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Conjunctive Patches Subspace Learning with Side
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Abstract—Content-Based Image Retrieval (CBIR) has at-
tracted substantial attention during the past few years for its
potential practical applications to image management. A variety
of Relevance Feedback (RF) schemes have been designed to
bridge the semantic gap between the low-level visual features
and the high-level semantic concepts for an image retrieval task.
Various Collaborative Image Retrieval (CIR) schemes aim to
utilize the user historical feedback log data with similar and
dissimilar pairwise constraints to improve the performance of a
CBIR system. However, existing subspace learning approaches
with explicit label information cannot be applied for a CIR task,
although the subspace learning techniques play a key role in
various computer vision tasks, e.g., face recognition and image
classification. In this paper, we propose a novel subspace learning
framework, i.e., Conjunctive Patches Subspace Learning (CPSL)
with side information, for learning an effective semantic subspace
by exploiting the user historical feedback log data for a CIR task.
The CPSL can effectively integrate the discriminative information
of labeled log images, the geometrical information of labeled log
images and the weakly similar information of unlabeled images
together to learn a reliable subspace. We formally formulate
this problem into a constrained optimization problem and then
present a new subspace learning technique to exploit the user
historical feedback log data. Extensive experiments on both
synthetic data sets and a real-world image database demonstrate
the effectiveness of the proposed scheme in improving the
performance of a CBIR system by exploiting the user historical
feedback log data.

Index Terms—collaborative image retrieval, log data, side
information, subspace learning.

I. INTRODUCTION

CONTENT-Based Image Retrieval (CBIR) has attracted
much attention during the past decades [1], [2], [3].

However, the gap between the low-level visual features and
the high-level semantic concepts usually leads to poor per-
formance for CBIR. Although substantial research has been
conducted, CBIR is still an open research topic mainly due to
difficulties in bridging the semantic gap [1], [2], [3].

Relevance Feedback (RF) is one of the most powerful
tools to narrow down this semantic gap and thus to improve
the performance of a CBIR system [4], [5]. In general, RF
focuses on the interactions between a user and a search
engine by requiring the user to label semantically similar or
dissimilar images with the query image [4], which are positive
and negative feedbacks, respectively. During the last decade,
various RF techniques have been proposed to involve the user
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in the loop to enhance the performance of CBIR [5]. Feature
selection based methods adjust weights associated with various
dimensions of the feature space to adapt to the user preferences
[4], [6]. Support Vector Machine (SVM) based methods either
estimate the density of positive feedbacks or regard the RF
as a strict two-class on-line classification problem [7], [8].
Traditional discriminant analysis based methods aim to find a
low dimensional subspace of the feature space, so that positive
feedbacks and negative feedbacks are well separated after
projecting onto this subspace. Moreover, Biased Discriminant
Analysis (BDA) techniques define a (1+x) class problem and
find a subspace within which to separate the one positive class
from the unknown number of negative classes [9], [10], [11],
[12].

Despite the broad interest in constructing RF approaches,
an on-line learning task can be tedious and boring for a user.
Given the difficulty in capturing the user preferences, multiple
rounds of RF are actually required to achieve satisfactory
results for an image retrieval task, which can significantly limit
the capability of RF for real-world applications. Recently, a
number of studies have attempted to address the challenges
encountered by traditional RF approaches by resorting to the
user historical feedback log data [13], [14], [15], [16], [17],
[18], [19]. In these studies, the system can accumulate RF
information provided by a number of users, which can be
regarded as the user historical feedback log data. Therefore,
besides the low-level visual features, each pair of images
can also be associated with a set of similar or dissimilar
pairwise constraints judged by users. This new paradigm of
utilizing user feedback log data for image retrieval can be
referred to as “Collaborative Image Retrieval (CIR)”. During
the past several years, a lot of research work has been done
regarding this new paradigm for image retrieval. In [13],
[14], manifold learning algorithms were applied to learn an
exquisite manifold structure from the log data, which can
better reflect the semantic relation among different images. In
[15], Muller et al suggested a weighting scheme by exploiting
the user historical feedback log data for CBIR. In [17], Hoi
et al proposed a log-based RF technique with the SVM by
engaging the user feedback log data in a regular on-line RF
task. In [19], the authors proposed a distance metric learning
technique by exploiting the user historical feedback log data
with pairwise constraints and showed the effectiveness of the
proposed scheme comparing with some representative distance
metric learning techniques for image retrieval. To sum up,
we can notice that the key issue for CIR is to design an
effective scheme to fully exploit the user historical feedback
log data and to utilize the acquired information to enhance the
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(a) (b) (c) (d)
Fig. 1. Different similar relation between pairs of images based on different
concept subspaces in a multi-dimensional low level visual feature space. (a)
four images with low level visual features (b) similar in the shape subspace,
(c) similar in the size subspace, (d) similar in the texture subspace

performance of a CBIR system.
Various methods and schemes have been investigated for

CIR; however, there is still little work on explicitly evaluat-
ing the subspace learning approaches in exploiting the user
historical feedback log data, although the subspace learning
techniques play a vital role in many multimedia retrieval tasks.
Let us first use a toy example to show the importance of
subspace learning approaches in defining the similar relation
between a pair of images, which is usually the key issue in
exploiting the user historical feedback log data. For an image
retrieval task, the images are usually represented by a set of
low level visual features with various semantic concepts (e.g.,
color, shape, texture, etc) in a high dimensional space. With
an assumption that different semantic concepts live in different
subspaces and each image can live in many subspaces, Fig.1
(a) shows four images, each of which is associated with
a number of semantic concepts (i.e., color, shape, texture
and size). However, for CIR, it is problematic for a user to
determine the similar relation between a pair of images in the
original multi-dimensional space (i.e., color, shape, texture and
size) due to the semantic gap. By selecting one-dimensional
semantic subspace, defining the similar relation between a pair
of images will be easy and obvious. Fig.1 (b), (c) and (d)
show three different kinds of similar relation in three different
semantic subspaces, respectively (i.e., Fig.1 (b) in the shape
subspace, Fig.1 (c) in the size subspace and Fig.1 (d) in the
texture subspace).

Subspace learning approaches [20] are powerful tools for
various tasks in computer vision [21], [10], [22], e.g., face
recognition [23], image retrieval [9] and gait recognition [24].
However, most of these traditional subspace learning tech-
niques (e.g., Linear Discriminant Analysis (LDA)) normally
need to acquire explicit class labels [20]. For CIR, explicit
class labels for each image might be too expensive to be
obtained. Compared with explicit class labels of each image,
the similar or dissimilar pairwise constraints between a pair of
images can be acquired more easier when the user historical
feedback log data is available [15]. Therefore, it is more at-
tractive to learn a semantic concept subspace directly from the
similar or dissimilar pairwise constraints without using explicit
class labels. Recently, learning distance metrics with similar
and dissimilar pairwise constraints (or side information [25])
has been actively studied [25], [26], [19], [27] in the machine
learning community. Despite the active research efforts during
the past few years, most of these approaches in this group have
involved a high computational burden when dealing with high
dimensional images, which significantly limits their potential

applications to CIR.
In this paper, we propose a novel framework of subspace

learning when the training images are associated with only
similar and dissimilar pairwise constraints, i.e., Conjunctive
Patches Subspace Learning (CPSL) with side information, to
explicitly exploit the user historical feedback log data for
CIR. The proposed CPSL method can effectively learn a
reliable subspace both from labeled and unlabeled images
through a regularized learning framework in exploiting the
user historical feedback log data. Specially, we formally for-
mulate this method into a constrained optimization problem
and then present an efficient algorithm to solve this task with
closed-form solutions. Compared with the previous metric
learning techniques with side information [25], [26], [19],
which usually involve a convex optimization procedure or
a semidefinite programming procedure, our method can also
learn a distance metric but perform more effectively and
efficiently when dealing with high dimensional images.

The rest of this paper is organized as follows: Section
II reviews the related work; the CPSL with side informa-
tion framework is detailed in Section III; a CIR system is
introduced in Section IV; in Section V, we first give the
experimental results on both of synthetic datasets and a real-
world image database, and then show some analysis to the
important parameters in CPSL; Section VI concludes this
paper.

II. RELATED WORK

To describe our method clearly, let us first review two areas
of research that are closely related to our work in this paper,
i.e., (1) CIR and (2) subspace learning and distance metric
learning.

A. Review on CIR

During the past years, various advanced on-line RF schemes
have been constructed. However, it is still a big problem
to effectively bridge the semantic gap between the low-level
visual features and the high-level semantic concepts.

Besides on-line RF paradigms, there are some emerging
research interests in exploiting the user historical feedback
log data [16], [17] for image retrieval. In [17], Hoi et al
proposed a log based RF scheme with the SVM by engaging
the user feedback log data in a traditional on-line RF task. In
this scheme, the user first labels some similar and dissimilar
images in a few rounds of RF iterations, and then the images in
the database that are similar to the current labeled images are
included in the pool of labeled data for training some regular
RF models, e.g., SVM RF. Besides the SVM approaches with
log data, some other efforts are also investigated in exploiting
the user historical feedback log data. For instance, manifold
learning techniques expect to learn an exquisite manifold
structure based on the user historical feedback log data [13],
[14]. In [15], Muller et al proposed a feature weighting
scheme by exploiting the user historical relevance judgements
for a CBIR task. Moreover, some distance metric learning
techniques have also been widely investigated to learn a good
Mahalaninos distance metric by exploiting the user historical
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similar and dissimilar judgements on the feedback images for
image retrieval [18], [19].

B. Review on subspace learning and distance metric learning

In view of the close relation between subspace learning
techniques and distance metric learning techniques, we briefly
classify the two groups of studies into three categories within
a unified framework, i.e., unsupervised learning, supervised
learning with explicit class labels and weakly supervised
learning with pairwise constraints (or side information [25]).

Unsupervised learning methods do not use any class label
information and usually exploit the intrinsic distribution or
the manifold structure of the data. Examples in this category
include the well-known algorithms, such as Principal Com-
ponent Analysis (PCA) [20] and Multi-Dimensional Scaling
(MDS) [28]. Moreover, there are also some recent manifold
learning based techniques, which are Locally Linear Embed-
ding (LLE) [29], ISOMAP [30], Laplacian Eigenmaps (LE)
[31], Locality Preserving Projections (LPP) [32], etc.

Supervised learning approaches can effectively explore
some collections of training data with explicit class labels.
Well-known techniques in this category include fisher’s LDA
[20], Marginal Fisher Analysis (MFA) [33], and some recently
proposed methods, such as Neighborhood Component Analy-
sis (NCA) [34], Large Margin Nearest Neighbor classification
(LMNN) algorithm [35] and Maximally Collapsing Metric
Learning (MCML) [36].

Our work is closely related to the third category of research.
Let us briefly introduce several representative algorithms be-
low.

Most of the weakly supervised learning approaches can
only learn a Mahalanobis distance metric from the training
data that are presented in the forms of pairwise constraints
(or side information [25]), in which each pairwise constraint
indicates whether the corresponding two samples are similar or
dissimilar for a particular task. In [25], Xing et al proposed a
distance metric learning approach (called Xing hereafter) and
formulated the task into a convex optimization problem, which
can be solved by an iterative projection algorithm. And then,
a series of research work has been done with regard to this
category of studies. In [26], a Relevant Component Analysis
(RCA) technique was proposed to exploit only similar pairwise
constraints for distance metric learning. In details, given
pairwise constraints, RCA first forms a set of “chunklets”,
each of which is defined as a group of samples linked together
by similar pairwise constraints. The optimal distance metric
learned by RCA can be computed as the inverse of the average
covariance matrix of the chunklets. RCA is simple to calculate,
but ignores the dissimilar pairwise constraints. Discriminative
Component Analysis (DCA) was proposed to incorporate the
dissimilar pairwise constraints [27], which can show slightly
better discriminative performance compared to RCA for some
datasets. Lately, an Information-Theoretic Metric Learning
(ITML) approach was proposed to express the weakly super-
vised learning problem as a Bregman optimization problem
[37]. To effectively exploit the unlabeled samples, Hoi et al
proposed a Laplacian Regularized Metric Learning (LRML)

approach and then applied the generated solution to image
retrieval and clustering [19]. In [38], Wu et al proposed to
learn a Bergman distance function with side information and
showed the approach can learn nonlinear distance functions
for a semi-supervised clustering task.

III. CONJUNCTIVE PATCHES SUBSPACE LEARNING WITH
SIDE INFORMATION FOR CIR

In this section, we propose a novel framework of weakly su-
pervised subspace learning, i.e., Conjunctive Patches Subspace
Learning (CPSL) with side information, to explicitly exploit
the user historical feedback log data for CIR. The proposed
CPSL can learn a semantic subspace directly from the similar
and dissimilar pairwise constraints without using any class
labels, which is more practical for CIR, since explicit class
labels for each image might be too expensive to obtain for a
real-world image retrieval task.

A. Problem Definition
To facilitate the discussion, let us first introduce some nec-

essary notations. Assume that we are given a set of N images
in a H dimensional visual feature space X = {xi}Ni=1 ∈ RH ,
and two sets of similar and dissimilar pairwise constraints
among these images:

S = {(i, j)| xi and xj are judged to be similar}
D = {(i, j)| xi and xj are judged to be dissimilar}

where S is the set of similar pairwise constraints and D is the
set of dissimilar pairwise constraints. Each pairwise constraint
(i, j) indicates if two images xi and xj are similar or dissimilar
judged by users in RF iterations. It should be noted that it is
not necessary for all the images in X to be involved in S or
D.

In this paper, we use the low-level visual features in a
high dimensional space to represent images. Although the
low-level visual features of images are embedded in a high
dimensional space, the semantic concepts of images actually
live in a low dimensional subspace. Here, in this paper, the
high dimensional space RH is the low-level visual feature
space and the low dimensional subspace RL is the high-level
semantic concept space. Therefore, our objective is to find a
mapping function F to select an effective semantic concept
subspace RL from RH for bridging the semantic gap. To
learn such a semantic concept subspace, one can assume there
is some corresponding linear mapping W ∈ RH∗L for a
possible subspace, and then we can obtain the low-dimensional
semantic representations as Y = WTX ∈ RL∗N , where each
column of Y is yi = WTxi ∈ RL .

To measure the similarity between two images yi and yj
in the low dimensional semantic concept subspace, we adopt
the Euclidean distance metric because of its simplicity and
robustness. The Euclidean distance between two images in
the low dimensional semantic subspace can be calculated as
follows:

d(yi, yj) =

√
(WTxi −WTxj)

T
(WTxi −WTxj)

=

√
(xi − xj)

T
WWT (xi − xj)

(1)
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Let M = WWT , then,

d(yi, yj) =

√
(xi − xj)

T
M(xi − xj) (2)

Therefore, learning a mapping matrix W is actually equiv-
alent to learning an efficient Mahalanobis distance metric M
in the original high dimensional space, or more concretely,
learning a proper Mahalanobis distance metric M in RH .

During recent years, a variety of techniques have been pro-
posed to learn such an optimal Mahalanobis distance metric M
from training data that are given in forms of side information
[19], [25], [26], [27], [38], [39]. However, most of these
methods are imperfect for a CIR task, since they either require
solving a convex optimization problem with gradient decent
and iterative projections [25], [26], [38] or involve to solve
a semi-definite programming problem [19], [39], which often
suffers from large computational cost and limits its potential
applications for high dimensional data. Moreover, most of
these methods, which can learn Mahalanobis distance metrics
from the training data, are unable to explicitly give the new
representations of data in the new metric space. Considering
this, in this paper we expect to learn a mapping matrix W
instead of a Mahalanobis distance metric M . From another
point of view, we can also learn a Mahalanobis distance metric
M by resorting to the mapping matrix, i.e., M = WWT .

In this paper, we present a novel regularized weakly su-
pervised subspace learning framework to explicitly exploit the
user historical feedback log data for a CIR task, i.e.,

W ∗ = argmin
W∈RH∗L

f(W,Xl, S,D)

+ β1g(W,Xl, S) + β2r(W,Xl, Xu) (3)

where W is the mapping matrix, and f(·) is a loss func-
tion defined over the labeled images Xl with the associated
constraints S and D to reflect the discriminative information;
g(·) is a regularizer defined over the labeled images Xl

with the associated similar constraints S, which models the
geometry information of labeled image pairs; and r(·) is also
a regularizer, which is defined over the labeled images Xl and
unlabeled images Xu on the target mapping matrix W ; β1 and
β2 are two trade off parameters, which are used to balance the
three terms. The above regularized subspace learning frame-
work is largely inspired by the recent regularization principle
in the machine learning community, which is usually the key
to enhance the generalization and robustness performance of
machine learning techniques. The regularization principle has
played a vital role in alleviating the over fitting problem
encountered by many machine learning techniques [40]. For
instance, the regularization principle is the most critical aspect
in ensuring the good generalization performance in SVMs
[41], [42], [43]. Similarly, the regularization method is also
an effective technique to enhance the stable performance of
the fisher’s LDA when dealing with small number of samples
in a high dimensional space [41].

Given the above weakly supervised subspace learning
framework, the key issue to attack this problem is to design
one appropriate loss function f(·) , two regularizer terms g(·)

and r(·) , and afterward find an efficient algorithm to solve
this problem. In the following subsections, we will study some
principles for formulating the reasonable loss function, the
regularizer terms and also discuss the solutions to this problem.

B. Conjunctive Patches Subspace Learning with Side Infor-
mation for CIR

In this paper, the CIR system reduces the semantic gap by
exploiting the historical feedback log data judged by users
in RF iterations and finding a semantic concept subspace to
reflect the similar relation between image pairs, thereby further
enhancing the performance of an image retrieval system. We
use a linear mapping matrix W to approximate this semantic
concept subspace and then the images in this subspace can be
represented as Y = WTX = [y1, y2, . . . , yN ] ∈ RL×N (L <
H) with yi ∈ RL for image xi ∈ RH . Therefore, in
this reduced semantic concept subspace, an improved retrieval
performance is expected.

In this subsection, we present a Conjunctive Patches Sub-
space Learning method (CPSL) with side information to learn
such a mapping matrix W . Specially, the CPSL can effectively
integrate the discriminative information of labeled log images,
the geometry information of labeled log images, and the
weakly similar information of unlabeled images. This process
is conducted by building different kinds of local patches for
each image, and then aligning those different kinds of patches
together to learn a consistent coordinate through the above
regularized learning framework. One patch is a local area,
which is formed by one image and its associated neighboring
images. Particularly, in CPSL, we build three different kinds of
patches, which are: 1) local discriminative patches for labeled
log images to represent the discriminative information; 2)
local geometry patches for labeled log images to represent
the geometry information and the 3) local weakly similar
patches for labeled and unlabeled images to represent the weak
similarity of unlabeled images.

1) Local Discriminative Patches for Labeled Images: Given
images with side information, a popular principle for learning
a distance metric M is to minimize the distances between
samples with similar pairwise constraints and to maximize
the distances between samples with dissimilar pairwise con-
straints simultaneously, which can be referred to as a min-
max principle. In [25], Xing et al formulated the weakly
supervised distance metric learning problem as a constrained
convex optimization problem, i.e.,

min
M≽0

∑
(xi,xj)∈S

||xi − xj ||2Ms.t.
∑

(xi,xj)∈D

||xi − xj ||M ≥ 1 (4)

Eq.(4) attempts to find the optimal metric M by minimizing
the sum of squared distances between the samples with sim-
ilar pairwise constraints, and meanwhile enforcing the sum
of distances between the samples with dissimilar pairwise
constraints larger than or equal to 1. Following this principle,
[19] defined two loss functions by minimizing the sum of
squared distances between all the samples with similar pair-
wise constraints and maximizing the sum of squared distances
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Fig. 2. The illustration of the Local Discriminative Patch for an image and its
associated nearby similar and dissimilar images. Circular solid dots and square
solid dots denote labeled similar and dissimilar images, respectively. For each
given image, minimizing the objective function of the Local Discriminative
Patch will pull the nearby similar images towards this image while pushing
the nearby dissimilar images away from this image in the reduced subspace.

between all the samples with dissimilar pairwise constraints.
Although the above distance metric learning approaches have
been demonstrated to be effective for some test data sets, they
are essentially linear global approaches and therefore might
fail to find the nonlinear structure hidden in high dimensional
visual feature space.

Following this min-max principle, to further exploit the
discriminative power, we define a new loss function for
discriminative information preservation. Particularly, for each
image xi associated with a discriminative patch Xd(i) =
[xi, xi1 , xi2 , . . . , xik1

, xik1+1
, xik1+2

, . . . , xik1+k2
] , wherein

xi1 , xi2 , . . . , xik1
, i.e., the k1 nearest images of xi with

similar pairwise constraints, and xik1+1
, . . . , xik1+k2

, i.e.,
the other k2 nearest images with dissimilar pairwise con-
straints. We define the discriminative loss function as the
average difference between two kinds of squared distances
over this patch. That is, the discriminative loss function
attempts to minimize the average squared distances between
each image xi and its associated k1 nearest images with
similar constraints; meanwhile, it tries to maximize the average
squared distance between each image xi and its associated
k2 nearest images with dissimilar constraints. A illustration
of the local discriminative patch for one image is given in
Fig. 2. Specially, for the new representations of each patch,
i.e., yi, yi1 , yi2 , . . . , yik1

, yik1+1
, yik1+2

, . . . , yik1+k2
, we ex-

pect that the loss function between k1 nearest images with
similar constraints and k2 nearest images with dissimilar
constraints will be minimized as much as possible, i.e.,

f(yi) = min

k1∑
j=1

||yi − yij ||
2 1

k1
− γ

k1+k2∑
j=k1+1

||yi − yij ||
2 1

k2
(5)

To rewrite Eq.(5) in a more compact form,

f(yi) = min
k1∑
j=1

||yi − yij ||2 1
k1

− γ
k1+k2∑
j=k1+1

||yi − yij ||2 1
k2

= min tr(Yd(i)

[
−eTk1+k2

Ik1+k2

]
diag(wi) [−ek1+k2 , Ik1+k2 ]Y

T
d(i))

= min tr(Yd(i)Ld(i)Y
T
d(i))

(6)

Fig. 3. The illustration of the Local Geometrical Patch for an image
and its associated nearby similar images. Circular solid dots denote labeled
similar images. For each given image, the Local Geometrical Patch aims
to preserve the local geometry of labeled similar images before and after
projection. Minimizing the objective function of the Local Geometrical Patch
will reconstruct the given image from its associated nearby similar images
with a minimal error in the reduced subspace.

where wi = [

k1︷ ︸︸ ︷
1/k1, . . . , 1/k1,

k2︷ ︸︸ ︷
−γ/k2, . . . ,−γ/k2]

T ; the
parameter γ is used to balance the two squared dis-
tances; Ik1+k2 is a (k1 + k2) × (k1 + k2) identity matrix;

Ld(i) =

[ ∑k1+k2

j=1 (wi)j −wT
i

−wi diag(wi)

]
; the vector ek1+k2 =

[1, . . . , 1]T ∈ Rk1+k2 ; d(i) encodes the discriminative infor-
mation over this local discriminative patch.

2) Local Geometrical Patches for Labeled Images: Al-
though the discriminative loss function for each labeled image
can capture the discriminative information well, it is empiri-
cally known that the geometrical information of images can
help to find the intrinsic semantic concept subspace. In the
past few years, various geometry based subspace learning
algorithms were proposed to recover the mainfold structure of
samples in a high dimensional space. LE [31] minimizes the
average of the Laplacian operator over the manifold of samples
and LPP [32] is a linearization version of LE. ISOMAP [30]
tries to preserve the pairwise geodesic distance, which can also
be used to effectively recover the intrinsic structure of samples
in a high dimensional space . LLE [29] uses the reconstruction
coefficients in a high dimensional space to reconstruct the
sample from its neighboring samples in a low dimensional
space with a minimal error. In this work, we utilize the
LLE technique to preserve the local geometry information for
semantic concept subspace learning.

In particular, for each image xi associated with a ge-
ometrical patch Xg(i) = [xi, xi1 , xi2 , . . . , xik1

], wherein
xi1 , xi2 , . . . , xik1

, i.e., the k1 nearest samples of xi with
similar pairwise constraints. As we can see in Fig.3, this work
assumes that the new representation yi of one image xi can
be linearly reconstructed by its k1 nearest images with similar
constraints with a minimal error, i.e.,

g(yi) = min ||yi −
k1∑
j=1

cijyij ||2 (7)

Eq.(7) is used to preserve the local geometry of labeled
images with similar constraints before and after projection,
and the linear combination coefficient vector ci is required
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to reconstruct xi from its k1 nearest similar images with a
minimal error, i.e.,

min
ci

||xi −
k1∑
j=1

cijxij ||2

s.t.
k1∑
j=1

cij = 1

(8)

To solve this problem, we have cij =∑k1

p=1 G
−1
jp /(

∑k1

s=1

∑k1

t=1 G
−1
st ) with a local gram matrix

Gjp = (xi − xij )
T (xi − xij ) as described in [29].

For simplicity, we rewrite Eq.(7) in a more compact form.
By attaching k2 nearest dissimilar images of xi with the
geometrical patch Xg(i), we have

g(yi) = min ||yi −
k1∑
j=1

cijyij ||2

= min ||yi −
k1∑
j=1

cijyij −
k1+k2∑
j=k1+1

0 · yij ||2

= min ||yi −
k1+k2∑
j=1

c̄ijyij ||2

= min tr(Yd(i)

[
1 −c̄Ti

−c̄i c̄ic̄
T
i

]
Y T
d(i))

= min tr(Yd(i)Lg(i)(Yd(i))
T
)

(9)

where Yd(i) = [yi, yi1 , yi2 , . . . , yik1
, yik1+1

, . . . , yik1+k2
] ;

Lg(i) =

[
1 −c̄Ti

−c̄i c̄ic̄
T
i

]
with c̄i = [cTi , 0, . . . , 0︸ ︷︷ ︸

k2

]T ; g(i) is

used to encode the geometrical information over this local
geometrical patch.

3) Local Weakly Similar Patches for Labeled and Unlabeled
Images: Recent research has shown that unlabeled samples
may be helpful to improve the classification performance.
During the last decade, various semi-supervised techniques
have attracted an increasing amount of attention. In [44],
Semi-supervised Discriminant Analysis (SDA) was proposed
to find a projection which respects the discriminant structure
inferred from the labeled samples, as well as the intrinsic
geometrical structure inferred from both labeled and unlabeled
samples. In [19], Hoi et al introduced a Laplician regularizer
to a supervised metric learning approach and showed that the
semi-supervised metric learning method can learn effective
distance metrics by exploiting unlabeled samples when labeled
samples are limited and noisy. Inspired by the recent advance
in the semi-supervised research, in this part, we design a new
regularizer term based on labeled and unlabeled images, and
then introduce this term to our regularized subspace learning
framework to find an effective semantic concept subspace.

Unlabeled images are attached to the labeled log images:
X = [x1, . . . , xn, xn+1, . . . , xn+nu ] , where the first n im-
ages are judged by user in RF iterations, and the remain-
ing nu images have no label information. For each image
xi ∈ X, i = 1, . . . , n + nu , we first find its k3 nearest
neighborhood samples xi1 , . . . , xik3

in all images including
both labeled and unlabeled images. And then the image xi

and its associated k3 nearest images Xu(i) = [xi, xi1 , . . . , xij3
]

form a local weakly similar patch. The key to semi-supervised

Fig. 4. The illustration of the Local Weakly Similar Patch for an image and
its associated nearby labeled and unlabeled images. Solid dots and hollow dots
denote labeled and unlabeled images, respectively. For each given image, the
Local Weakly Similar Patch attempts to impose local consistency constraints
on this image and its associated nearby images. Minimizing the objective
function of the Local Weakly Similar Patch will incorporate the local weakly
similarity information of unlabeled images in the reduced subspace.

learning algorithm is the prior assumption of consistency. For
subspace learning techniques, it can be interpreted as nearby
data will have similar low-dimensional representations. The
local weakly similar patch for one image is illustrated in
Fig.4. Particularly, for the new representations of each patch,
i.e., Yu(i) = [yi, yi1 , . . . , yik3

] , we minimize the sum of the
weighted squared distances between yi and yi1 , . . . , yik3

, and
we have

r(yi) = min

k3∑
j=1

||yi − yij ||2
wi,j

k3
(10)

Similarly, to rewrite the local weakly similar patch into a
compact form, we can rephrase Eq.(10) of the patch of yi as
follows,

r(yi) = min
k3∑
j=1

||yi − yij ||2
ωi,j

k3

= min tr

(
Yu(i)

[ ∑k3

j=1 ω̄i,j −ω̄T
i

−ω̄i diag(ω̄i)

]
Y T
u(i)

)
= min tr(Yu(i)Lu(i)Y

T
u(i))

(11)

where the weight ωi,j = exp(−||xi − xj ||2/δ2) is the Lapla-
cian heat kernel according to LE [31]; the patch Yu(i) =

[yi, yi1 , . . . , yik3
] ; Lu(i) =

[ ∑k3

j=1 w̄i,j −w̄T
i

−w̄i diag(w̄i)

]
; the

vector w̄i = [
wi,1

k3
, . . . ,

wi,j

k3︸ ︷︷ ︸
k3

]; u(i) encodes the weakly similar

information between labeled images and unlabeled images.
4) Conjunctive Patches Subspace Learning with Side In-

formation: Each of the constructed patches has its own
coordinate system. To get a consistent coordinate, we can first
align each of these three different kinds of patches together to
obtain a consistent coordinate according to an alignment trick
[45], [46], respectively. For each image xi, the associated patch
Yi = [yi, yi1 , . . . , yik ] can be rewritten as Yi = Y Si, where
Y = [y1, . . . , yN ], N = n+ nu is the number of labeled and
unlabeled images and Si = RN×(k+1) is the selection matrix.
And Si is defined according to [45], [46] as follows,
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(Si)st =

{
1, if s = Fi(t)
0, else

(12)

where Fi = [i, i1, . . . , ik] is the index vector for samples in
Yi .

And then, we can integrate all the three different kinds of
patches defined in Eq.(5), Eq.(7) and Eq.(10) together through
the regularized subspace learning framework in Eq.(3), i.e.,

min f(W,Xl, S,D) + β1g(W,Xl, S) + β2r(W,Xl, Xu)

=
n∑

i=1

min tr(Yd(i)Ld(i)Y
T
d(i)) + β1

n∑
i=1

min tr(Yd(i)Lg(i)Y
T
d(i))

+β2

n+nu∑
i=1

min tr(Yu(i)Lu(i)Y
T
u(i))

= min tr

(
n∑

i=1

Yd(i)Ld(i)Y
T
d(i)

)
+ β1tr

(
n∑

i=1

Yd(i)Lg(i)Y
T
d(i)

)
+β2tr

(
n+nu∑
i=1

Yu(i)Lu(i)Y
T
u(i)

)
= min tr

(
Y

(
n∑

i=1

Sd(i)Ld(i)S
T
d(i)

)
Y T

)
+β1tr

(
Y

(
n∑

i=1

Sd(i)Lg(i)S
T
d(i)

)
Y T

)
+β2tr

(
Y

(
n+nu∑
i=1

Su(i)Lu(i)S
T
u(i)

)
Y T

)
= min tr

(
WTX

(
n∑

i=1

Sd(i)Ld(i)S
T
d(i)

)
XTW

)
+β1tr

(
WTX

(
n∑

i=1

Sd(i)Lg(i)S
T
d(i)

)
XTW

)
+β2tr

(
WTX

(
n+nu∑
i=1

Su(i)Lu(i)S
T
u(i)

)
XTW

)
= min tr

(
WTX (D + β1G+ β2U)XTW

)
(13)

where D encodes the discriminative information and D =∑n
i=1

(
Sd(i)Ld(i)S

T
d(i)

)
; G encodes the geometrical infor-

mation and G =
∑n

i=1

(
Sd(i)Lg(i)S

T
d(i)

)
; U encodes the

weakly similar information of unlabeled images and U =∑n+nu

i=1

(
Su(i)Lu(i)S

T
u(i)

)
; β1, β2 > 0 are tuning parameters,

which are used to trade off the contributions of the three
different terms.

The above regularized subspace learning framework can
be further improved. Because, in the extreme case, when
the two trade off parameters β1 → 0 and β2 → 0, the
above optimization problem will result in trivial solutions by
shrinking the entire space, i.e., obtaining the optimal solution
of W ∗ = 0. Therefore, we should impose some constraints
on the mapping matrix W on Eq.(13) and then the problem
can be converted to a constrained optimization problem of the
mapping matrix W .

Remark I: To avoid trivial solutions and find the mapping
matrix W , various different constraints may be used to im-
pose on this optimization problem, which will lead to dif-
ferent constrained optimization problem. A simple constraint
tr(WTW ) = 1 can be imposed on this optimization function.
This problem will result in a standard Eigenvalue decomposi-
tion problem and the W is the eigenvector corresponding to the
smallest non zero eigenvalue. This method always produces

rank one solutions. In other words, the original input space will
be projected onto a line by this transformation. However, in
many cases it is desirable to obtain a compact low dimensional
feature representation of the original input space.

Remark II: Various distance metric learning approaches with
side information have been designed to learn such a distance
metric M . However, some of these methods are actually
based on the second-order statistical properties of the training
data as the discriminative loss function in CPSL, and thus
involve to solve a semidefinite programing problem [39], [19].
For example, in [39], Ghodsi et al defined a loss function,
which attempts to minimize the squared induced distance
between similar samples while maximizing the squared in-
duced distance between dissimilar samples. Additionally, two
constraints are also imposed on this loss function to avoid
trivial solutions, i.e.,

min
M

1
|S|

∑
(xi,xj)∈S

||xi − xj ||2M − 1
|D|

∑
(xi,xj)∈D

||xi − xj ||2M

s.t.M≻0, tr(M) = 1
(14)

where the first constraint ensures a valid metric, and the second
constraint excludes the trivial solutions where all distances
are zeros. This loss function is then converted into a linear
objective and solved by semidefinite programming for finding
a proper distance metric M . However, the computational
burden of this method is too high, and this significantly limits
its potential applications to high dimensional data.

Although various different constraints can be imposed on
Eq.(13) to avoid trivial solutions, they are actually arbitrary.
Considering this, we impose WTW = I on the Eq.(13), to
avoid the trivial solutions, which can be solved by conduct-
ing the standard Eigenvalue decomposition and the mapping
matrix W is formed by the L eigenvectors associated with
the first L smallest eigenvalues. This constrained optimization
problem can also lead to closed-form solutions as in [39],
[19] but without the runtime inefficiency. Additionally, we
can easily obtain the distance metric M by resorting to the
mapping matrix W .

IV. THE COLLABORATIVE IMAGE RETRIEVAL SYSTEM

A. Overview of our CIR Framework

In this subsection, we firstly give an overview of our CIR
system, which can systematically integrate the user relevance
judgements with a regular RF scheme for image retrieval. The
CIR system assumes that the user expects the best possible
retrieval results for each query image, i.e., the system is usually
required to return the most semantically relevant images based
on the previous RF information. Meanwhile, the user will
never label a large number of images at each RF iteration
and only do a few rounds of RF iterations. To deal with this
type of scenario, the following CIR framework is proposed.

As shown in Fig.5, when a query image is provided, the low-
level visual features are firstly extracted. Then, all images in
the image database are sorted based on a predefined similarity
metric. If the user is satisfied with the results, the image
retrieval process can end. However, most of the time, the RF
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Fig. 5. The framework of our CIR system

is actually needed because of the poor retrieval performance
of the system. The CIR system requires the user to label some
top similar and dissimilar images as positive and negative
feedbacks, respectively. Based on the user on-line feedback
information, a RF model can be trained based certain machine
learning techniques. The similarity metric can be updated
together with the RF model. Then, all the images are resorted
based on the recalculated similarity metric. If the user is
satisfied with the refined results, the RF is no longer required
(i.e., we denote “No” in Fig.5) and the system gives the final
retrieved results. On the contrary, the RF will be performed
iteratively (i.e., we denote “Yes” in Fig.5).

From Fig.5, it can be noticed that our CIR system is dif-
ferent from regular on-line RF schemes based CBIR systems.
The CIR system integrates regular on-line RF schemes with
an off-line feedback log data exploiting scheme. In Fig.5, we
can see that the CIR system first collects the user on-line RF
information, which can be stored in a RF log database. If the
user feedback log data is unavailable, the CIR system performs
exactly like traditional RF based CBIR systems. When the
user RF information is available, the algorithm can effectively
exploit the user feedback log data. Thus, the CIR system can
accomplish a retrieval task in less iterations than regular RF
schemes based system with the help of the user historical
feedback log data.

B. Corel Image Database and Image Representation

Fig. 6. Some example images in the log database groups

To perform empirical evaluation of our proposed method,
firstly we should provide a reliable image database with
semantic groups. Corel Photo Gallery is a professionally
catalogued image database and is widely used to evaluate
the performance of a CBIR system in the past few years

[10], [19], [47], [48]. To validate the effectiveness of the
proposed algorithm, we group the images into a number of
classes based on the ground truth. The original Corel Photo
Gallery includes plenty of semantic categories, each of which
contains 100 or more images. However, some of the categories
are not suitable for image retrieval, since some images with
different concepts are in the same category while many images
with the same concept are in different categories. Therefore,
existing categories of the original Corel Photo Gallery are
ignored and reorganized into 80 conceptual classes based on
the ground truth, such as, lion, castle, bus, aviation, dinosaur,
horse, etc. Note that each class of the Corel Photo Gallery has
a clearly distinct concept and the quality of the images can
be considered very high. Finally, the Corel Image Database
comprises totally 10,763 real-world images. This way of using
the images with semantic categories is able to help to evaluate
the retrieval performance automatically, which significantly
reduces subjective errors compared to manual evaluations.

Collecting the user historical feedback log data is an im-
portant step for a collaborative image retrieval task. However,
to our best knowledge, there is no public data set for the
application of exploiting user historical feedback log data for
image retrieval. Moreover, for an RF procedure, different users
are likely to have different opinions on judging similar and
dissimilar images with the query image. In our experiments,
to conduct objective evaluation and effectively investigate the
performance of weakly supervised learning approaches, we
have to provide a reliable log database to run these weakly
supervised algorithms. It is not difficult to build a log data
database based on an existing real-world database, e.g., Corel
Image Database. Here, we first randomly select 10 classes
according to the ground truth of the images from the Corel
Image Database and form a log data database, which contains
1385 real-world images. And then, to distinguish between the
supervised learning task and the weakly supervised learning
task, we divide each class of the database into two groups
with equal size. Therefore, the log data database comprises
20 groups with 10 different concepts. We randomly select 10
and 30 images uniformly from each group, and therefore we
can gather two labeled log data sets. The similar constraints
are imposed on the images within the same group, while
the dissimilar constraints are imposed on the images with
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different concepts. Finally, we can obtain two log databases
with different number of log data, i.e., 200 log images, 600 log
images. Some example images in the log database are shown
in Fig.6.

To represent images, we use three different sets of low-
level visual features in our experiments, i.e., color [49], local
descriptors [50] and shape [51]. For color, a 9-dimensional
color moment feature in Luv color space is first employed.
Then, we select three measures (i.e., hue, saturation, and value)
and use them to form a histogram. Hue and saturation are
both quantized into eight bins and value into four bins. The
local dense features, i.e., the Webber Local Descriptors (WLD)
[50], are extracted to describe the local visual features of
images, which result in 240-dimensional values. Moreover, we
employ the edge directional histogram from the Y component
in YCrCb space to capture the spatial distribution of edges.
The edge direction histogram is quantized into five categories
including horizontal, 45◦ diagonal, vertical, 135◦ diagonal and
isotropic directions to represent edges. Each of these features
has its own capability to characterize the content of images.
The system combines the three different kinds of low-level
visual features into a vector with 510 values. Then all feature
components are normalized to normal distributions with zero
mean and one standard deviation to represents the images.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method in exploiting the user historical feedback log data for
CIR. We design the experiments for performance evaluation
in four aspects. First of all, we use six synthetic data sets to
illustrate the effectiveness of the discriminative loss function
in seeking the discriminative directions in RF. Secondly, we
investigate the performance of the proposed method by ex-
ploiting historical feedback log database for an image retrieval
task without a RF scheme. Then, we report the performance
of our CIR system by exploiting the user on-line feedback
log data and compare it with a regular RF scheme (i.e.,
SVM RF ) based image retrieval system. Finally, we study
the sensitivity of important parameters of the proposed CPSL
method. In our experiments, all methods are implemented
with MATLAB 7.6.0 and all experiments are performed on
a desktop computer with 3.0 GHz Intel Duo Core CPU, 3 GB
memory and Windows XP system.

A. Experiments with synthetic data sets

In order to visualize the effectiveness of the discriminative
loss function (i.e., Eq.(5)) of CPSL in seeking the most
discriminative directions in RF, the first experiment is executed
on six synthetic datasets. In each round of RF, the user judges
a set of similar and dissimilar images with the query image,
which are positive and negative feedbacks, respectively. The
positive and negative feedbacks are generated with various
strikingly different distributions since the distributions of feed-
back data are usually complicated in real world. Regarding the
set of positive feedbacks and the set of negative feedbacks
as two different classes, LDA treats the two different sets
of feedback samples equally. Based on the assumption that

(a) (b)

(c) (d)

(e) (f)

Fig. 7. The performance comparisons of three different subspace learning
methods (i.e., LDA, BDA and CPSL) for two sets of samples (i.e., similar
samples and dissimilar samples) in RF. In experiments, red “+” and blue
“o” denote similar and dissimilar samples, respectively. Black dotted lines,
green dot dash lines and red full lines indicate the LDA, the BDA and the
CPSL, respectively. (a)-(f) show the experimental results of three subspace
learning methods when handling samples with various different distributions,
respectively.

“all positive examples are alike, and each negative example
is negative in its own way”, the BDA [9] was proposed to
formulate the RF as a (1+x) class subspace learning problem.
However, it is still not very reasonable to conclude that all
positive feedbacks come from one class with a Gaussian
distribution. Actually, each positive feedback is similar with
each of the remaining positive feedbacks, and each negative
feedback is dissimilar with each of the positive feedbacks.
Consequently, different from traditional supervised learning
problems (e.g., LDA and BDA), RF is intrinsically a weakly
supervised learning problem and can involve only the similar
and dissimilar pairwise constraints for feedback samples. Any
unreasonable assumption for the class labels of feedback
samples will result in performance degradation.

From Fig.7, we clearly see that LDA can find the best
discriminative direction only when the set of positive feed-
backs and the set of the negative feedbacks are distributed
as Gaussian with similar covariance matrices, as shown in
Fig.7(a), but may be confused when the distribution of the
feedbacks is more complicated, as given in Fig.7(b), (c), (d),
(e) and (f). Regarding RF as a (1+x) class problem, BDA can
only find the direction that positive feedbacks are well sepa-
rated with the negative feedbacks when the positive feedbacks
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have Gaussian distribution, e.g., Fig.7(c) and (f). However, the
BDA may also be confused when the distribution of positive
feedbacks is more complicated, as shown in Fig.7(b), (d) and
(e). The discriminative loss function in the CPSL method only
involves the local similar and dissimilar pairwise constraints
of feedback samples and does not impose any label constraints
on the feedback samples, which is more appropriate for RF in
image retrieval. Consequently, the discriminative loss function
in CPSL can effectively find the discriminative subspace com-
paring with classical supervised subspace learning methods
with explicit label information in RF.

B. Experiments on the CIR system with historical feedback
log data

In this subsection, we will evaluate the effectiveness of the
proposed CPSL method based on two experiments: firstly,
we investigate the CPSL method by exploiting the historical
feedback log data for an image retrieval task without a RF
scheme. And then, we show the performance of our CIR
system by exploiting the user on-line historical feedback log
data and compare it with a regular RF scheme (i.e., SVM
RF) based image retrieval system on a large real-world Corel
Image Database.

1) Performance evaluation by exploiting the feedback log
database for image retrieval: In this part, we intend to
examine if the proposed algorithm is comparable or better than
the previous representative weakly supervised metric learning
techniques in the distance metric learning community. We
compare the CPSL method with two major distance metrics
(i.e., the Euclidean metric and the Mahalanobis metric), three
representative weakly supervised metric learning approaches
(i.e., RCA [26], DCA [27] and Xing [25]). In experiments, we
do not compare the proposed method with supervised learning
techniques since they often require explicit class labels, which
are not suitable for CIR. Moreover, in this subsection, the
CPSL method does not involve any unlabeled samples for fair
comparison with RCA, DCA and Xing. Parameters in each
method were determined empirically to achieve its best per-
formance in this paper. The parameter sensitivity of the CPSL
method will be carefully analyzed in the next subsection.

All of the compared algorithms are implemented on two
log databases as described in Section IV.B, i.e., a log database
with 200 log images and a log database with 600 log images.
In experiments, 500 queries are first randomly selected from
the database and then the image retrieval is automatically
done by a computer. We use Average Precision (AP) and
Average Recall (AR) to evaluate the performance of compared
algorithms. The AP refers to the percentage of relevant images
in top ranked images presented to the user and is calculated
as the averaged values of all the queries. The AR shows the
fraction of the related images that are successfully retrieved
and is defined as the percentage of the retrieved images
among all relevant images in the database. In experiments,
we calculated the APs and the ARs over the 500 queries at
different positions from top 10 to top 150 to obtain the AP
and AR curves.

Fig.8 shows the experimental results of the compared algo-
rithms on the database with 200 log images. The detailed re-

(a) (b)

Fig. 8. Average Precision curves and Average Recall curves of the six
compared methods for the 200 log data(i.e.,(a) Average Precision, (b) Average
Recall))

sults are given in Table I and Table II. From the results, we can
draw several observations. Firstly, we notice that directly using
the Euclidean distance metric in a high dimensional visual
feature space is not proper due to the semantic gap. Moreover,
a simple Mahalanobis distance metric does not outperform the
Euclidean distance metric. In fact, when the number of the log
data (i.e., 200 log images) is much less than the dimension
of the image features (i.e., 510 dimension), the covariance
of the log data is singular, which significantly degrades the
performance of the Mahalanobis distance metric for image
retrieval. To avoid the singular problem, the regularization item
(σ2I, σ2 = 0.01) is added to the covariance matrix in exper-
iments, which is widely used to enhance the generalization
property of the algorithm. And then, all of the metric learning
methods (i.e., RCA, DCA, Xing and CPSL) can perform
better than the Euclidean distance metric by exploiting the
log data. In experiments, the optimal metric learned by RCA
is computed as the inverse of the average covariance matrix
of the chunklets. Similar to the Mahalanobis distance metric,
the RCA will also encounter the singular covariance matrix
when dealing with high-dimensional images. In experiments,
the RCA is preceded by constraints based LDA which reduces
the dimension to that of the CPSL method as described in [26].
By doing this, we notice that the RCA can show much better
performance than the Euclidean distance metric by exploiting
the similar pairwise constraints. The DCA incorporated the
dissimilar constraints into the RCA and was formulated into a
trace ratio problem. In [27], the authors proposed to attack this
problem by using a direct method as in the fisher’s LDA [52].
However, much discriminative information in the null space
of the dissimilar scatter has been discarded in solving this
problem [53]. Although the DCA incorporates the dissimilar
pairwise constraints into the RCA, the performance of the
DCA has been significantly degraded due to the problem of
numerical computation in handling this trace ratio problem.
Actually, the DCA cannot show better performance than the
RCA for some results, as shown in top 70 to top 100 results
in Table II. Xing et al formulated the weakly supervised
metric learning into a convex optimization problem, which
can be solved by an iterative projection algorithm. However,
this method will involve a high computational burden when
dealing with high dimensional images (i.e, 510 dimension in
this paper), which is always the case in CBIR. The CPSL
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TABLE I
AVERAGE PRECISIONS IN TOP N RESULTS OF THE SIX COMPARED METHODS (I.E., EUCLIDEAN DISTANCE METRIC, MAHALANOBIS DISTANCE METRIC,

RCA, DCA, XING AND CPSL) FOR THE LOG DATABASE WITH 200 LOG IMAGES

TABLE II
AVERAGE RECALLS IN TOP N RESULTS OF THE SIX COMPARED METHODS (I.E., EUCLIDEAN DISTANCE METRIC, MAHALANOBIS DISTANCE METRIC,

RCA, DCA, XING AND CPSL) FOR THE LOG DATABASE WITH 200 LOG IMAGES

can learn a distance metric M by resorting to the mapping
matrix W and solve the formulated constrained function with
a standard Eigen value decomposition method, which is much
effective and efficient when handling high dimensional images
and never meets the problem of numerical computation.

From the results, we can see that the proposed CPSL
can significantly outperform the two major distance metrics
and three compared metric learning approaches for overall
evaluation. Moreover, we also conduct the same comparisons
on the database with 600 log images and the results are shown
in Fig. 9, Table III and Table IV. Similar to the experimental
results on the database with 200 log images, the proposed
CPSL method can also show much better performance than the
compared weakly supervised metric learning algorithms when
dealing with 600 log images. Additionally, the performance of
each of the weakly supervised learning algorithms on the 600
log data is much better than the corresponding results on the
200 log data since more training samples are involved to train a
reliable distance metric for image retrieval. It should be noted
that the results of the Euclidean distance metric on 600 log data
is the same as the corresponding results on 200 log data since
no training procedure is involved. Comparing with the results
on 200 log data, the Mahalanobis distance metric cannot show
better performance on 600 log data since the similar and
dissimilar constraints are actually not utilized to calculate the
metric. Moreover, it is difficult to obtain a reliable and stable
Mahalanobis distance metric when the number of log data is
small and the dimension of the data is high. Therefore, it is
not proper to directly use the Mahalanobis distance metric for
image retrieval when exploiting the user historical log data.

2) Performance evaluation on our CIR system: In this part,
we show the performance of our CIR system by exploiting
the user on-line feedback log data on a large database with
10,763 Corel images and compare it with a regular RF scheme
based image retrieval system. The SVM based RF scheme is

(a) (b)

Fig. 9. Average Precision curves and Average Recall curves of the six
compared methods for the 600 log data(i.e.,(a) Average Precision, (b) Average
Recall))

one of the most popular techniques for image retrieval, which
considers the RF as a strict two-class on-line classification
problem. But it totally ignores the distinct properties of the
two groups of training feedbacks, that is, all positive feedbacks
share a common concept while each negative feedback differs
in various concepts. Moreover, it does not take into account
the unlabeled samples although they are very helpful in con-
structing a good classifier. With the assumption that different
semantic concepts live in different subspaces and each image
can live in many subspaces, it is the goal of RF schemes to
figure out “which one”. However, it will be a burden for the
SVM RF schemes to tune the internal parameters to adapt to
the changes of the subspaces. In this subsection, we show that
our CIR system can effectively address the two drawbacks
by off-line exploiting the user on-line historical feedback log
data.

The experiments are simulated by a computer automatically.
First, 400 queries are randomly selected from the database
and the RF is automatically done by a computer. At each
round of RF, the first 3 relevant images are marked as positive
feedbacks and all the other irrelevant images in top 20 results
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TABLE III
AVERAGE PRECISIONS IN TOP N RESULTS OF THE SIX COMPARED METHODS (I.E., EUCLIDEAN DISTANCE METRIC, MAHALANOBIS DISTANCE METRIC,

RCA, DCA, XING AND CPSL) FOR THE LOG DATABASE WITH 600 LOG IMAGES

TABLE IV
AVERAGE RECALLS IN TOP N RESULTS OF THE SIX COMPARED METHODS (I.E., EUCLIDEAN DISTANCE METRIC, MAHALANOBIS DISTANCE METRIC,

RCA, DCA, XING AND CPSL) FOR THE LOG DATABASE WITH 600 LOG IMAGES

are marked as negative feedbacks. The procedure is close to
real-world circumstances since the irrelevant images usually
largely outnumber the relevant ones in a real-world image
retrieval system.

(a) (b)

Fig. 10. The APs in top 50 and top 100 results of the three different RF
schemes for image retrieval(i.e., SVM RF, CPSL-I SVM RF and CPSL-II
SVM RF))

We compare the regular SVM RF with two new SVM RF
schemes, i.e., CPSL-I SVM RF and CPSL-II SVM RF. The
regular SVM implements the RF task in the original high
dimensional low-level visual feature space. The CPSL-I SVM
RF first exploits the user on-line historical feedback log data
by finding a semantic subspace, in which all positive feedbacks
are clustered and all negative feedbacks are separated with all
positive feedbacks as much as possible. And then the SVM
implements the RF in this reduced semantic subspace. The
CPSL-II SVM RF incorporates the information of unlabeled
samples into the CPSL-I SVM RF through a regularized
learning framework. In experiments, the CPSL-I method and
the CPSL-II method are implemented by setting the trade-
off parameter β2 = 0 and β2 = 1/(nu), respectively. For
patch building parameters, we set k1, k2, k3 = 4 according

to manifold learning approaches [30], [29], [31], [32], [33].
Considering the computable efficiency, we randomly select
nu = 400 unlabeled images in each round of RF iteration.
The optimal dimensionality of the reduced subspace for the
CPSL-I method and the CPSL-II method is empirically set in
experiments to preserve more geometry information of images.
For all SVM-based algorithms, we empirically set the kernel
parameters to achieve the best performance in experiments.
Fig.10 (a) and (b) show the APs in top 50 and top 100 retrieved
results, respectively.

The CPSL-I method can effectively exploit the user on-line
feedback log data and find a semantic concept subspace, in
which all positive feedbacks are clustered and all negative
feedbacks are separated with positive feedbacks as much as
possible. And then the SVM RF is implemented in this reduced
semantic subspace for an image retrieval task. From the results,
we notice that the CPSL-I SVM RF can outperform the regular
SVM RF by exploiting the user on-line feedback log data.
However, the performance difference between CPSL-I SVM
RF and the regular SVM RF gets smaller after a few rounds of
RF because of the overfitting problem. The CPSL-II SVM RF
method can effectively integrate the information of unlabeled
samples through a regularized learning framework into the
construction of the classifier and alleviate the overfitting prob-
lem encountered by the CPSL-I SVM RF. As shown in Fig.10,
when considering more RF iterations, the CPSL-II SVM RF
is more effective than both of the CPSL-I SVM RF and the
regular SVM RF.

In experiments, the mapping matrix W can be obtained
by using the Eigen value decomposition. The time cost to
calculate W is O

(
(n+ nu)

3
)

. Afterwards, we project all
images to this semantic subspace and then apply the new sim-
ilarity metric with respect to the query to sort all images in the
database. The time cost for calculating the Euclidean distance
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in the semantic subspace L between the query and all images
in the database is O (NL) , wherein N is the cardinality of
the database. Therefore, for a query image, the time cost for
CPSL based CBIR system is O

(
(n+ nu)

3
)
+O (NL) . And

the time cost for a conventional CBIR system in the high
dimensional visual feature space H is O (NH). Usually, for a
CBIR system, the cardinality of the database N is very large
and H >> L; therefore, the proposed method is very effective
for an image retrieval task.

C. Parameter sensitivity

In this subsection, we study the parameter sensitivity of the
CPSL method for an image retrieval task. The analyses are
performed based on the experiments conducted on two log
databases (i.e., 200 log data and 600 log data). In experiments,
we analyze some factors: k1 and k2 in Eq.(5) for patch build-
ing, the trade off parameter β1 in Eq.(13) and the dimension of
the projected features for the CPSL method. Firstly, 500 query
images are randomly selected from the database, and then the
image retrieval process is automatically done by a computer.
The APs in top 50 results is utilized for overall performance
evaluation.

1) Evaluation on the number of neighboring samples: The
two parameters k1 and k2 in Eq.(5) play an important role
in building the local discriminative patch, which is the most
critical aspect in CPSL. Generally, for a local discriminative
patch, k1 is the number of similar images which are involved
to describe the compactness of the patch, and k2 is the
number of dissimilar images which are used to characterize
the dispersiveness of the patch. Both of the two parameters
(i.e., k1 and k2) reveal the data information from different
aspects. In experiments, the trade-off parameter β1 is set as
0 for alleviating the effect of the geometrical information
and the reduced dimension for the two sets of log images is
empirically fixed at 11 and 17, respectively. By varying k1 and
k2, Figs.11(a) and (b) show the AP surface of CPSL subject
to different k1 and k2 for the two log databases, respectively.
From Fig.11, we can notice that the two parameters k1 and k2
can significantly affect the performance of the CPSL method
in learning a subspace for an image retrieval task. As given in
Fig.11(a), when k1 and k2 are larger than 4 and 10, respec-
tively, the system can show much stable performance for 200
log images. Similarly, in Fig.11(b), when k1 and k2 are larger
than 8 and 10, respectively, the CPSL method can achieve
more satisfying results for 600 log images. Generally, smaller
values of k1 and k2 mean that fewer similar and dissimilar
images are involved to construct the local discriminative patch,
and therefore insufficient training data lead to the degenerated
performance of the system.

2) Evaluation on the trade-off parameter β1: Empirically,
the geometry information is useful for finding the semantic
subspace. In this part, we turn to investigate the influence of
the trade-off parameter β1 in Eq.(13) for CPSL when building
the local discriminative patch and the local geometrical patch
for labeled log images. A small β1 reflects the importance of
separating dissimilar samples from similar ones, i.e., the CPSL
focuses on the local discriminative information but ignores the

(a) (b)

Fig. 11. The AP surface of the CPSL algorithm subject to different k1 and
k2 for two log database (i.e.,(a) 200 log data and (b) 600 log data)

local geometrical information. Fig.12 shows the performance
of CPSL with different β1, from which we can have the
following observations.

When β1 is small, e.g., β1 = 0, the performance is unsatis-
factory. This is because that in this situation the local discrim-
inative information is mainly preserved while important local
geometrical information within labeled images with similar
pairwise constraints is less considered. The performance of
the CPSL increases when β1 is growing and reaches the
optimal value at β1 = 5. And then, the APs decrease when
β1 is larger than this best setup, in which case the local
geometrical information dominates the local patch and the
local discriminative information is ignored.

Therefore, both the discriminative information and the ge-
ometrical information can reflect the important information
contained in local patches from different aspects for compli-
mentary. A suitable combination of them is essential to achieve
good performance for the CPSL method.

(a) (b)

Fig. 12. Performance of CPSL with different β1 for the two log database
(i.e., (a) 200 log data and (b) 600 log data)

3) Evaluation on the projected subspace: Different from
the weakly supervised distance metric learning methods [26],
[27], [25], the proposed CPSL method aims to learn a mapping
matrix, which can find a low dimensional subspace from the
original high dimensional space. To find out an appropriate
dimension of the projected semantic subspace, we have inves-
tigated the influence of the dimension in the following exper-
iments. Fig.13 shows the performance of CPSL with features
projected onto the subspaces with different dimensions. From
Fig.13, we can notice that when the projected dimension is
too low, (e.g., less than 11 and 17, respectively), the reduced
subspace is insufficient to encode the semantic concepts of
images, which makes the retrieval performance poor. When
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the dimension equals or closes to that of the original high
dimensional space (i.e., 510 in this paper), no or less benefit
can be obtained from this subspace learning method. From the
experimental results, we can notice that the CPSL method can
achieve its best performance with the dimension of 11 and
17 for the two log databases, respectively. Moreover, lower
dimensional data can lead to a less computational cost than
higher dimensional data for an image retrieval task.

(a) (b)

Fig. 13. Performance of CPSL with features projected onto the subspaces
with different dimensions for two log databases (i.e.,(a) 200 log data and (b)
600 log data)

D. Discussions and future work

In the proposed image retrieval system, several aspects can
be improved. For instance, a much larger image database will
be utilized in the current platform. Recently, CBIR based on a
large scale social web database (e.g., 1 million Flickr images)
has attracted much attention [3], [54]. In these systems, large
scale social web images are first selected from social web sites
(e.g., Flickr) and then manually grouped into semantic classes
according to the associated textual information. However,
different users have different opinions on a same web image
(e.g., a Flickr image), and thus will categorize the same image
into different semantic groups. The CBIR results from such
image databases created by different people will be subjective
and are difficult to objectively evaluate or compare. Moreover,
the images from the social web image database (e.g., Flickr
images) are often down-sampled and compressed by the web
server, and thus illustrate considerable appearance differences
from another database (e.g., Corel Image Database). Con-
sequently, the images from different sources (e.g., Flickr
and Corel Photo Gallery) may appear significantly different
visual feature distributions in terms of statistical properties
(i.e., mean, intra-class and inter-class variance) although they
actually share a same semantic concept. Therefore, it will be
interesting but still an open question to fairly evaluate the
performance of a CBIR system based on large scale images
from multiple sources (e.g., Flickr, Corel Photo Gallery and
Personal Photo Database).

Basically, devising a reasonable similarity metric, which
can reflect the semantic relation between a pair of images,
plays a key role for an image retrieval task. The similarity
metric learned from the training data can be well generalized
to the testing data in the same database (e.g., Corel Image
Database in this paper). However, due to the tremendously
distribution differences between images from one data source

(e.g., Corel Photo Gallery) and images from other data sources
(e.g., INRIA Holidays Dataset [55], Flickr ) in terms of various
statistical properties, the similarity metric learned from one
data source (e.g., Corel Photo Gallery) cannot be directly
applied to the image data from other data sources (e.g., INRIA
Holidays Dataset [55], Flickr ). Recently, cross domain learn-
ing (a.k.a., domain adaptation or transfer learning) methods
[56], [57] have been identified to be an effective scheme to
address this problem, i.e., performing the learning task in the
source domain and applying the learned model to the target
domain which is usually governed by a different distribution
from the source domain. Therefore, it is very promising to
combine the proposed method with cross domain learning
schemes for future studies.

To enhance the retrieval performance, the indexing of
database is very important for a CBIR system. Generally,
there are two types of image indexing methods [1], [3].
Classification based indexing technique aims to improve the
retrieval precision of the system [58]. In this method, each
image in the database is assigned one or more distinct labels.
Then, based on these labels, the indexing of database can be
constructed through their associated semantic labels. There-
fore, the search results will be more satisfactory and cater to
most of the users. The other indexing method is the low level
visual feature based indexing technique [59], which can be
used to speed up the retrieval procedure. There are many low
level visual feature based indexing techniques, e.g., various
tree-based indexing structures for high dimensional data. The
two indexing methods have their respective advantages from
different aspects. As a consequence, it is promising to combine
the classification and visual feature information in the indexing
structures to improve both of the retrieval precision and speed.

VI. CONCLUSION

In this paper, we have studied the problem of subspace
learning with side information and presented a novel subspace
learning technique, termed as Conjunctive Patches Subspace
Learning (CPSL) with side information, to exploit the user his-
torical feedback log data for a Collaborative Image Retrieval
(CIR) task. The proposed scheme can effectively integrate
the discriminative information of labeled log images, the
geometrical information of labeled log images and the weakly
similar information of unlabeled images together through a
regularized learning framework. We have formally formulated
this subspace learning problem into a constrained optimization
task and then present an effective algorithm to solve this
problem with closed-form solutions. Extensive experiments
on both synthetic data sets and a real-world Corel image
database have shown the effectiveness of the proposed scheme
in exploiting the user historical feedback log data for CIR.
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