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Abstract—Conventional content-based image retrieval (CBIR)
systems with the Euclidean distance metric in a high-dimensional
visual feature space usually cannot achieve satisfactory perfor-
mance due to the semantic gap. Relevance feedback (RF) has
been introduced as a powerful tool to involve the user in the
system to improve the performance of CBIR. Despite the success,
an on-line learning task can be tedious and boring for the user.
Various schemes have been proposed to exploit the RF log data
to further enhance the performance of CBIR. In this paper, we
propose a semantic subspace learning (SSL) method to exploit the
RF log data with contextual information for an image retrieval
task. Different from conventional subspace learning approaches,
our method can directly learn a semantic concept subspace from
the RF log data with contextual information without using any
class label information. We show that the performance of the
image retrieval task can be significantly improved in the low-
dimensional semantic concept subspace. Extensive experiments
on a real-world image database demonstrate the effectiveness of
the proposed scheme in improving the performance of CBIR by
exploiting the RF log data.

I. INTRODUCTION

Content-based image retrieval (CBIR) has attracted much

attention during the past decades [1], [2], [3]. Conventional

CBIR systems usually adopt the Euclidean distance metric in

a high-dimensional low-level visual feature space to measure

the similarity between the query image and the images in

the database [1], [2], [3]. However, the Euclidean distance

metric in the original high-dimensional space is often not very

effective due to the semantic gap between low-level visual

features and high-level semantic concepts.

To narrow down this semantic gap, relevance feedback (RF)

has been widely designed as a powerful tool to involve the user

in the system by letting the user label semantically similar and

dissimilar images with the query image, and thus to define a

more effective similarity metric for image retrieval [4], [5],

[6]. During the last decade, various RF approaches have been

developed based on different assumptions for the positive and

negative feedback samples. Despite the success, an on-line

learning task is usually boring and tedious for the user in RF.

Given the difficulties in capturing the user preferences, multi-

ple rounds of RF are usually required to achieve satisfactory

results for an image retrieval task, which will significantly

limit the capability of conventional RF methods for real-world

applications [4].

Beyond conventional RF methods, several promising ap-

proaches have been emerging to attack this semantic gap in the

CBIR community. For instance, image annotation techniques

intend to directly acquire the semantic concepts from the

low-level visual features of an image [7]. However, major

challenges still remain regarding these image annotation tech-

niques. Recently, a large number of studies have attempted to

narrow down this semantic gap by exploiting the RF log data

with contextual information [8], [9], [10], [11]. In these stud-

ies, the system can accumulate the RF information provided

by a number of users in image retrieval, which can be regarded

as the RF log data with contextual information (e.g. similar

and dissimilar constraints). As a consequence, different from

conventional CBIR tasks, besides low-level visual features,

each image in the log database can also be associated with a set

of similar and dissimilar pairwise constraints judged by users.

From a long-term perspective, the RF log data with contextual

information is an important and useful resource to further

enhance the image retrieval task. This new paradigm of image

retrieval can alleviate the aforementioned major overhead on

users in image retrieval by leveraging the log data accumulated

by conventional CBIR systems over a long period of time.

During the past several years, various methods have been

widely conducted to exploit the RF log data with contextual

information; however, little work has been made to explicitly

evaluate subspace learning approaches to narrow down this

semantic gap between low-level visual features and high-

level semantic concepts by exploiting the RF log data for

image retrieval. Let us first use an easy example to show the

importance of semantic subspaces in measuring the similarity

between images in the CBIR community. Figs. 1 (a) and

(b) show two easy images with different semantic concepts

(e.g., color, texture, shape, etc) and their associated high-

dimensional low-level visual features, respectively. With an

assumption that different semantic concepts live in different

subspaces and each image can live in many different semantic

concept subspaces [4], it is not appropriate to measure the sim-

ilarity between the two images based on the Euclidean distance

metric in the original high-dimensional multiple semantic

concept space (e.g., color, texture, and shape). This is mainly

because there are many different semantic concept subspaces

in the original high-dimensional visual feature space and the
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Fig. 1. Two synthetic images and the associated low-level visual features in
a high dimensional space, for concept illustration.

two images are only similar in one semantic concept subspace

(e.g. color) but different with each other in other semantic

concept subspaces (e.g., texture and shape). Therefore, it is

more reasonable to measure the similarity between the two

images in a low-dimensional semantic subspace (e.g., color

) than in the original high-dimensional visual feature space.

Subspace learning approaches are powerful tools for various

tasks in computer vision. Most of the conventional subspace

learning approaches normally need to acquire explicit class

label information. However, the explicit class information for

each image is usually expensive to obtain in many real-world

applications. Compared with the explicit class label informa-

tion of each image, it is much easier to acquire the contextual

information (i.e., similar and dissimilar pairwise constraints)

when the RF log data accumulated by conventional CBIR

systems are available [8], [9], [12], [10], [11]. Therefore, it is

more attractive and useful to directly learn a low-dimensional

semantic subspace from the RF log data without using any

class label information. Recently, learning distance metrics

with contextual information has been actively studied in both

the CBIR community and the machine learning community

[13], [14], [11]. Despite the active research efforts during the

past a few years, most of these approaches in this category

have involved a high computational burden when dealing with

high-dimensional images and also cannot give the explicit

image semantic representations, which is not appropriate and

will significantly limit their potential applications to the RF

log data with contextual information.

In this paper, we propose a novel semantic subspace learn-

ing (SSL) method to attack the semantic gap between low-

level visual features and high-level semantic concepts by

exploiting the RF log data with contextual information for

image retrieval. The proposed SSL method can effectively

learn a reliable semantic subspace from the RF log data by

incorporating the discriminative information and the geometric

information together. Compared with the previous distance

metric learning with contextual information, our method can

also learn a distance metric but perform more effectively when

dealing with high-dimensional images.

This paper is organized as follows: the SSL method is

detailed in Section II; in Section III, we first give the experi-

mental results, and then show some analysis to the important

parameters in SSL; Section IV concludes this paper.

II. SEMANTIC SUBSPACE LEARNING WITH CONTEXTUAL

INFORMATION

In this paper, we aim to find a semantic subspace to reflect

the similar relation between a pair of images and reduce the

semantic gap by exploiting the log data judged by users in RF

iterations, and thus to enhance the performance of CBIR. We

use a linear mapping matrix U to approximate this semantic

concept subspace and then the images in this subspace can be

represented as Y = UTX = [y1, y2, . . . , yn] ∈ Rl×n(l < h)
with yi ∈ Rl for image xi ∈ Rh. Therefore, in this reduced

semantic concept subspace, improved retrieval performance is

expected.

In this subsection, we present a SSL with contextual infor-

mation method to learn such a mapping matrix U by exploiting

the log data for an image retrieval task. Especially, the SSL

method can effectively integrate the discriminative information

of labeled log images, the geometric information of labeled log

images together.

Given images with contextual information, a popular princi-

ple for learning a distance metric is to minimize the distances

between samples with similar constraints and to maximize the

distances between samples with dissimilar constraints simul-

taneously, which can be referred to as a min-max principle

[13]. Following this principle, we try to minimize the average

squared distances between each image xi and its associated k1
nearest images with similar constraints; meanwhile, we also

try to maximize the average squared distances between each

image xi and its associated k2 nearest images with dissimilar

constraints. Especially, for the new semantic representations of

the images, we expect that the loss function between k1 nearest

images with similar constraints and k2 nearest images with

dissimilar constraints will be minimized as much as possible,

i.e.,

f(yi) = min
k1∑
j=1

||yi − yi,j ||2 1
k1
− γ

k1+k2∑
j=k1+1

||yi − yi,j ||2 1
k2

= min
k1+k2∑
j=1

hi,j ||yi − yi,j ||2

(1)

where the parameter γ is used to balance the two squared

distances; and the weight coefficient hi,j encodes both the

similar and dissimilar constraints, i.e.,

hi,j =

{
1/k1, ifxiandxjaresimilar,
−γ/k2, ifxiandxjaredissimilar.

(2)

Although the discriminative loss information for each la-

beled log image can capture the discriminative informative

well, it is empirically known that the geometric information

of log images can help to find the intrinsic semantic concept

subspace. In particular, for each image xi, we assume that each

image can be reconstructed through the nearest samples with

similar constraints [15]. Thus, xi can be linearly reconstructed

from its nearest k1 samples xi,j , j = 1, . . . , k1 as:
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xi =

k1∑
j=1

ci,jxj + εi (3)

where εi is the reconstruction error for xi and εi is obtained

through minimizing ||εi||2, i.e.,

ci,j = argmin
ci,j

||εi||2 = argmin
ci,j

||xi −
k1∑
i=1

ci,jxi,j ||2 (4)

By imposing
k1∑
j=1

ci,j = 1 on the above function, we have

ci,j =
∑k1

p=1 G
−1
jp /(

∑k1

s=1

∑k1

t=1 G
−1
st ) with a local gram

matrix Gjp = (xi − xij )
T (xi − xij ) as described in [15].

In SSL, ci,j reconstructs xi from yi in the low-dimensional

space, so we have

g(yi) = min ||yi −
k1∑
i=1

ci,jyi,j ||2 (5)

By combining the discriminative loss function and the

geometric regularization term together, we have

yi = argmin
yi,1≤i≤n

n∑
i=1

f(yi) + β1

n∑
i=1

g(yi)

= argmin
yi,1≤i≤n

n∑
i=1

k1+k2∑
j=1

hi,j ||yi − yi,j ||2 + β1

n∑
i=1

||yi −
k1∑
i=1

ci,jyi,j ||
(6)

Based on a series of matrix operations, we can obtain the

linear mapping matrix U according to

U∗ = argmin
U∈Rh×l

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

k1+k2∑
j=1

hi,j ||UTxi − UTxi,j ||2

+β1

n∑
i=1

||UTxi −
k1∑
i=1

ci,jU
Txi,j ||2

⎫⎪⎪⎬
⎪⎪⎭

= argmin
U∈Rh×l

⎧⎨
⎩

tr
(
UTX(Dh −Wh

T )(Dh −Wh
T )

T
XTU

)
+β1tr

(
UTX(I −Wc

T )(I −Wc
T )

T
XTU

)
⎫⎬
⎭

= argmin
U∈Rh×l

tr
(
UTX(F + β1G)XTU

)
(7)

where Wh = [hi,j ] ∈ Rn×n,Wc = [ci,j ] ∈ Rn×n,

and Dh ∈ Rn×n is a diagonal matrix and its ith matrix

is
n∑

j=1

hi,j ; F encodes the discriminative information and

F = (Dh − WT
h )(Dh −WT

h )T ; G encodes the geometric

information and G = (I − WT
c )(I −WT

c )T ; β1 > 0 is the

tuning parameter, which is used to trade off the contributions

of these two different terms.

By imposing the constraint UTU = I , we can avoid

the trivial solutions of this problem and solve this problem

by conducting a standard Eigenvalue decomposition, and the

mapping matrix U is formed by the l eigenvectors associated

with the first l smallest eigenvalues.

Fig. 2. The flowchart of our CBIR system

III. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

method in exploiting the log data with contextual informaiton

for an image retrieval task. Firstly, we investigate the effec-

tiveness of the proposed method by comparing it with some

representative metric learning methods. And then, we show the

sensitivity of important parameters of the proposed method.

A. Experimental Log Data with Contextual Information

Collecting the log data with contextual information is a very

important step for performance evaluation of the proposed

method. However, to our best knowledge, there is no datasets

for the application of exploiting the log data with contextual

information for image retrieval. It is not difficult to build a

log database based on the existing real-world database, e.g.,

the Corel image database. Here, we first randomly select 30

classes according to the ground truth of the images from the

Corel image database to form a log database, which contains

3,568 real-world images. And then, different from supervised

learning, we divide each class of the database into two groups

with an equal size. Therefore, the log data database comprises

60 groups with 30 different concepts. We randomly select 10

images uniformly from each group, and thus we can gather

a labeled log database. The similar constraints are imposed

on the images within the same group, while the dissimilar

constraints are imposed on the images with different concepts.

Finally, we can obtain a log database with 600 images. To

represent images, we utilize the color histogram [16], Webber’s

law descriptors [17], and the edge directional histogram [18]

from Y component in YCrCb space, each of which can

describe the semantic content of images from different aspects.

All of these features are combined into a feature vector, which

results in a vector with 510 values, and then we normalize each

feature to a normal distribution. Fig. 2 shows the flowchart of

our CBIR system.

B. Performance Evaluation by Exploiting RF Log Data

In this subsection, we aim to examine if the proposed

method is comparable with or better than representative

metrics learning with contextual information. We compare

the proposed method with two major distance metrics (i.e.,

the Euclidean distance metric and the Mahalanobis distance

metric), and three representative distance metrics learning
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(a) (b)

Fig. 3. (a) AP curves and (b) AR curves of the six compared methods on the log database.

with contextual information (i.e., relevant component analysis

(RCA) [14], discriminative component analysis (DCA) [19],

and Xing [13]). Moreover, we do not compare the proposed

method with supervised learning techniques since they of-

ten require explicit class label information, which are not

suitable to exploit the log data with contextual information.

Parameters in each method were determined to achieve its

best performance in this paper. The parameter sensitivity of

the proposed method will be carefully analyzed in the next

subsection. All of the compared algorithms are implemented

on the log database as given in subsection, i.e., the log database

with 600 images. For the two parameters k1 and k2, we

set them as 4 in experiments. In experiments, 500 query

images are first randomly selected from the database and the

image retrieval procedure is automatically conducted. We use

average precision (AP) and average recall (AR) to evaluate the

performance of the compared algorithms.

Fig.3 shows the experimental results of the compared algo-

rithms on the log database. As we can see from Fig.3, directly

using the Euclidean distance metric in a high-dimensional

visual feature space is not appropriate due to the semantic

gap. Moreover, a simple Mahalanobis distance metric does

not outperform the Euclidean distance metric because of the

matrix singular problem, i.e., the number of the log images

is much less than the dimension of the visual feature space.

And then, all of the metric learning methods (i.e., RCA, DCA,

Xing, and SSL) can perform better than the Euclidean distance

metric by exploiting the log data with pairwise constraints.

In experiments, the optimal distance metric learned by RCA

is computed as the inverse of the average covariance matrix

of the chunklets. Similar to the Mahalanobis distance metric,

the RCA will also encounter a singular covariance matrix

when dealing with high-dimensional images. In this work,

the RCA is preceded by constraints based LDA, which can

reduce the dimension to that of SSL. By doing this, we notice

that the RCA can show much better performance than the

Euclidean distance metric by exploiting the log data with

similar pairwise constraints. The DCA can effectively utilize

the dissimilar constraints and was formulated into a trace

ratio problem. However, much discriminative information in

the null space of the dissimilar scatter has been discarded

in solving this problem. Although the DCA incorporates the

dissimilar pairwise constraints into the RCA, the performance

of DCA has been significantly degraded due to the numerical

computation in handing the trace ratio. The SSL can learn

a distance metric by resorting to the mapping matrix U and

solve this problem with a standard Eigenvalue decomposition,

which is much effective and efficient when dealing with high

dimensional images and also does not encounter the said

problem of numerical computation. From the results, we can

see that the proposed SSL significantly outperforms the two

major existing distance metrics and three compared metric

learning approaches for overall evaluation.

C. Parameter Sensitivity

In this subsection, we will study the parameter sensitivity

of the SSL method in exploiting the log data with contex-

tual information for an image retrieval task. The analysis is

performed based on the experiments conducted on the log

database. In experiments, we analyze the trade-off parameter

β1 for balancing the loss function and the regularization

term, and the dimension of the projected features for the

SSL method. Firstly, 500 query images are randomly selected

from the database, and then the image retrieval procedure is

automatically conducted. The APs in top 50 results are utilized

for overall performance evaluation.

1) Evaluation on the geometric regularization parameter
β1: Empirically, geometric information is useful for finding

a semantic subspace. In this part, we investigate the influence

of the trade-off parameter β1 for balancing the discriminative

loss function and the geometric regularization term. A small
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β1 reflects less importance of separating the dissimilar images

from the similar ones, i.e., the SSL method focuses on the

discriminative information but ignores the geometric infor-

mation. Fig.4 shows the performance of SSL with different

β1, from which we can notice that when β1 is small, e.g.,

β1 = 0, the performance is unsatisfactory. This is mainly

because in this situation the discriminative information is

preserved while important geometric information in labeled

log images with similar pairwise constraints is less considered.

The performance of SSL increases when β1 increases and

reaches the optimal value, i.e., 7. And then, APs decrease when

β1 is larger than this best setup, in which case the geometric

information dominates the objective function and the important

discriminative information is ignored.

Consequently, both the discriminative loss function and

the geometric regularization term can reflect the important

information contained in log data from different aspects for

complimentary. A suitable combination of them is essential to

achieve good performance for SSL.

Fig. 4. Performance of SSL with different β1 for the log database.

2) Evaluation on the dimension of projected subspaces:
Different from distance metric learning methods, the pro-

posed method intends to learn a mapping matrix, which can

find a low-dimensional subspace from the the original high-

dimensional space. To find out an appropriate dimension of

the projected semantic concept subspace, we have investigated

the influence of the dimension in the following experiments.

In Fig.5 we have shown the performance of the SSL method

with features projected onto the subspaces with different

dimensions. From Fig.5, we can notice that when the projected

dimension is too low, the reduced subspace is insufficient

to encode the semantic concepts of images, which makes

the performance of the system poor. When the dimension

equals or closes to that of the original high-dimensional space,

no or less benefit can be obtained from semantic concept

subspace learning. From the experimental results, we can

notice that the proposed method achieves its best performance

with the dimension of 23 for this log database. Moreover, low-

dimensional data can lead to a less computational burden than

high-dimensional data for an image retrieval task.

Fig. 5. Performance of SSL with features projected onto the subspaces with
different dimensions for the log database.

IV. CONCLUSION

Subspace learning, a typical computational intelligence

technique, sheds light on various tasks from computer vision

to data mining. In light of the idea that different semantic

concepts live in different subspaces and each image can live in

many different semantic concept subspaces, in this paper, we

have proposed to learn an effective semantic concept subspace

from the RF log data with contextual information for an

image retrieval task. The proposed method can directly learn a

reliable semantic concept subspace from the log data without

using any class label information, and this is more appro-

priate, realistic, and useful in many real-world applications.

We compare the proposed method with two standard metrics

and several recent relevant methods. The experimental results

have shown that the effectiveness of the proposed method in

exploiting the RF log data to improve the performance of

CBIR.
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