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Abstract— With many potential practical applications, 

Content-Based Image Retrieval (CBIR) has attracted 

substantial attention during the past few years. A variety of 

Relevance Feedback (RF) schemes have been developed as a 

powerful tool to bridge the semantic gap between low-level 

visual features and high-level semantic concepts and thus to 

improve the performance of CBIR systems. Among various 

RF approaches, Support Vector Machine (SVM) based RF 

is one of the most popular techniques in CBIR. Despite the 

success, directly using SVM as a RF scheme has two main 

drawbacks.  First, it treats the positive and negative 

feedbacks equally, which is not appropriate since the two 

groups of training feedbacks have distinct properties. 

Second, most of the SVM based RF techniques do not take 

into account the unlabelled samples although they are very 

helpful in constructing a good classifier. To explore 

solutions to overcome these two drawbacks, in this work, we 

propose a Biased Maximum Margin Analysis (BMMA) and 

a Semi-Supervised Biased Maximum Analysis 

(SemiBMMA), for integrating the distinct properties of 

feedbacks and utilizing the information of unlabeled 

samples for SVM based RF schemes. The BMMA 

differentiates positive feedbacks from negative ones based 

on local analysis, while the SemiBMMA can effectively 

integrate information of unlabelled samples by introducing 

a Laplacian regularizer to the BMMA.  We formulate the 

problem into a general subspace learning task and then 

propose an automatic approach of determining the 

dimensionality of the embedded subspace for RF.  Extensive 

experiments on a large real world image database 

demonstrate that the proposed scheme combined with the 

SVM RF can significantly improve the performance of 

CBIR systems. 

 
Index Terms— Support Vector Machine, Relevance Feedback, 

Graph Embedding, Content-Based Image Retrieval 

I. INTRODUCTION 

 uring the past few years, Content-Based Image Retrieval 

(CBIR) has gained more attention for its potential application in 

multimedia management [1, 2]. It is motivated by the explosive 

growth of image records and online accessibility of remotely 

stored images. An effective search scheme is urgently required 

to manage the huge image database. Different from the 

traditional search engine, in CBIR, an image query is described 

using one or more example images and low-level visual features 

(e.g., color [3-5], texture [5-7], shape [8-10], etc.) are 

automatically extracted to represent the images in the database. 

However, the low-level features captured from the images may 

not accurately characterize the high-level semantic concepts [1, 

2]. 

    To narrow down the so called semantic gap, Relevance 

Feedback (RF) was introduced as a powerful tool to enhance the 

performance of CBIR [11, 12]. Huang et al introduced both the 

query movement and re-weighting techniques [13, 14]. Self 

Organizing Map was used to construct the RF algorithms [15]. 

In [16], one-class Support Vector Machine (SVM) estimated 

the density of positive feedback samples. Derived from 

one-class SVM, a biased SVM inherited the merits of one-class 

SVM but incorporated the negative feedback samples [17]. 

Considering the geometry structure of image low-level visual 

features, [18, 19] proposed manifold learning based approaches 

to find intrinsic structure of images and improve the retrieval 

performance. With the observation that “all positive examples 

are alike; each negative example is negative in its own way”, 

RF was formulated as a biased subspace learning problem, in 

which there is an unknown number of classes, but the user is 

only concerned about the positive class [20,21,22]. However, 

all of these methods have some limitations. For example, the 

method in [13, 14] is heuristically based, the density estimation 

method in [16] ignores any information contained in the 

negative feedback samples, and the discriminant subspace 

learning techniques in [20, 22] often suffer from the so-called 

―Small Sample Size‖ problem. Regarding the positive and 

negative feedbacks as two different groups, classification-based 

RFs [23, 24, 25] have become a popular technique in the CBIR 

community. However, RF is very different from the traditional 

classification problem because the feedbacks provided by the 

user are often limited in real-world image retrieval systems. 

Therefore, small sample learning methods are most promising 

for RF. 

   Two-class SVM is one of the popular small sample learning 

methods widely used in recent years and obtains the state of the 

art performance in classification for its good generalization 

ability [24-28]. The SVM can achieve a minimal structural risk 

by minimizing the Vapnik-Chervonenkis dimensions [27]. Guo 

et al developed a constrained similarity measure for image  
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Fig.1 A typical set of positive and negative feedback samples in a 

relevance feedback iteration 

 

retrieval [26], which learns a boundary that divides the images 

into two groups and samples inside the boundary are ranked by 

their Euclidean distance to the query image. The SVM active 

learning method selects samples close to the boundary as the 

most informative samples for the user to label [28]. Random 

sampling techniques were applied to alleviate unstable, biased 

and overfitting problems in SVM RF [25]. Li et al proposed a 

multitraining SVM method by adapting a co-training technique 

and a random sampling method [29]. Nevertheless, most of the 

SVM RF approaches ignore the basic difference between the 

two distinct groups of feedbacks, that is, all positive feedbacks 

share a similar concept while each negative feedback usually 

varies with different concepts. For instance, a typical set of 

feedback samples in RF iteration are shown in Fig.1. All the 

samples labeled as positive feedbacks share a common concept 

(i.e., elephant), while each sample labeled as negative feedback 

varies with diverse concepts (i.e., flower, horse, banquet, hill, 

etc.). Traditional SVM RF techniques treat positive and 

negative feedbacks equally [24, 25, 26, 28, 29]. Directly using 

the SVM as a RF scheme is potentially damaging to the 

performance of CBIR systems. One problem stems from the fact 

that different semantic concepts live in different subspaces and 

each image can live in many different subspaces, and it is the 

goal of RF schemes to figure out ―which one‖ [20]. However, it 

will be a burden for traditional SVM based RF schemes to tune 

the internal parameters to adapt to the changes of the subspace. 

Such difficulties have severely degraded the effectiveness of 

traditional SVM RF approaches for CBIR. Additionally, it is 

problematic to incorporate the information of unlabelled 

samples into traditional SVM based RF schemes for CBIR, 

although unlabelled samples are very helpful in constructing the 

optimal classifier, alleviating noise and enhancing the 

performance of the system.  

    To explore solutions to these two aforementioned problems 

in the current technology, we propose a Biased Maximum 

Margin Analysis (BMMA) and a Semi-Supervised Biased 

Maximum Margin Analysis (SemiBMMA) for the traditional 

SVM RF schemes, based on the graph embedding framework 

[30]. The proposed scheme is mainly based on (a) the 

effectiveness of treating positive examples and negative 

examples unequally [20, 21, 22]; (b) the significance of the 

optimal subspace or feature subset in interactive CBIR; (c) the 

success of graph embedding in characterizing intrinsic 

geometric properties of the data set in high-dimensional space 

[30, 31, 32]; and (d) the convenience of the graph embedding 

framework in constructing semi-supervised learning techniques. 

With the incorporation of BMMA, labeled positive feedbacks 

are mapped as close as possible, while labeled negative 

feedbacks are separated from labeled positive feedbacks by a 

maximum margin in the reduced subspace. The traditional SVM 

combined with BMMA can better model the relevance feedback 

process and reduce the performance degradation caused by 

distinct properties of the two groups of feedbacks. The 

SemiBMMA can incorporate the information of unlabelled 

samples into the relevance feedback and effectively alleviate the 

over fitting problem caused by the small size of labeled training 

samples.  To show the effectiveness of the proposed scheme 

combined with the SVM RF, we will compare it with the 

traditional SVM RF and some other relevant existing techniques 

for RF on a real world image collection. Experimental results 

demonstrate that the proposed scheme can significantly improve 

the performance of the SVM RF for image retrieval.  

The rest of this paper is organized as follows: in 

Section II, the related previous work, i.e., the principle of 

SVM RF for CBIR and the graph embedding framework, 

are briefly reviewed; in Section III, we introduce the 

BMMA and the SemiBMMA for SVM RF; an image 

retrieval system is given in Section IV; a large number of 

experiments which validate the effectiveness of the 

proposed scheme are given in Section V; conclusion and 

future work are presented in Section VI. 

II. RELATED PREVIOUS WORK 

A. The principle of SVM RF for CBIR 

In this section, we briefly introduce the principle of the 

traditional SVM based RF for CBIR. The SVM implements the 

structure risk minimization by minimizing 

Vapnik-Chervonenkis dimensions [27]. Consider a linearly 

separable binary classification problem as follows: 

            1 1 1, ,{( , ), , ( , )}  { 1, 1} N N i Nx y x y and y    
        

  (1) 

where 
ix denotes a h-dimensional vector, N is the number of 

training samples and 
iy is the label of the class that the vector 

belongs to. The objective function of SVM aims to find an 

optimal hyperplane to separate the two classes, i.e., 

                                    0Tw x b                                      (2)
 

where x is an input vector, w is a weight vector and b is a bias.  

The SVM attempts to find the two parameters w and b for the 

optimal hyperplane by maximizing the geometric margin 

2 / || ||w , subject to: 

                                
( ) 1T

i iy w x b                                      (3) 

The solution of the objective function can be found through a 

Wolf dual problem with the Lagrangian multiplied by i :                                                                                                             

              1 , 1

( ) ( ) / 2
N N

i i j i j i j

i i j

Q y y x x
 

                             (4) 

subject to 0i   and 
1

0
N

i ii
y


  . 
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In general, in the dual problem data points appear only in the 

inner product, which can often be replaced with a positive 

definite kernel function for better performance.  

                  
( ) ( ) ( , )i j i j i jx x x x K x x    

                 
  (5) 

where ( )K  is a kernel function. The kernel version of the Wolfe 

dual problem is 

                
1 , 1

( ) ( ) / 2
N N

i i j i j i j

i i j

Q y y K x x
 

                        (6) 

Thus, for a given kernel function, the SVM classifier is given 

by 

                               
( ) sgn( ( ))F x f x

                   
           (7)

        

where
1

( ) ( , )
s

i i ii
f x y K x x b


   is the output hyperplane 

decision function of SVM and s is the number of support 

vectors. 

Generally, the output of SVM (i.e., ( )f x ), is usually used to 

measure the similarity between a given pattern and the query 

image in the traditional SVM RF for CBIR. The performance of 

a SVM classifier depends mainly on the number of support 

vectors. Orthogonal Complement Component Analysis 

(OCCA) decreases the number of support vectors by finding a 

subspace, in which all the positive feedbacks are merged [33]. 

However, it still totally ignores the information contained in 

negative feedbacks, which is very helpful in finding a 

homogeneous subspace. Intuitively, good separation is achieved 

by the hyperplane that has the largest distance to the nearest 

training samples, since in general, the larger the margin, the 

lower the generalization error of the classifier.     

B. Graph embedding framework 

   In order to describe our proposed approach clearly, we firstly 

review the graph embedding framework introduced in [30]. 

Generally, for a classification problem, the sample set can be 

represented as a matrix 1 2[ , , , ] h n

nX x x x R   , where n  

indicates the total number of the samples and h is the feature 

dimension.  Let { , }G X W  be an undirected similarity graph, 

which is called an intrinsic graph, with vertices set X and 

similarity matrix 
*n nW R . The similarity matrix W  is real 

and symmetric, and measures the similarity between a pair of 

vertices; W can be formed using various similarity criteria. The 

corresponding diagonal matrix D  and the Laplacian matrix 

L of the graph G  can be defined as follows:  

              

, ,  1, ,ii ij

j i

L D W D W i n


    
   

                  (8) 

     Graph embedding of the graph G  is defined as an algorithm 

to determine the low-dimensional vector representations 

1 2[ , , ] l n

nY y y y R    of the vertex set X , where l is lower 

than h  for dimensionality. The column vector iy  is the 

embedding vector for the vertex ix , which preserves the 

similarities between pairs of vertices in the original 

high-dimensional space. Then in order to characterize the 

difference between pairs of vertices in the original 

high-dimensional space, a penalty graph { , }p pG X W is also 

defined, where the vertices X  are the same as those of G , but 

the edge weight matrix 
pW corresponds to the similarity 

characteristics that are to be suppressed in the low-dimensional 

feature space. For a dimensionality reduction problem, direct 

graph embedding requires an intrinsic graph G , while a penalty 

graph 
pG  is not a necessary input. Then the similarities among 

vertex pairs can be maintained according to the graph 

preserving criterion as follows: 

       

2

( ) ( )

arg min || || arg min ( )
T T

T

i j ij
tr YBY c tr YBY ci j

y y y W tr YLY

 

  
        

(9) 

where ( )tr   is the trace of an arbitrary square matrix; c  is a 

constant; B is the constraint matrix. B  may typically be a 

diagonal matrix for scale normalization or express more general 

constraints among vertices in a penalty graph 
pG , and it 

describes the similarities between vertices that should be 

avoided; B  or pL  is the Laplacian matrix of 
pG , similarly to 

Equation (8), which can also be defined as follows: 

        

, ,  1, ,p p p p p

ii ij

j i

L D W D W i n


                       (10) 

where 
pW  is the similarity matrix of penalty graph 

pG  to 

measure the difference between a pair of vertices in 
pG . 

   The graph embedding framework preserves the intrinsic 

property of the samples in two ways: For larger similarity 

between samples 
ix  and jx , the distance between 

iy  and jy  

should be smaller to minimize the objective function. 

Conversely, smaller similarity between 
ix  and jx  should lead 

to larger distance between iy  and jy . Hence, through the 

intrinsic graph G  and penalty graph
PG , the similarities and 

differences among vertex pairs in a graph G  can be preserved 

in the embedding. 

     In [30], based on the graph embedding framework, Equation 

(9) can be resolved by converting it into the following trace ratio 

formulation: 

                          

( )
arg min

( )

T

T
Y

tr YLY
Y

tr YBY

 

           

                  (11) 

   Generally, if the constraint matrix represents only scale 

normalization, then this ratio formulation can be directly solved 

by eigenvalue decomposition. However, for a more general 

constraint matrix, it can be approximately solved with 

Generalized Eigenvalue Decomposition by transforming the 

objective function into a more tractable approximate form 
1arg min (( ) ( ))T T

Y

Tr YBY YLY
. 

With the assumption that the low-dimensional vector 

representations of the vertices can be obtained from a linear 

projection, i.e., T

i iy x , where   is the projection matrix, 

then the objective function (11) can be changed to  

                  

( )
arg min

( )

T T

T T

tr XLX

tr XBX

 


 

 

    
                     (12)

 
During the past few years, a number of manifold learning 

based feature extraction methods have been proposed to capture 

the intrinsic geometry property [31, 32, 34,35,36,37], In [30], 

Yan et al. claimed that all of the mentioned manifold learning 

algorithms can be mathematically unified within the graph 

embedding framework described in this subsection. They also 
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proposed Marginal Fisher Analysis which takes both the 

manifold geometry and the class information into consideration. 

However, Marginal Fisher Analysis still suffers from the ―Small 

Sample Size” problem when the training samples are 

insufficient, which is always the case in image retrieval.  

III. BMMA AND SEMIBMMA FOR SVM RF IN CBIR 

With the observation that “all positive examples are alike; 

each negative example is negative in its own way”, the two 

groups of feedbacks have distinct properties for CBIR [20]. 

However, the traditional SVM RF treats the positive and 

negative feedbacks equally.   

To alleviate the performance degradation when using the 

SVM as a RF scheme for CBIR, we explore solutions based on 

the argument that different semantic concepts lie in different 

subspaces and each image can lie in many different concept 

subspaces [20]. We formally formulate this problem into a 

general subspace learning problem and propose a BMMA for 

the SVM RF scheme. In the reduced subspace, the negative 

feedbacks, which differ in diverse concepts with the query 

sample, are separated by a maximum margin from the positive 

feedbacks, which share a similar concept with the query sample. 

Therefore, we can easily map the positive and negative 

feedbacks onto a semantic subspace in accordance with human 

perception of the image contents. 

To utilize the information of unlabelled samples in the 

database, we introduced a Laplacian regularizer to the BMMA, 

which will lead to SemiBMMA for the SVM RF. The resultant 

Laplacian regularizer is largely based on the notion of local 

consistency which was inspired by the recently emerging 

manifold learning community and can effectively depict the 

weak similarity relationship between unlabeled samples pairs.   

Then, the remaining images in the database are projected onto 

this resultant semantic subspace and a similarity measure is 

applied to sort the images based on the new representations. For 

the SVM based RFs, the distance to the hyperplane of the 

classifier is the criterion to discriminate the query relevant 

samples from the query irrelevant samples. After the projection 

step, all positive feedbacks are clustered together while negative 

feedbacks are well separated from positive feedbacks by a 

maximum margin. Therefore, the resultant SVM classifier 

hyperplane in this subspace will be much simpler and better than 

in the original high dimensional feature space. 

Different from the classical subspace learning methods, e.g., 

PCA and LDA, which can only see the linear global Euclidean 

structure of samples, BMMA aims to learn a projection matrix 

 such that in the projected space, the positive samples have 

high local within-class similarity, but the samples with different 

labels have high local between-class separability. To describe 

the algorithm clearly, first we introduce some notations of this 

approach. 

  In each round of feedback iteration, there are n  samples 

1 2{ , , , } h

nX x x x R   . For simplicity, we assume that the 

first n

 samples are positive feedbacks (1 )ix i n  , the next 

n

 samples are negative feedbacks ( 1 )ix n i n n      , 

and all the others are unlabelled samples ( 1 )ix n n i n     . 

Let ( )il x  be the class label of sample
ix , we denote 

( ) 1il x  for positive feedbacks, ( ) 1il x   for negative 

feedbacks and ( ) 0il x  for unlabelled samples. To better show 

the relationship between the proposed approaches and the graph 

embedding framework, we use the similar notations and 

equations in the original graph embedding framework, which 

provides us a general platform to develop various new 

approaches for dimensionality reduction. Firstly, two different 

graphs are formed: 1) the intrinsic graph G , which characterizes 

the local similarity of the feedback samples; 2) the penalty graph 
pG , which characterizes the local discriminant structure of  the 

feedback samples. 

     For all the positive feedbacks, we first compute the pair-wise 

distance between each pair of positive feedbacks. Then for each 

positive feedback ix , we find its 1k  nearest neighborhood 

positive feedbacks, which can be represented as a sample 

set s

iN , and put an edge between 
ix  and its neighborhood 

positive feedbacks. Then the intrinsic graph is characterized as 

follows: 

           

2

: 

|| || *

2 [ ( ) ]

s s
i j

T T
I i j ij

i j j ori

T T

S x x W

tr X D W X

 

 

 

 

 

 

    

                (13) 

1/ | |,   ( ) 1  ( ) 1,   

0,  

s s s

j i

ij

if l i and l j i or j
W

else

    
 


      (14) 

where D  is a diagonal matrix whose diagonal elements are 

calculated by 
ii ijj

D W ; | |s  denotes the total number of 

1k  nearest neighborhood positive sample pairs for each positive 

feedback. Basically, the intrinsic graph measures the total 

average distance of the | |s  nearest neighborhood sample 

pairs, and is used to characterize the local within-class 

compactness for all the positive feedbacks. 

For the penalty graph
pG , its similarity matrix 

p

ijW  

represents geometric or statistical properties to be avoided and 

is used as a constraint matrix in the graph embedding 

framework. In the BMMA, the penalty graph 
pG is constructed 

to represent the local separability between the positive class and 

the negative class. More strictly speaking, we expect that the 

total average margin between the sample pairs with different 

labels should be as large as possible. 

For each feedback sample, we find its 
2k  neighbor feedbacks 

with different labels and put edges between corresponding pairs 

of feedback samples with weights
p

ijW . 

Then, the penalty graph can be formed as follows: 

          

2

:

|| ||

2 [ ( ) ]

p p
i j

T T p
p i j ij

i j j ori

T p p T

S x x W

tr X D W X

 

 

 

  

 

 

               

(15) 

1/ | |,   ( ) 1  ( ) 1,   

0,  

p p p

j ip

ij

if l i and l j i or j
W

else

     
 


  (16)
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                                   (a)                                                     (b)                                                       (c) 
   Fig.2 (a) red dots are positive samples and blue dots are negative samples in the original space (b) the BMMA approach (c) the positive 

samples and negative samples in the maximum margin subspace 

 

where pD  is a diagonal matrix whose diagonal elements are 

calculated by p p

ii ijj
D W ; | |p  denotes the total number 

of
2k neighborhood sample pairs with different labels. Similarly, 

the penalty graph measures the total average distance of the 

| |p  nearest neighbor sample pairs in different class, and is 

used to characterize the local between-class separability.     

 

In the following, we describe how to utilize the graph 

embedding framework to develop algorithms based on the 

designed intrinsic and penalty graphs. Different from the 

original formulation of the graph embedding framework in [30], 

the BMMA algorithm optimizes the objective function in a trace 

difference form instead, i.e.,   

            

arg max 2 [ ( ) ]

                     2 [ ( ) ]

arg max [ ( ) ]

                      [ ( ) ]

arg max ( ) ( )

arg max [ ( ) ]

T p p T

T T

T p p T

T T

T T T T

T T

tr X D W X

tr X D W X

tr X D W X

tr X D W X

tr XBX tr XLX

tr X B L X









  

 

 

 

   

 

  

 

 

 

 

            

 (17) 

    As given in Equation (17), we can notice that the objective 

function works in two ways, which tries to maximize 

( )T Ttr XBX   and at the same time minimize ( )T Ttr XLX  . 

Intuitively, we can analyze the meaning of the objective 

function in (17) geometrically. By formulating the objective 

function as a trace difference form, we can regard it as the total 

average local margin between positive samples and negative 

samples. Therefore, Equation (17) can be used as a criterion to 

discriminate the different classes. In [38], the maximum margin 

criterion (MMC) was presented as an objective function with a 

similar difference form. The differences between BMMA and 

MMC are the definitions of the interclass separability and 

intraclass compactness. In MMC, both of the interclass 

separability and intraclass compactness are defined as the same 

in LDA, which treats the two different classes equally, and 

MMC can only see the linear global Euclidean structure. In 

BMMA, the intraclass compactness is constructed by only 

considering one class (e.g., positive feedbacks) and 

characterized by a sum of the distances between each positive 

sample and its 1k nearest neighbors in the same class. The 

interclass separability is defined by resorting to interclass 

marginal samples instead of the mean vectors of different 

classes as in MMC. Without prior information on data 

distributions, BMMA can find more reliable low-dimensional 

representations of the data compared to the MMC [38] and also 

follow the original assumption in BDA [20] (i.e., all positive 

examples are alike; each negative example is negative in its own 

way). It should be noted that previous methods [39, 40] that 

followed MMC cannot be directly used for the SVM RF in 

image retrieval because these methods treat samples in different 

classes equally. 

   In order to remove an arbitrary scaling factor in the projection, 

we additionally require that   is constituted by the unit vectors, 

i.e., 1, 1, 2 ,T

k k k l    . This means that we need to solve the 

following constraint optimization.

                      

                  

T

1

max ( ( ) )

       = ( )

. .  1 0, 1,2, ,

T

l
T T

k k

k

T

k k

tr X B L X

X B L X

s t k l


 

 

 







   



      

                  (18)

 

Note that we may also use other constraints instead. For 

example, we may require ( ) 1T Ttr XBX    and then minimize 

( )T Ttr XLX  . It is easy to check that the above maximum 

margin approach with such a constraint in fact results in the 

traditional Marginal Fisher Analysis (MFA) [30]. The only 

difference is that Equation (18) involves a constrained 

optimization problem, whereas the traditional MFA solves an 

unconstrained optimization problem. The motivation for using 

the constraint 1, 1,2, ,T

k k k l     is to avoid calculating the 

inverse of TXBX , which leads to the potential ―Small Sample 

Size” problem. In order to solve the above constraint 

optimization problem, we introduce a Lagrangian  

   1

( , ) ( ) ( 1)
l

T T T

k k k k k k k

k

L X B L X      


             (19) 

with the  multipliers k .  The Lagrangian L should be 

maximized with respect to both k  and k . The condition that 

at the stationary point, the derivatives of  L respect to k  must 

vanish, i.e., 

( , )
( ( ) ) 0,  1,2, ,Tk k

k k

k

L
X B L X I k l

 
 




    


            

(20) 

and therefore,  
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( ) , 1, 2, ,T

k k kX B L X k l                   (21) 

which means that the 'k s  are the eigenvalues of ( ) TX B L X  

and 'k s are the corresponding eigenvectors. Thus, we have 

   1 1 1

( ) ( )
l l l

T T T

k k k k k k

k k k

J X B L X      
  

     
           

 (22) 

   Therefore, the objective function is maximized when   is 

composed of the largest eigenvectors of ( ) TX B L X . Here, by 

imposing constraint 1, 1,2, ,T

k k k l     , we need not 

calculate the inverse of TXBX , and this allows us to avoid the 

―Small Sample Size” problem easily.  

   The BMMA can be illustrated in Fig.2. 

In the previous subsection, we have formulated the BMMA 

algorithm and shown that the optimal projection matrix   can 

be obtained by Generalized Eigenvalue Decomposition on a 

matrix. Then the problem is how to determine an optimal 

dimensionality for RF, i.e., the projected subspace. To achieve 

such a goal, we give the detail of determining the optimal 

dimensionality. 

In general,  

           1

max ( ( ) )
l

T T

i

i

tr X B L X


  


                              (23) 

where
 

'

i s  are the associated eigenvalues and we have
    

           1 2 1 0d d l          
                      

 (24) 

To maximize the margin between the positive samples and 

negative samples, we should preserve all the eigenvectors 

associated with the positive eigenvalues. However, as indicated 

in [33], for image retrieval the orthogonal complement 

components are essential to capture the same concept shared by 

all positive samples. Based on this observation, we should also 

preserve the components associated with zero eigenvalues 

although they do not contribute to maximize the margin. This 

technique can effectively preserve more geometry properties of 

the feedbacks in the original high-dimensional feature space. 

Therefore, the optimal dimensionality of the projected subspace 

just corresponds to the number of nonnegative eigenvalues of 

the matrix. Therefore, compared to the original formulation of 

the graph embedding framework in [30], the new formulation 

(18) can easily avoid the intrinsic ―Small Sample Size‖ problem 

and also provide us with a simple way to determine the optimal 

dimensionality for this subspace learning problem. 

Biased Discriminant Analysis (BDA) and its kernel version 

BiasMap [20] were first proposed to address the asymmetry 

between the positive and negative samples in interactive image 

retrieval. However, to use BDA, the ―Small Sample Size‖ 

problem and Gaussian assumption for positive feedbacks are 

two major challenges. While the kernel method BiasMap cannot 

exert its normal capability since the feature dimensions are 

much higher than the number of training samples. Additionally, 

it is still problematic to determine the optimal dimensionality of 

BDA and BiasMap for CBIR.   Different from the original 

BDA, our BMMA algorithm is a local discriminant analysis 

approach, which does not make any assumption on the 

distribution of the samples. Biased 

 
Fig.3 An illustration of the SVM hyperplance comparison between 

BMMA SVM and SemiBMMA SVM for two classes of feedbacks 

 

towards the positive samples, maximizing the objective function 

in the projected space can push the nearby negative samples 

away from the positive samples while pulling the nearby 

positive samples towards the positive samples. Therefore, the 

definition in Equation (18) can maximize the overall average 

margin between the positive samples and negative samples. In 

such a way, each sample in the original space is mapped onto a 

low-dimensional local maximum margin subspace in 

accordance with human perception of the image contents. 

    Since the graph embedding technique is an effective way to 

capture the intrinsic geometry structure in the original feature 

space, we propose a way to incorporate the unlabelled samples 

based on the intrinsic graph, which is helpful in capturing the 

manifold structure of samples and alleviating the over fitting 

problem. In the following, we design a regularization term 

based on intrinsic graph for the unlabelled samples in the image 

database. 

    For each unlabelled sample ( 1 )ix n n i n     , we expect 

that the nearby unlabelled samples are likely to have the similar 

low-dimensional representations. Specifically, for each 

unlabelled sample, we find its 1k nearest neighborhood 

unlabelled samples, which can be represented as a sample set 
u

iN , and put an edge between the unlabelled 
ix  and its 

neighborhood unlabelled samples. Then the intrinsic graph for 

the unlabelled samples is characterized as follows: 

      

2

: 

1
|| || *

2

[ ( ) ]

[ ]

s s
i j

T T u
U i j ij

i j j ori

T u u T

T T

S x x W

tr X D W X

tr XUX

 

 

 

 

  

 



 

                 

(25)

  

 
2 21

| |
exp( || || / ),   ( ) ( ) 0,  

0,  

n

u u

i j j iu

ij

x x if l i l j i or j
W

else

      
 


     (26) 

which reflects the affinity of the sample pairs; uD  is a diagonal 

matrix whose diagonal elements are calculated by 
u u

ii ijj
D W ; | |uD  denotes the total number of 1k nearest 

neighborhood unlabelled sample pairs for each unlabelled 

sample.
u u uL D W   can be known as a Laplacian matrix. 
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Fig.4 The flowchart of the Content-Based Image Retrieval system 

 

Hence, we call this term as a Laplacian regularizer.  

    The motivation for introducing this term is inspired by the 

regularization principle, which is the key to enhancing the 

generalization and robust performance of the approach in 

practical applications. There are a lot of possible ways to choose 

a regularizer for the proposed BMMA. In this work we chose 

the Laplacian regularizer, which is largely inspired by the 

recently emerging manifold learning community. Actually, this 

scheme can preserve weak (probably correct) similarities 

between all unlabeled sample pairs and thus effectively 

integrate the similarity information of unlabeled samples into 

the BMMA. By integrating the Laplacian regularizer into the 

supervised BMMA, we can easily obtain the SemiBMMA for 

the SVM RF, i.e., 

              

* arg max [ ( ) ]T Ttr X B L U X


                  (27) 

where   is used to trade off the contributions of the labeled 

samples and unlabelled samples. Similarly, the solution of (27) 

is obtained by conducting the Generalized Eigenvalue 

Decomposition and   is calculated as a set of eigenvectors. 

The difference between BMMA SVM and SemiBMMA 

SVM for two classes of feedbacks can be shown in Fig.3. The 

SemiBMMA algorithm is illustrated in Table 1. 
 

Table 1 Semi-Supervised Biased Maximum Margin Analysis 

 

Input:
 1 2{ , , } h

nX x x x R  stand for all the feedback samples 

and unlabelled samples, which include the positive sample set 

X 
, the negative sample set X 

, and  unlabelled samples.  

1) Construct the supervised intrinsic graph G , according to the 

formulation (14) and calculate the matrix value
TXLX . 

2) Construct the supervised penalty graph
pG , according to the 

formulation (16) and calculate the matrix value TXBX . 

3) Construct the Laplacian regularizer according to the 

formulation (26) and calculate the matrix value TXUX . 

4) Calculate the projection matrix *  according to Generalized 

Eigenvalue Decomposition on the matrix ( ) TX B L U X   .  

5) Calculate the new representations: project all positive, 

negative and remaining samples in the database onto the 

reduced subspace respectively, i.e., *TY X  ,
*TY X  . 

Output: Positive and negative samples, Y 
and Y 

, in this 

reduced subspace. 

 

Then all the unlabeled samples in the database are projected 

onto this subspace. After the projection, the traditional SVM RF 

is executed on the new representations. Finally, similar to the 

traditional SVM RF, we can measure the degree of relevance 

through the output of SVM, i.e.,
 
| ( ) |f x . 

IV. THE CONTENT-BASED IMAGE RETRIEVAL SYSTEM 

In experiments, we use a subset of the Corel Photo Gallery as 

the test data to evaluate the performance of the proposed 

scheme. The original Corel Photo Gallery includes plenty of 

semantic categories, each of which contains 100 or more 

images. However, some of the categories are not suitable for 

image retrieval, since some images with different concepts are 

in the same category and many images with the same concept 

are in different categories. Therefore, the existing categories in 

the original Corel Photo Gallery are ignored and reorganized 

into 80 conceptual classes based on the ground truth, such as 

lion, castle, aviation, train, dog, autumn, cloud, tiger, etc. 

Finally, the test database comprises totally 10,763 real-world 

images. 

Given a query image by the user, the CBIR system is expected 

to feed back more semantically relevant images after each 

feedback iteration [2]. However, during RF, the number of the 

relevant images is usually very small because of the semantic 

gap. At the same time, the user would not like to label a large 

number of samples. The user also expects to obtain more 

relevant images with only a few rounds of RF iterations. 

Keeping the size of labeled relevant images small and the 

relevance feedback iterations few are two key issues in 

designing the image retrieval system. Therefore, we devise the 

following CBIR framework accordingly to evaluate the RF 

algorithms. 

From the flowchart in Fig.4, we can notice that when a query 

image is provided by the user, the image retrieval system first 

extracts the low-level features. Then all the images in the 

database are sorted based on a similarity metric, i.e. Euclidean 

distance. If the user is satisfied with the results, the retrieval 

process is ended, and the results are presented to the user. 

However, because of the semantic gap, most of the time, the 

user is not satisfied with the first retrieval results. Then she/he 
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will label the most semantically relevant images as positive 

feedbacks in top retrieval results. All of the remaining images in 

top results are automatically labeled by the system as the 

negative feedbacks. Based on the small size positive and 

negative feedbacks, the RF model can be trained based on 

various existing techniques. Then all the images in the database 

are resorted based on a new similarity metric. After each round 

of retrieval, the user will check whether the results are satisfied. 

If the user is satisfied with the results, then the process is ended; 

otherwise, the feedback process repeats until the user is satisfied 

with the retrieval results.  

Generally, the image representation is a crucial problem in 

CBIR. The images are usually represented by low level features, 

such as color [3-5], texture [5-7] and shape [8-10], each of 

which can capture the content of an image to some extent.  

For color, we extracted three moments: color mean, color 

variance, and color skewness in each color channel (L, U, V) 

respectively. Thus, a 9-dimensional color moment is employed 

as the color features in our experiments to represent the color 

information. Then a 256-dimensional (8*8*4) HSV color 

histogram is calculated.  Both hue and saturation are quantized 

into 8 bins and the values are quantized into 4 bins. These two 

kinds of visual features are formed as color features. 

Comparing with the classical global texture descriptors (e.g., 

Gabor features, wavelet features), the local dense features show 

good performance in describing the content of an image. The 

Webber Local Descriptors (WLD) [41] are adopted as feature 

descriptors which are mainly based on the mechanism of the 

human perception of a pattern. The WLD local descriptor 

results in a feature vector of 240 values. 

 We employ the edge directional histogram [8] from the Y 

component in YCrCb space to capture the spatial distribution of 

edges. The edge direction histogram is quantized into five 

categories including horizontal, 45
○。

 diagonal, vertical, 135
○。

 

diagonal and isotropic directions to represent the edge features. 

   Generally, these features are combined into a feature vector, 

which results in a vector with 510 values (i.e., 

9+256+240+5=510). Then all feature components are 

normalized to normal distributions with zero mean and one 

standard deviation to represent the images. 

V. EXPERIMENTAL RESULTS ON A REAL WORLD IMAGE 

DATABASE 

A The intrinsic problems in the traditional SVM RF 

An image is usually represented as a high-dimensional 

feature vector in CBIR. However, one key issue in RF is that 

which subset of features can reflect the basic properties of 

different groups of feedback samples and benefit the 

construction of the optimal classifier. This problem can be 

illustrated from some real-world data in relevance feedback. 

There are five positive samples and five negative feedback 

samples. We randomly select two features to construct the 

optimal SVM hyperplane for three times. As shown in Fig.5, 

 
            (a)                               (b)                            (c) 

Fig.5 The SVM hyper plane is diverse for different combinations of 

features. 

 

we can see that the resultant SVM classifiers are diverse with 

different combinations of features. 

It is essential to obtain a satisfactory classifier when the 

number of available feedback samples is small, which is always 

the case in RF, especially in the first few rounds of feedbacks. 

Therefore, we first show a simple example to simulate the 

unstable problem of SVM when dealing with a small number of 

training samples. The open circles in Fig.6 indicate the positive 

feedback samples and the plus points indicate the negative 

samples in relevance feedback. The Fig.6 (a) shows an optimal 

hyperplane, which is trained by the original training samples. 

Fig.6 (b) and (c) show a different optimal hyperplane, which are 

trained by the original training set with only one and two 

incremental positive sample respectively. From Fig.6, we can 

see that the hyperplane of the SVM classifier changes sharply 

when a new incremental sample is integrated into the original 

training set. Additionally, we can also note that the optimal 

hyper planes of SVM are much complex when the feedbacks 

have a complicated distribution.  

 

  
           (a)                               (b)                            (c) 

Fig. 6 The SVM hyper plane is unstable and complex when dealing 

with small size of training set 

 

Note that the similar results have been indicated in the 

previous research [25]. However, in this section, we have shown 

slightly different problems in the traditional SVM RF, that is, 

distinct property of feedback samples in RF and unstable and 

complex hyper planes of the traditional SVM in the first few 

rounds of feedbacks. 

B Features extraction based on different methods 

Six experiments are conducted for comparing the BMMA 

with the traditional LDA, BDA method and a Graph embedding 

approach MFA, in finding the most discriminative directions. 

We plot the directions which correspond to the largest 

eigenvalue of the decomposed matrices for LDA, BDA, MFA 

and BMMA respectively. From these examples, we can clearly 

notice that LDA can find the best discriminative direction when 

the data from each class are distributed as Gaussian with similar 

covariance matrices, as shown in Fig.7 (a) and (d), but it may 

confuse when the data distribution is more complicated, as 

given in Fig.7(b), (c), (e) and (f). Biased towards the positive 

samples, BDA can find the direction that  
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(e)                                         (f) 

Fig.7 Four feature extraction methods (i.e., LDA, BDA, MFA and 

BMMA) for two classes of samples (i.e., positive samples and negative 

samples) with different distribution 

 

the positive samples are well separated with the negative 

samples when the positive samples have Gaussian distribution, 

but it may also confuse when the distribution of the positive 

samples is more complicated. For instance, in Fig.7 (b), BDA 

can find the direction for distinguishing positive samples from 

negative ones. However, in Fig.7 (c), (e) and (f), when the 

positive samples have more complicated distribution, the BDA 

algorithm obviously fails. MFA can also find the discriminative 

direction when the distribution of negative feedbacks is simple, 

as shown in Fig.7 (a), (b), (c). But when the negative samples 

pose a more complicated distribution, MFA will fails as in Fig.7 

(d), (e), (f). Biased towards positive samples, the BMMA 

method can find the most discriminative direction for all the 6 

experiments based on local analysis, since it doesn’t make any 

assumptions on the distributions of the positive and negative 

samples. It should be noted that BMMA is a linear method and 

therefore, we only gave the comparison results of linear 

methods above. 

C  Statistical experimental results 

    In this section, we evaluate the performance of the proposed 

scheme on a real world image database. We use precision-scope 

curve, precision rate and standard deviation to evaluate the 

effectiveness of the image retrieval algorithms. The scope is 

specified by the number N of top-ranked images presented to 

the user. The precision is the major evaluation criterion, which 

evaluates the effectiveness of the algorithms. The 

precision-scope curve describes the precision with various 

scopes and can give the overall performance evaluation of the 

approaches. Precision rate is the ratio of the number of relevant 

images retrieved to the top N retrieved images, which 

emphasizes the precision at a particular value of scope. 

Standard deviation describes the stability of different 

algorithms. Therefore, the precision evaluates the effectiveness 

of a given algorithm and the corresponding standard deviation 

evaluates the robustness of the algorithm. We empirically select 

the parameters 1 2, 4k k   according to manifold learning 

approaches. Considering the computable efficiency, we 

randomly select 300 unlabeled samples in each round of 

feedback iteration. For the trade off parameter between labeled 

samples and unlabeled samples, we simply set 1  . For all the 

SVM-based algorithms, we choose the Gaussian kernel:
  

                 

2| |( , ) , 0.001x yK x y e                                  
(28)

 

    
Note that, the kernel parameters and kernel type can 

significantly affect the performance of retrieval. For different 

image database, we should tune the kernel parameters and 

kernel type carefully. In our experiments, we determine the 

kernel parameters from a series of values according to the 

performance. Moreover, much better performance can be 

achieved by tuning the kernel parameters further for different 

queries. 

 

1) Experiments on a small size image database 

 

 
Fig.8 Example categories used in the small size image database 

 

In order to show how efficient the proposed BMMA 

combined with SVM in dealing with the asymmetry properties 

of feedback samples, the first evaluation experiment is executed 

on a small size database, which includes 3899 images with 30 

different categories. We use all 3899 the images in 30 categories 

as queries. Some example categories used in experiments are 

shown in Fig.8. To avoid the potential problem caused by the 

asymmetry amount of positive and negative feedbacks [25], we 

selected equal number of positive and negative feedbacks in this 

subsection. In practice, the first 5 query relevant images and 

first 5 irrelevant images in the top 20 retrieved images in the 

previous iterations were automatically selected as positive and 

negative feedbacks respectively.   

   In [33], OCCA was proposed to only analyze the positive 

feedbacks for SVM RF in a retrieval task. Hence, we compared 

the RF performance of BMMA combined with SVM (BMMA 

SVM), OCCA combined with SVM (OCCA SVM) and the 

traditional SVM in this subsection. 
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Fig.9 Average precisions in the top 20 results of SVM, OCCA SVM and BMMA SVM after 2 rounds of feedback 
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                                                          (a)                                                                                        (b) 

Fig.10 The precision-scope curves after the 1st feedback and 2nd feedback for SVM, OCCA SVM and BMMA SVM 

 

In real world, it is not practical to require the user to label many 

samples. Therefore, small size of training samples will cause the 

severe unstable problem in SVM RF (as shown in Section V. A). 

Fig.9 shows the precisions in the top 20 after the 2
nd

 round of 

feedback iteration for all the 30 categories. The baseline curve 

describes the initial retrieval results without any feedback 

information. Specially, at the beginning of retrieval, the 

Euclidean distances in the original high dimensional space are 

used to rank the images in the database. After the user provides 

relevance feedbacks, the traditional SVM, BMMA SVM and 

OCCA SVM algorithms are then applied to sort the images in 

the database.  As can be seen, the retrieval performance of these 

algorithms varies with different categories. For some easy 

categories, all the algorithms can perform well (for Categories 

2, 4 even the baseline can achieve over 90% for precision). For 

some hard categories, all the algorithms perform poorly (e.g., 

Categories 18, 20, 24). After two rounds of feedbacks, all the 

algorithms are significantly better than the baseline, and this 

indicates that the relevance feedbacks provided by the user are 

very helpful in improving the retrieval performance. 

Fig.10 shows the average precision-scope curves of the 

algorithms for the 1
st
 and 2

nd
 iterations. We can notice that both 

the BMMA SVM and the OCCA SVM can perform much better 

the traditional SVM on the entire scope, especially the 1
st
 round 

of feedback. The main reason is that in the first round of 

feedback iteration, the number of training samples is especially 

small (usually 8-10 training samples totally), and this will make 

SVM perform extremely poorly. The BMMA SVM algorithm 

and the OCCA SVM algorithm can significantly improve the 

performance of SVM by treating the positive and negative 

feedbacks unequally. Therefore, we can conclude that the 

technique, which asymmetrically treats the feedback samples 

(i.e., biased towards the positive feedbacks), can significantly 

improve the performance of SVM RF which treats the feedback 

samples equivalently. As shown in Fig.10 (b), with the number 

of feedbacks increasing, the performance difference between 

the enhanced algorithms and the traditional SVM gets small. 

Generally, by iteratively adding the user’s feedbacks, more 

samples will be fed back as training samples, and will make the 

performance of SVM much more stable.  Meanwhile, the 

dimension of the BMMA and OCCA decreases with the 

increasing of the positive feedbacks. Consequently, the 

performance of BMMA SVM and OCCA SVM will be 

degraded by over fitting. Therefore, the performance difference 

between the enhanced algorithms and the traditional SVM gets 

small. However, the performance of the first a few rounds of 

feedbacks is usually most important, since the user would not 

like to provide more rounds of feedback iteration. In the first a 

few rounds of feedbacks, the classifier trained based on few 

labeled training samples is not reliable, but its performance can  
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Fig.11 The average precisions in top 10- top 60 results of the six approaches from the fivefold cross validation. 
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Fig.12 The standard deviations in top 10- top 60 results of the six approaches from the fivefold cross validation. 

 

be improved when more images are labeled by the user in the 

subsequent feedback iterations. Both BMMA and OCCA can 

significantly improve the performance of the traditional SVM in 

the first two iterations. Therefore, we can conclude that BMMA 

can effectively integrate the distinct properties of two groups of 

feedback samples into the retrieval process and thus enhance the 

performance. 

 

2) Experiments on a large scale image database 

 

We designed a slightly different feedback scheme to model 

the real world retrieval process. In a real image retrieval system, 

a query image is usually not in the image database. To simulate 

such an environment, we use fivefold cross validation to 

evaluate the algorithms. More precisely, we divide the whole 

image database into five subsets of equal size. Thus, there are 20 

percent images per category in each subset. At each run of cross 

validation, one subset is selected as the query set, and the other 

four subsets are used as the database for retrieval. Then 400 

query samples are randomly selected from the query subset and 

the relevance feedback is automatically implemented by the 

system. For each query image, the system retrieves and ranks the 

images in the database and 9 RF iterations are automatically 

executed. 

At each iteration of the relevance feedback process, top 20 

images are picked from the database and labeled as relevant  
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Table 2 Average precisions in top N results of the six algorithms after the 9
th

 feedback iteration (mean± standard deviation) 

 

Method SemiBMMASVM BMMASVM OCCASVM BDASVM SVM OneSVM 

Top10 0.9165±0.1505 0.8914±0.1663 0.8658±0.2162 0.8747±0.1638 0.8265±0.3011 0.5122±0.3795 

Top20 0.8727±0.2008 0.8363±0.2213 0.8154±0.2622 0.7612±0.2520 0.7856±0.3138 0.3428±0.3149 

Top30 0.7840±0.2319 0.7452±0.2502 0.7151±0.2767 0.6339±0.2722 0.6996±0.3134 0.2878±0.2797 

Top40 0.7058±0.2491 0.6645±0.2642 0.6315±0.2811 0.5465±0.2712 0.6290±0.3088 0.2546±0.2588 

Top50 0.6396±0.2542 0.5982±0.2687 0.5638±0.2761 0.4829±0.2631 0.5706±0.2993 0.2331±0.2404 

Top60 0.5854±0.2548 0.5431±0.2640 0.5078±0.2660 0.4319±0.2497 0.5216±0.2847 0.2147±0.2255 

Top70 0.5416±0.2523 0.4964±0.2549 0.4629±0.2544 0.3925±0.2362 0.4806±0.2783 0.2000±0.2115 

Top80 0.5025±0.2460 0.4564±0.2430 0.4246±0.2407 0.3596±0.2229 0.4462±0.2687 0.1886±0.2000 

Top90 0.4865±0.2387 0.4224±0.2298 0.3941±0.2287 0.3320±0.2102 0.4166±0.2581 0.1789±0.1890 

 

and irrelevant feedbacks. Generally, in real world retrieval 

systems, the negative samples usually largely outnumber the 

positive ones. To simulate such a case in the retrieval system, 

the first 3 relevant images are labeled as positive feedbacks and 

all the other irrelevant images in top 20 results are automatically 

marked as negative feedbacks. Note that, the images which have 

been selected at the previous iterations are excluded from later 

selections. The experimental results are shown in Fig.11 and 

Fig.12. The average precision and standard deviation are 

computed from the fivefold cross validation. 

   To demonstrate the effectiveness of the proposed scheme, we 

compare them with the traditional SVM, the OCCA SVM, BDA 

SVM and one-class SVM (OneSVM). The traditional SVM 

regards RF as a strict two-class classification problem, with 

equal treatments on both positive and negative samples. The 

OCCA tries to find a subspace, in which all positive samples are 

merged, and then the traditional SVM are implemented to 

retrieve the relevant images to the query image. For BDA, we 

select all the eigenvectors with the eigenvalues larger than one 

percent of the maximum eivenvalues and then the traditional 

SVM are used to classify the relevant and irrelevant images, 

which is the common way to select the dimension of the 

subspace. OneSVM assumes RF as a one-class classification 

problem and estimates the distribution of the target images in 

the feature space. 

Fig.11 and Fig.12 show the average precision and the 

standard deviation curves of different algorithms respectively. 

SemiBMMA SVM outperforms all the other algorithms on the 

entire scope. Both BMMA and OCCA can improve the 

performance of the traditional SVM RF, as shown in Fig.11 (a), 

(b), (c) and (d). Comparing with OCCA SVM, the BMMA 

SVM performs much better for all the top results, since BMMA 

takes both the positive and negative feedbacks into 

consideration. However, both BMMA and OCCA will 

encounter the over fitting problem, i.e., both of them combined 

with SVM will degrade the performance of SVM after a few 

rounds of feedbacks although they can improve the performance 

of SVM in the first a few rounds of feedback. As can be seen in 

Fig.11 (d) (e) (f), with the increase of rounds of feedbacks, the 

OCCA SVM performs poorly in comparison with the traditional 

SVM. At the same time, the performance difference between 

BMMA SVM and the traditional SVM gets smaller. The 

SemiBMMA combined with SVM can significantly improve the 

performance of the traditional SVM,  

 

since it can effectively utilize the basic property of the different 

groups of the feedback samples and integrate the information of 

the unlabelled samples into the construction of the classifier. 

For top 10 results, the BDA SVM can achieve better result than 

the traditional SVM RF. However, the BDA algorithm still 

discards much information contained in the orthogonal 

complement components of the positive samples. Therefore, 

BDA combined with traditional SVM performs much worse 

than the traditional SVM RF, as shown in Fig.11 (b), (c), (d), 

(e), (f). Although OneSVM tries to estimate the distribution of 

the target images in the feature space, it cannot work well 

without the help of negative samples. 

Considering the stability of the algorithms, we can also notice 

that SemiBMMA SVM and BMMA SVM perform best among 

all the algorithms for top10, top 20 and top 30 results. Although 

OneSVM shows good stability for top 40, top 50 and top 60 

results, its average precision for retrieval is too low.    

We should indicate that the performance difference of 

algorithms between experiments in Subsection V.C 1) and 

experiments in this subsection is mainly caused by the different 

experimental setting. Because the number of positive and 

negative feedbacks is equal in Subsection V.C 1), while 

negative feedbacks largely outnumber positive feedbacks in 

subsection 2). Additionally, the performance of SemiBMMA 

SVM does not perform better comparing with BMMA SVM in 

the first two rounds of feedback iterations for most of the 

results. This is mainly because the maximum margin between 

different classes is essentially important when the number of 

training samples is extremely small. 

   The detailed results of all the algorithms after the 9
th

 feedback 

are shown in Table 2.As can be seen, SemiBMMA combined 

with SVM integrates all the available information into relevance 

feedback iteration and achieves much better performance 

comparing with other approaches for all the top results. The 

BMMA SVM still obtains satisfactory performance comparing 

with the traditional SVM and OCCA SVM. Therefore, we can 

conclude that the proposed BMMA and SemiBMMA combined 

with the SVM RF have shown much better performance than the 

traditional SVM RF (i.e., directly using the SVM as a RF 

scheme) for CBIR. 

 

3)     Visualization of the retrieval results 

    In the previous subsections, we have presented some statistic 

quantitative results of the proposed scheme. In this 
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Fig.13 Top 10 results for 4 different query images based on initial results and SemiBMMA SVM after 4 rounds of feedback iteration. Incorrect 

results are highlighted by green boxes. 

subsection, we show the visualization of retrieval results. In 

experiments, we randomly select some images (e.g., bobsled, 

cloud, cat and car) as the queries and perform the relevance 

feedback process based on the ground truth. For each query 

image, we do 4 RF iterations. For each RF iteration, we 

randomly select some relevant and irrelevant images as positive 

and negative feedbacks from the first screen, which contain 20 

images in total. The number of selected positive and negative 

feedbacks is about 4 respectively.  We choose them according to 

the ground truth of the images, i.e., whether they share the same 

concept with the query image or not. Fig.13 shows the 

experimental results. The query images are given as the first 

image of each row. We show the top 1 to top 10 images of initial 

results without feedback and SemiBMMA SVM after 4 

feedback iterations respectively. And incorrect results are 

highlighted by green boxes. From the results, we can notice that 

our proposed scheme can significantly improve the performance 

of the system. For the 1st 2nd and 4th query images, our system 

produce 10 relevant images out of the top 10 retrieved images. 

For the 3rd query image, our system produces 9 relevant images 

out of the top 10 retrieved images. Therefore, SemiBMMA 

SVM can effectively detect the homogeneous concept shared by 

the positive samples and hence improve the performance of the 

retrieval system. 

VI. CONCLUSION AND FUTURE WORK 

   Support Vector Machine (SVM) based Relevance Feedback 

(RF) has been widely used to bridge the semantic gap and 

enhance the performance of CBIR systems. However, directly 

using the SVM as a RF scheme has two main drawbacks. First, it 

treats the positive and negative feedbacks equally although this 

assumption is not appropriate since all positive feedbacks share 

a common concept while each negative feedback differs in 

diverse concepts. Second, it does not take into account the 

unlabelled samples although they are very helpful in 

constructing a good classifier. In this paper, we have explored 

solutions based on the argument that different semantic 

concepts live in different subspaces and each image can live in 

many different subspaces. We have designed a Biased 

Maximum Margin Analysis and a Semi-Supervised Biased 

Maximum Margin Analysis to alleviate the two drawbacks in 

the traditional SVM RF. The novel approaches can distinguish 

the positive feedbacks and negative feedbacks by maximizing 

the local margin and integrity the information of unlabeled 

sample by introducing a Laplacian regularizer. Extensive 

experiments on a large real world Corel image database have 

shown that the proposed scheme combined with the traditional 

SVM RF can significantly improve the performance of CBIR 

systems.  

   Despite the promising results, several questions remain to be 

investigated in our future work: First, this approach involves 

dense matrices eigen decomposition which can be 

computationally expensive both in time and memory. 

Therefore, an effective technique for computation is required to 

alleviate the drawback. Second, theoretic questions need to be 

investigated regarding how the proposed scheme affects the 

generalization error of classification models. More specifically, 

we expect to get a better tradeoff between the integration of the 

distinct properties of feedbacks and the generalization error of 

the classifier. 
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