most similar image). The second layer is an
interface which allows to perform queries to the system database. The list of sim-
ilar images consists of file paths from a database and similarity levels assigned to
appropriate files. The third layer acts as the physical MS SQL Server database.
This is the place of storing the information about the images and their descrip-
tors. The table with descriptors is indexed to speed up generating response. At
this level it is also possible to execute a stored procedure which contributes to
running the bag-of-features algorithm and indicating similar images over the
WCF endpoint. The last layer contains the WCF service functionality. Methods
shared by the web service module run the main algorithms, generate keypoints
and descriptors basing on the dictionary. Having the dictionary, it is possible to
perform the similarity calculation procedure. The response collected from the
system contains a sorted list which is transferred to the second layer. The list
stores top,, most similar images, which can be accessed from the first layer.
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Fig. 1. System architecture.

2.2 System Functionality

The system was divided into modules, which are dedicated for specific functions.
These modules include communication interfaces with other modules. The lay-
ered software implementation allows to modify some modules, without interfer-
ing with the other architecture parts of the system.

The domain model layer is a fundamental module for business logic of the
system and was created with the Database First approach. Figure 2 presents the
database diagram. Considering the integration of the applied mechanisms from
NET platform, Microsoft SQL Server 2012 was chosen. The database struc-
ture was designed based on the bag-of-features algorithm. Keypoints, dictionar-
ies and descriptors were stored in the database as UDT (User Defined Types),
for which serialization mechanisms were implemented. System functionality is
mainly based on the bag-of-features algorithm [29]. This algorithm was chosen
by the authors of this paper because of the relatively high effectiveness and
fast operation. Keypoints are calculated using the SIFT method, nevertheless
the system can use other visual feature generation techniques. The local fea-
tures calculated for images are stored in the database along with the dictionary
structures and descriptors generated basing on these dictionaries. This approach
entails the requirement of only one generation of crucial data structures for the
system. The Images_FT table was designed with the FileTable technology and
contains images which are necessary for the training process. As a consequence,
the entire content of this table influences cluster calculation and effectiveness of
similarity detection.
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Fig. 2. Database diagram.

Query by image operation relies on the initial dictionary loading with appro-
priate identification number from the Dictionaries table. This operation is
crucial for calculating descriptors for the adequate dictionary. The next proce-
dure compares the query image descriptor with the other descriptors stored in
the database. Vectors € = {x1,x2, -+ ,2,} are generated for images from the
database, and y = {y1,y2,- - ,yn} is calculated for the query image. The next
procedure is responsible for comparing descriptors by the Euclidean distance.
As a result, we determine the similarity factors for all comparisons sorted in
descending order.

Our software has the functionality of classifying the query image, basing on
the support vector machine (SVM) classifiers trained on descriptor collection.
Information about the class membership can be used with the similarity results.
The SVM classifiers are stored in the database after the process of training with
the collection of descriptors from Images_FT table.

In an attempt to provide remote interaction with the system, we implemented
SOA layer (Service Oriented Architectures) in .NET technology. To achieve this
essential aim, WCF (Windows Communication Foundation) web service was
programmed. In this case client software can execute procedures remotely. The
system architecture also provides the distributed processing system, when a data-
base server is situated in a different physical location. Hence, we implemented
remotely executed WCF methods from stored procedures.

3 Numerical Experiments

In this section we present the results of example experiments performed to val-
idate the correctness of the system. We used images taken from the PASCAL
Visual Object Classes (VOC) dataset [7]. We queried the database with images
and the returned images are shown with the distances to the query descriptor.
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The first part of the tests was performed for query images which were not
included in the database. When an image is presented on the system input, the
response vector R = S(z,yl), S(z,y2),...,S(z,yN) obviously did not include
similarity values being equal zero. It contained k similar images from an appro-
priate class of the query image. Figure3 presents the example with several
returned images. The next experiments consisted in showing images which had
the exact representation in the database (in Images FT table), i.e. they were
included in the dictionary building process. In this case, the response vector
obviously included the output with m values equal zero, when m indicates the
amount of identical images contained in the database. If the request was con-
figured for including the k& similar images, when k£ > m, then response vector
should comprise k > m values greater than zero. Figure 4 shows an example of
querying the database with an image that existed in the database.

Query image 0.0417 0.0456 0.0458

Fig. 3. Querying test performed for an image which is not included in the database.
The distance to the query image is given for each returned image.

Query image 0.0 0.0877 0.0903

Fig. 4. Querying test performed for an image which was included in the database. The
distance to the query image is given for each returned image.

4 Conclusions

We developed a system dedicated to image retrieval by providing an integrated
environment for image analysis in a relational database management system
environment. Nowadays RDBMS are used for collecting very large amount of
data, thus it is crucial to integrate them with content-based visual querying
methods. In the proposed system computations concerning visual similarity are
encapsulated in the business logic of our system, users are only required to have
knowledge about communication interfaces included in the proposed software.
Applying database indexing methods affects positively speeding up the image
retrieval.
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Moreover, our system is integrated with .NET platform. The authors chose
the WCF technology for providing the remote interaction with the system. MS
SQL Sever allows to attach assemblies implemented in .NET to the database
dedicated for image analysis. As a consequence, users can interact with the
system locally by SQL commands, which execute remote procedures. It is an
important advantage of the system. The system retrieves images in near real-
time.
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