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Saliency-Based Defect Detection in Industrial Images
by Using Phase Spectrum

Xiaolong Bai, Yuming Fang, Weisi Lin, Senior Member, IEEE, Lipo Wang, Senior Member, IEEE, and Bing-Feng Ju

Abstract—For computer vision-based inspection of electronic
chips or dies in semiconductor production lines, we propose a
new method to effectively and efficiently detect defects in images.
Different from the traditional methods that compare the image
of each test chip or die with the template image one by one,
which are sensitive to misalignment between the test and tem-
plate images, a collection of multiple test images are used as
the input image for processing simultaneously in our method
with two steps. The first step is to obtain salient regions of the
whole collection of test images, and the second step is to evalu-
ate local discrepancy between salient regions in test images and
the corresponding regions in the defect-free template image. To be
more specific, in the first step of our method, phase-only Fourier
transform (POFT), which is computationally efficient for online
applications in industry, is used for saliency detection. We provide
the theoretical justification for POFT to be effective to attenu-
ate the normal regions and amplify the defects in multiple test
images, which are usually arranged in a matrix format in indus-
trial practice. By comparing with four other popular methods, the
proposed algorithm can efficiently accommodate small variations
(inevitable in practice) in test chips or dies, such as the spatial
misalignments and product variations. Experimental results on a
large-scale database including 1073 images, 94 of which are defec-
tive, show that our method performs much better than the other
methods in terms of precision, recall, and F-measure.

Index Terms—Computer vision, defect detection, Fourier
transform, phase spectrum, saliency, surface defects, template
matching.

I. INTRODUCTION

C OMPUTER vision-based defect detection in electronic
chips, integrated circuits (ICs), or other electronic
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components is highly demanded in industry [1]–[8]. Specifi-
cally, the following two stages of inspection are important in
semiconductor industry [1]. First, before the packaging pro-
cess, each die is cut from the wafer by using the dicing saw.
All the separated dies are placed on a thin film in a matrix array
for inspection using scanning electronic microscopes (SEM),
cameras, or other imaging instruments [4], [5]. Then, the defec-
tive dies are discarded and the defect-free dies are placed in a
chip tray for packaging. However, the packaging process may
introduce various kinds of defects to the dies, such as voids,
inclusions, delaminations, etc. Second, the packaged chips (or
ICs) are aligned in a matrix array for final inspection, in which
scanning acoustic microscope (SAM), X-rays, or other nonde-
structive imaging systems are employed to obtain images of the
interior structures of the electronic chips (or ICs) [6], [7], [14].

Traditionally, all the test images of the chips or dies are
processed one by one, and a template image which is defect-
free is used for comparison with the test images [5]. Image
comparison-based methods include image subtraction [8], tem-
plate matching, and phase-only methods [9]. There are also
some model-based methods for detection of different kinds
of defects. For certain types of defects of solder joints in
electronic chips, Acciani et al. extracted the features of the
regions of interest in test images and then built multilayer
neural networks for defect detection [10]. Wavelet features
were extracted by comparing wavelet coefficients of the test
images with those of the template image. For inspection of
light emitting diode (LED) wafers, Li et al. used regional
formulation to improve the segmentation of test images and
then adopted the general features for defect detection [11].
However, this method is specifically designed and cannot be
easily applied to inspection of other different types of elec-
tronic chips or dies. For defect detection in the liquid crystal
display (LCD) wafer images, Kim et al. extracted the features
from the template and test images using corner detectors, based
on which accurate template matching was achieved [12]. Most
researchers select one or a few defect-free image(s) as tem-
plate(s) from the test images, or generate the template image
indirectly using other methods for comparison with all the test
images [13].

Most prevalent methods consider the defect detection as a
template-matching problem, based on the dissimilarity between
the template image and test images. In the test images, the
regions with the dissimilarity exceeding a predefined thresh-
old are identified as defects. The normalized cross correlation
(NCC) is a classical metric measuring the degree of the dis-
similarity [14], [15]. Some new methods have been developed
based on NCC-extended dissimilarity metrics, such as partial
information correlation coefficient (PICC) [16]. NCC-based
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template-matching methods and their extended versions have
been used extensively in the inspection of printed circuit board
(PCB), and electronic chips or dies.

Wang et al. matched the test image with multiple templates
simultaneously, and the template with the largest NCC value
was selected as the optimal template [17]. Crispin et al. first
localized multiple objects in PCBs to generate the templates for
different chips, and then used NCC as the template-matching
metric for defect detection [18]. Wang et al. used PICC which
was more robust to spatial misalignment than NCC [16]. Some
fast NCC-based algorithms were proposed to improve compu-
tational efficiency [19], [20].

The NCC-related template-matching methods rely heavily
on the accurate alignment of the template and test images
[12], [14], [18]. Tsai et al. proposed a shift-tolerant measure
for surface defect detection in LED wafer images [14]. Using
the defect-free template image as the reference, the magnitude
of optical flow of each pixel in the test image is calculated,
which can be used as a metric for defect detection in LED
images. However, it is not effective in inspecting complicated
components such as electronic chips (or ICs), in which the opti-
cal flow magnitudes of some defective regions are not large
enough. Actually, for inspection of electronic chips or dies,
most aforementioned methods based on image comparison with
the template image suffer certain limitations, one of which is
the sensitivity to spatial shift between the template and test
images, which is inevitable in practice because chips or dies
should be placed in the chip tray for the aforementioned two-
stage inspection and positions between the chips or dies are
not always kept exactly the same [5]. Therefore, it is much
desired to develop a fast defect-detection method which is not
only robust to the minor spatial misalignment, such as shift, but
also able to be easily applied to inspection of different types of
industrial images.

This research justifies and investigates a new paradigm of
thinking into industrial defect detection in the production line,
in order to address the abovementioned shortcomings in the
existing approaches. The defect is usually sparse and unpre-
dictable (i.e., as unusual happenings), and it can be considered
as abnormal regions and formulated as salient regions in test
images, with inspiration of human visual attention modeling
[21]–[26]. In this paper, we propose a new method for fast
defect detection in images of electronic chips or dies based
on the devised salient detection model. The proposed formu-
lation of industrial defect detection into a saliency detection
problem enables the following differentiation: different from
the aforementioned existing image comparison or model-based
defect detection methods, in which chips or dies are inspected
one by one, we treat a collection of test images arranged in
an array as a whole as the input image for detection of salient
regions, removing as many normal regions as possible by utiliz-
ing the self-similarities among the multiple images. Defects are
then extracted from salient regions. Thus, the proposed method
for defect detection in industrial images, e.g., the images of
electronic chips or dies, consists of two steps: first, salient
regions are fast extracted from an array of test images; second,
defects are identified from the salient regions using template
matching based on a self-defined spatial misalignment-tolerant

metric. Our method provides a hybrid way of saliency detec-
tion and image comparison. Most normal regions are efficiently
removed in the first step, so that only a few regions need to be
further analyzed in detail. In the second step, spatial misalign-
ments of test images are well accommodated by using template
matching.

In this study, the salient detection model based on phase-
oOnly Fourier transform (POFT) [22] is adopted for saliency
extraction due to its efficiency. We provide the theoretical
justification of POFT with application to defect detection.

The rest of this paper is therefore organized as follows. In
Section II, the principle and complete theoretical justification
of the salient detection model based on POFT for defect detec-
tion are given. In Section III, the proposed method is presented,
with experimental results demonstrated in Section IV. Finally,
conclusion is made in Section V.

II. SALIENCY DETECTION BASED ON POFT

During the past decades, various visual attention models
have been developed for saliency detection in images/videos
[22]–[26]. The effectiveness of POFT as a saliency detec-
tion model for images/videos was experimentally discovered
by Lei et al. [22]. That model is also fast in saliency detec-
tion due to the computational efficiency of fast Fourier trans-
form. By POFT, the phase spectrum of the original image is
retained with the amplitude spectrum set to a constant in the
Fourier domain and then inverse Fourier transform is applied
to get the reconstructed image, in which the salient regions
are expected to pop out. The hypothesis behind that model
is that the phase spectrum rather than amplitude spectrum
obtained from Fourier transform can detect salient regions in
images.

However, there is no complete theoretical justification of
POFT for the saliency detection. Aiger et al. [27] used POFT to
extract surface defects with a textured background. The phases
of the texture and defect are considered separately after Fourier
transform and the study proves that the phase integral excur-
sion of the texture is almost zero, while that of a random defect
is nonzero but does not mathematically explain why the defect
can pop out as salient regions (with amplified amplitudes) after
amplitude normalization and inverse Fourier transform of the
mixed signal of texture and defects. They resorted to simu-
lations of one-dimensional (1-D) signals and two-dimensional
(2-D) images to show the effectiveness of POFT. In the rest of
this section, we will present our findings as a complete theoret-
ical justification of POFT with application to defect detection
in a collection of test images of electronic chips or dies.

Given multiple test images aligned in a Nx ×Ny matrix
array in the 2-D spatial space (x, y), defects are always irreg-
ular, sparse, and unpredictable, and therefore can be regarded
as salient regions in the whole collection of test images as an
array. So, with this arrangement, a collection of test images con-
tains two parts: the defective regions as the foreground and the
defect-free regions as the background. Defects are sparse 2-D
signals, while the defect-free regions are 2-D periodic signals
in the spatial domain due to the matrix alignment of multiple
test chips or dies.
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The arrangement of visual data above essentially enables
turning of the problem under attack into a saliency (atten-
tion) detection formulation. The defects can be seen as
nonperiodic signal in the 2-D spatial space (x, y) and
modeled as

fF (x, y) =

M∑
m=1

fFm(x, y)

=

M∑
m=1

fm · rectFm(x− xm, y − ym) (1)

where M is the total number of defects in the whole collection
and fm is the signal amplitude of the mth defect whose location
is denoted by (xm, ym) and

rectFm(x, y)

=

{
1, −WFmx

2 < x < WFmx

2 − WFmy

2 < y <
WFmy

2
0, otherwise

(2)

is a 2-D rectangular window function with narrow widths of
WFmx and WFmy .

The defect-free regions which contain multiple test images
aligned in an array are modeled as

fB(x, y) =
+∞∑

r=−∞

+∞∑
s=−∞

fB0(x− rXB , y − sYB) (3)

where r and s denote the number of duplicated chips or dies
along x and y axes, respectively; fB(x, y) can be seen as a 2-D
periodic signal with periods of XB and YB; fB(x, y) is further
expanded as

fB(x, y) =

+∞∑
k=−∞

+∞∑
l=−∞

akl exp(i(kuBx+ lvBy)) (4)

using Fourier series, where

akl =
1

XB · YB

XB/2∫
−XB/2

YB/2∫
−YB/2

fB0(x, y)

· exp(−i(kuBx+ lvBy))dxdy (5)

i =
√−1 is the imaginary unit; uB = 2π/XB , vB = 2π/YB ;

k and l are integral numbers.
The mixed 2-D signal which is a linear superposition of

the defects fF (x, y) and defect-free regions fB(x, y) can be
represented as

f(x, y) = fF (x, y) + fB(x, y)

=
M∑

m=1

fm · rectFm(x− xm, y − ym)

+

+∞∑
k=−∞

+∞∑
l=−∞

akl exp(i(kuBx+ lvBy)). (6)

The 2-D Fourier transform of f(x, y) is denoted as

F (u, v) = FT [f(x, y)] = FT [fF (x, y)] + FT [fB(x, y)] (7)

in which

FT [fF (x, y)] =

M∑
m=1

AFm(u, v) · exp(−iϕFm(u, v)) (8)

where FT[ ] denotes the 2-D Fourier-transform operation;
AFm(u, v) and ϕFm(u, v) are the amplitude and phase spec-
trum of fFm(x, y) representing the mth defect, and

FT [fB(x, y)] =

+∞∑
k=−∞

+∞∑
l=−∞

FT [akl · exp(i(kuBx+ lvBy))]

=
4π2

XBYB

+∞∑
k=−∞

+∞∑
l=−∞

AB(u, v)

· exp(−iφB(u, v)) · δ(u− kuB , v − lvB)

(9)

where AB(u, v) and ϕB(u, v) are the amplitude and phase
spectrum of fB0(x, y), respectively, and

δ(u− kuB , v − lvB) =

{
+∞, if u = kuB , v = lvB
0, otherwise

(10)

is the 2-D Dirac delta function.
Based on (8) and (10), the F (u, v) in (7) is given by

F (u, v) = FF (u, v) + FB(u, v)

=

M∑
m=1

AFm(u, v) · exp(−iφFm(u, v))

+
4π2

XBYB

+∞∑
k=−∞

+∞∑
l=−∞

AB(u, v)

· exp(−iφB(u, v)) · δ(u− kuB , v − lvB).

(11)

After normalization of the amplitude of F (u, v) to unity over
the entire 2-D spatial frequency space (u, v), F (u, v) in (7) can
be transformed to

F ′(u, v) = exp(−iφF (u, v))

+

+∞∑
k=−∞

+∞∑
l=−∞

[exp(−iφBF (u, v))

− exp(−iφF (u, v))] · δ0(u− kuB , v − lvB)

(12)

where

δ0(u− kuB , v − lvB) =

{
1, if u = kuB , v = lvB
0, otherwise

(13)

and ϕBF (u, v) is the resultant phase containing the phase infor-
mation of both the defect and defect-free regions when u is the
integer multiples of uB(u = kuB) and v is the integer multiples
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of vB(v = lvB), while ϕF (u, v) is dominated by the phase of
the defect.

Applying the 2-D inverse Fourier transform to these two parts
in the right-hand side of (12), we can get

f ′
1(x, y) = IFT [exp(−iφF (u, v))]

=

M∑
m=1

δ(x− xm, y − ym) (14a)

f ′
2(x, y) = IFT

[
+∞∑

k=−∞

+∞∑
l=−∞

[exp(−iφBF (u, v))

− exp(−iφF (u, v))] δ0(u− kuB , v − lvB)

]

= IFT

[
+∞∑

r=−∞

+∞∑
s=−∞

(ars − brs)

· exp(i(rXBu+ sYBv))

]
(14b)

where IFT[ ] denotes the 2-D inverse Fourier transform opera-
tion, and

ars =
1

4π2uBvB

uB/2∫
−uB/2

vB/2∫
−vB/2

exp(−i(φBF (u, v) + rXBu+ sYBv))

·δ0(u, v)dudv (15a)

and

brs =
1

4π2uBvB

uB/2∫
−uB/2

vB/2∫
−vB/2

exp(−i(φF (u, v) + rXBu+ sYBv))

·δ0(u, v)dudv. (15b)

The function δ0(u, v) in (15a) and (15b) can be seen as a
rectangular window function with infinitesimally small window
width and amplitude of one. So its integral over the 2-D space
(u, v) is equal to zero, and the results of integrals in (15a) and
(15b) are also equal to zero, and we have ars = 0, brs = 0, and
f2

′(x, y) = 0.
Combining (14) and (15), the inverse Fourier transform of

F ′(u, v) is obtained as

f ′(x, y) =
M∑

m=1

δ(x− xm, y − ym) (16)

which consists of multiple 2-D Dirac delta functions with
extremely large amplitudes at the locations of the defects. The
information of the defect-free regions is eliminated in (16). In
practice, it is impossible to have an infinite number of the test
images aligned for defect detection, so r and s in (3) will have
finite lower and upper limits, which means the 2-D signal of
defects fF (x, y) and defect-free regions fB(x, y) are truncated

by a window. The Dirac delta functions in (16) will be replaced
by sinc functions, but still with very large amplitude at the loca-
tions of the defects. Thus, POFT can greatly amplify the defects
and attenuate the defect-free regions. The defects will automat-
ically pop out as salient regions in the image after POFT is
applied.

III. PROPOSED METHOD

According to the analysis in Section II, if the spatial intervals
between some chips or dies in the same chip tray are not exactly
the same, some regions in the chips may not have the com-
mon period shared by other regions in the chips. These regions
will also pop out as salient regions after POFT are applied to
the whole collection of test images. So the salient regions may
include both the defective regions and some defect-free regions
resulted from the spatial shift between the chips and other vari-
ations. Further processing is needed to obtain the defects from
the extracted salient regions. Therefore, the proposed method
contains two steps: the first step is to use POFT for saliency
detection, while the second step is to detect defects from the
extracted salient regions.

A. Step 1: Saliency Detection Based on POFT

In this step, we first apply POFT to the whole collection
of test images to get the saliency map. Then, a 2-D Gaussian
filter

Gf (x, y) =
1

2πσ2
f

· exp
(
−x2 + y2

2σ2
f

)
(17)

is applied to eliminate the noisy peaks in the saliency
map, where σf is the standard deviation of the Gaussian
distribution.

From a statistical point of view, it is assumed that the gray
values in the image after POFT have a Gaussian distribution and
the pixels whose gray values exceed the tolerance interval can
be seen as salient pixels. So, after calculating the mean value
μs and standard deviation σs, the pixels with gray values larger
than μs + Cs · σs can be seen as unusual or salient ones. In
practical applications [28], Cs is usually set as 3.

So, the binary saliency map is given by

B(x, y) =

{
0, if s(x, y) ≥ μs + Cs · σs

gmax, otherwise
(18)

where gmax is the largest gray level of the image, being equal
to 255 if the gray level is displayed in 8 bits.

As an illustration, a collection of images of chips which are
aligned in a 4 chip × 4 chip array is shown in Fig. 1(a). These
images are acquired by a SAM which is capable of imaging the
interiors of chips using high-frequency ultrasound. The chips
are not very accurately aligned. There exist small variations in
the test images and the spatial intervals between the adjacent
test images. There is a crack (a defect), marked by a red circle in
Fig. 1(a). The binary saliency map B(x, y) of Fig. 1(a) is illus-
trated in Fig. 1(b). It can be seen that the defect (shown in the
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Fig. 1. Original image with its saliency maps and detection results. (a) Image of a collection of 4× 4 test chips, one of which has a defect. (b) Binary saliency
map obtained from the Step 1 of the proposed method. (c) Binary map of top 20% salient pixels in (b). (d) Final defect -etection result.

red circle) together with a few defect-free regions (shown in the
blue circles) pop out as salient regions. The inevitable spatial
shift between the chips and minor product variations make these
defect-free regions salient.

Then, the salient pixels are used for further processing in
Step 2. Optionally, after sorting all the salient pixels accord-
ing to their saliency values obtained in Fig. 1(b) in descending
order, we can select a portion of the salient pixels for process-
ing. The selected top 20% salient pixels are shown in Fig. 1(c),
from which we can see that the salient pixels representing the
defects (shown in the red circle) do not disappear, revealing
their high saliency. So, it is possible that not all the salient pix-
els are necessarily selected for further processing to improve
the computational efficiency in Step 2.

B. Step 2: Defect Extraction From the Salient Regions

In this step, we extract defects from the salient regions cal-
culated in Step 1. For each salient pixel in the test images,
template matching is applied to calculate its similarity with
the corresponding pixel in a template image which is defect-
free, as shown in Fig. 2. Assume that the ith salient pixel
(i = 1, 2, . . . , Ns) is located at the coordinate (xi, yi) in the
collection of test images, and this salient pixel belongs to
the (j, k)th test image (j = 1, 2, . . . , Nx, k = 1, 2, . . . , Ny),
where Ns denotes the number of the salient pixels obtained
from Step 1, and Nx and Ny are the numbers of the test
images under inspection along the x and y axes, respec-
tively. Before template-matching, a neighborhood window Wi

around the center (xi, yi) in the test image and the cor-
responding window W ′

i around the center (xi
′, yi

′) in the
template image are defined. The size of both the two windows
is wn × wn. xi

′ = xi − jDx and yi
′ = yi − kDy , where Dx

and Dy are the average spatial intervals between two adjacent

Fig. 2. Second step of the proposed method, which involves matching the test
image with the template at locations of the salient pixels.

test images along x and y axes, respectively, as indicated
in Fig. 2.

Subsequently, the similarity (or dissimilarity) between the
pixels in Wi and Wi

′ is computed. Different metrics can be
applied here to evaluate the degree of local similarity, such as
energy difference, NCC, local binary pattern (LBP), etc. For
simplicity, we apply energy difference between the pixels in
these two windows to calculate the similarity between these two
windows as

s(xi, yi) =
1

w2
n · g2max

·
∑

Wi,W ′
i

[gi(x, y)− gi(x
′, y′)]2 (19)

where gi(x, y) and gi(x′, y′) are the gray levels of pixels inside
Wi and Wi

′, respectively, and gmax is the largest gray level
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as shown in (18). The value of energy difference s(xi, yi) is
between 0 and 1. Due to the misalignment between the tem-
plate image and the test image, a searching window SWi with
size of ws × ws around the center (x′

i, y
′
i) in the template image

is defined to allow the location of the window W ′
i to have shift

of Δxi and Δyi along x and y axes (−(ws − wn)/2 ≤ Δxi ≤
(ws − wn)/2, and (−(ws − wn)/2 ≤ Δyi ≤ (ws − wn)/2),
as shown in Fig. 2. The energy differences between the neigh-
borhood window Wi and each possible window W ′

i bounded by
the searching window SWi are calculated. To tolerate rotational
misalignment, the (j, k)th test image is rotated with different
angles θl (−θmax ≤ θl ≤ θmax, l = 1, 2, . . . , Nθ), and then the
energy differences are calculated.

Here, the minimum value of the energy difference is
defined as the misalignment-tolerant local dissimilarity mea-
sure (MTLDM) which is robust to horizontal, vertical, and
rotational misalignment. MTLDM at location (xi, yi) is denoted
as d(xi, yi) which is used as a measure of the extent to which
the ith salient pixel may represent a defect, with the shift of Wi

′

being Δx∗
i and Δy∗i , and the rotational angle of the test image

being θ∗i . With a larger value of d(xi, yi), the ith salient pixel
is more likely to represent a defect, and vice versa.

Local adaptive threshold is required to decide whether the
salient pixel represents a defect. We define t(x, y) as the thresh-
old at each pixel location (x, y) in the template image. Then the
ith salient pixel in the collection of test images will represent
the defect if the MTLDM at this pixel

d(xi, yi) > t(x′
i +Δx∗

i , y
′
i +Δy∗i ) (20)

with the rotational angle of the (j, k)th test image being θ∗i .
In order to determine the local adaptive threshold t(x, y)

of the template image, a set of M defective-free test images
{I1, I2, . . . , Im, . . . , IM} is used as the training set. For the
template image, the MTLDM at each pixel location (x, y)
is obtained as dm(x, y) after comparison with each training
image Im, in which the searching window SW is applied. Then,
the local adaptive threshold of the template image is given by

t(x, y) = max
m=1,2,...,M

dm(x, y) (21)

to accommodate small product variations in the chips.
Based on the process presented above, the defect in the test

images in Fig. 1(a) is extracted and shown in Fig. 1(d), with
salient pixels which represent the defect-free regions discarded
in Fig. 1(d) after comparison with the template image.

C. Analysis of Computational Complexity

By using fast Fourier transform in Step 1, it requires
2 ·Nx ·Ny ·N · log(Nx ·Ny ·N) operations, where Nx and
Ny are the numbers of the test images along the x and y
axes in Fig. 2, respectively, and N is the number of pix-
els in each test image. In Step 2, for each salient pixel,
the computation of MTLDM needs (ws − wn + 1)2 · w2

n ·
Nθ ·Ns operations. Hence, it totally takes (2 ·N · log(Nx ·
Ny ·N) + (ws − wn + 1)2 · w2

n ·Nθ ·Ns/(Nx ·Ny)) opera-
tions per image.

Fig. 3. Images of four different electronic chips. (a) Type A. (b) Type B.
(c) Type C. (d) Type D.

TABLE I
DETAILS OF THE TEST IMAGES USED IN THE EXPERIMENTS

As shown in Fig. 1(b) and (c), after Step 1, very few pixels
are left for further processing in Step 2, and in this exam-
ple, the number of salient pixels Ns is only 298, accounting
for only 0.07% of the total number of pixels Nx ·Ny ·N . In
most experiments, Ns is far smaller than Nx ·Ny ·N , and the
computational time of Step 2 is usually an order of magnitude
less than that of Step 1. Therefore, the computational complex-
ity of our method is mainly determined by Step 1, which is
approximated as O(N · log(Nx ·Ny ·N)), when that of Step 2
is negligible.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method by using 1073 images of four typical kinds of elec-
tronic chips with different structures, in which 94 are defective.
The defect-free template images of these four chips provided
by different semiconductor manufacturing companies and lab-
oratories are shown in Fig. 3. The detailed descriptions of the
test images used in the experiment are provided in Table I.
The proposed algorithm is implemented by C++ and com-
piled in Microsoft Visual Studio 2010, in a computer with
Intel 2.2 GHz CPU.

A. Preparation of Experiments

The sizes of the neighborhood windows W and W ′ intro-
duced in Step 2 are set as 5× 5 which is suitable for defect
detection in test images with approximate image size of
100× 100 pixels according to [11]; and the size of the search-
ing window SW is set as 9× 9 to make the spatial shift within
4 pixels well tolerated, and the number of rotational angles Nθ

and θmax is set as 7◦ and 3◦, respectively (the test image is
rotated 1◦ each time, with rotational angle ranging from −3◦ to
3◦), which are enough for semiconductor inspection [16].

We use 25 defect-free test images as training set to deter-
mine the local adaptive threshold t(x, y) for each type of image
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Fig. 4. First test image and defect detection results using the four comparison
methods. (a) Defective test image. (b1), (c1), (d1), and (e1) are the calculated
values of NCC, partial NCC, optical flow magnitude, and Mahalanobis dis-
tance. (b2), (c2), (d2), and (e2) are the detection results using the four methods,
with dark pixels representing defects.

Fig. 5. Second test image and defect detection results using the four com-
parison methods. (a) Defective test image. (b1), (c1), (d1), and (e1) are
the calculated values of NCC, partial NCC, optical flow magnitude, and
Mahalanobis distance. (b2), (c2), (d2), and (e2) are the detection results using
the four methods, with dark pixels representing defects.

following the procedures in Step 2 in Section II. To compute
the Dx and Dy in Step 2, the projections of the whole col-
lection of images are made along x and y axes, respectively,
and the gray levels of each row and column are accumulated.
The regions between each two adjacent test images usually
have dark gray levels [as shown in Figs. 1(a) and 7(a)], which
lead to local minima in the projected data along the two
axes. So the Dx and Dy are calculated as the average dis-
tances between adjacent local minima in the two projected data,
respectively.

By using our method, the average processing times for each
test image of types A, B, C, and D are 36, 42, 23, and 22 ms,
respectively. In this experiment, we select top 50% salient pix-
els in Step 1 for further processing in Step 2. However, this
selection is not necessary when the computational efficiency is
not badly needed. Using all the salient pixels in Step 1 for pro-
cessing only makes the processing time of each image about
2 ms longer.

B. Performance Evaluation

In this study, we use four methods, including the zero-mean
NCC-based template matching [14], [20], partial NCC-based

Fig. 6. Third test image and defect detection results using the four comparison
methods. (a) Defective test image. (b1), (c1), (d1), and (e1) are the calculated
values of NCC, partial NCC, optical flow magnitude, and Mahalanobis dis-
tance. (b2), (c2), (d2), and (e2) are the detection results using the four methods,
with dark pixels representing defects.

template matching [16], optical flow-based image comparison
[14], and Aiger and Talbot’s method [27] to compare with
our method experimentally. Twenty-five defect-free images for
each type of test images are used as the training set to deter-
mine the thresholds. According to [14] and [20], local adaptive
threshold T (x, y) = μ(x, y) + C · σ(x, y) is used for NCC
and optical flow-based methods, in which μ(x, y) and σ(x, y)
are the mean and standard deviation of NCC value (or opti-
cal flow magnitude) at pixel location (x, y) from the training
images, and the optimal control constant C is set at −4 and
4 for the NCC-based template matching and the optical flow-
based methods, respectively. For a test image under inspection,
the pixels with NCC values (or optical flow magnitudes) at the
location (x, y) smaller (or larger) than T (x, y) represent the
defect. As suggested by [16] and [27], a constant correlation
threshold of 0.2 is used in the partial NCC-based method, and a
Mahalanobis distance of 4 is used as the threshold to obtain the
defect in Agier and Talbot’s method.

As an illustration, we show the defect-detection results of
some test images of type C. Three defective test images and
one defect-free test image, shown in Figs. 4(a)–7(a), together
with the detection results using these four methods are shown
in Figs. 4–7, respectively. The gray levels in Figs. 4(b1)–7(b1)
are inversely proportional to the NCC values, and those in
Figs. 4(c1)–7(c1) are inversely proportional to the partial NCC
values, while those in Figs. 4(d1)–7(d1) are proportional to the
optical flow magnitudes, and those in Figs. 4(e1)–7(e1) are pro-
portional to the Mahalanobis distances calculated using Aiger
and Talbot’s method.

In the traditional NCC-based template-matching method, the
NCC value is calculated for each pixel within a 5× 5 neighbor-
hood window as in [14]. The final detection results are shown
in Figs. 4(b2)–7(b2) for the four test images, and the dark pix-
els indicate defects. This method successfully detects the true
defects (marked by a circle). But it is sensitive to the spatial
shift between the template and test images. Some defect-free
regions are detected as defects due to the spatial misalignment
in Figs. 4(b2)–7(b2).

In the partial NCC-based template-matching method, the size
of the neighborhood window is set as 3× 3 as in [16]. The
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Fig. 7. Fourth test image and defect detection results using the four comparison
methods. (a) Test image which is defect-free but with spatial misalignment.
(b1), (c1), (d1), and (e1) are the calculated values of NCC, partial NCC, optical
flow magnitude, and Mahalanobis distance. (b2), (c2), (d2), and (e2) are the
detection results using the four methods, with dark pixels representing defects.

final detection results are shown in Figs. 4(c2)–7(c2) for the
four test images, and the number of dark pixels representing the
defects decreases when comparing to the NCC-based detection
results, giving less false positives. Due to the use of dominant
pixels with a large gray level difference with respect to the tem-
plate image to calculate the NCC values, this method is more
robust to spatial misalignments and successfully detects the two
defects in Figs. 5(a) and 6(a). However, it fails to detect the
small defect shown in Fig. 4(a) and gives false positives when
applied to a normal test image with large spatial misalignment
as shown in Fig. 7(a).

In the optical flow-based method, the magnitude of the opti-
cal flow of each pixel within a 5× 5 neighborhood window
is calculated [14]. The final detection results are shown in
Figs. 4(d2)–7(d2). This method is suitable for detecting the
defect which is a sparse signal with a uniform background,
where the defect can be modeled as a “sudden motion” given
the template image as the previous frame of the test image. The
“sudden motion” is represented as a large optical flow magni-
tude so that the defect can be segmented. However, it is not so
successful in defect detection in electronic chips which have
more complex structures. It cannot detect the defect shown in
Fig. 4(a), whose optical flow is not large enough but is suit-
able to detect the more evident defect shown in Figs. 5(a) and
6(a). The optical flow-based method has more tolerance to the
spatial shift of the test images than the traditional NCC-based
method. However, it still cannot fully eliminate the effect of
misalignment and mistake some normal regions for defects.

Aiger and Talbot’s method is unsupervised and directly use
POFT to each single test image to find the defect. Its detection
results are shown in Figs. 4(e2)–7(e2). It can successfully detect
the defect as shown in Fig. 4(e2). However, as pointed out in
[27], it cannot detect defects structured as a scratch or line,
which may be seen as regular patterns in a single test image.
Seen from the detection results in Figs. 5(e2) and 6(e2), it fails
to detect the two defects in Figs. 5(a) and 6(a). Furthermore,
this method erroneously identifies some normal but irregular
regions as defects.

In our method, a collection of 35 test images which are not
aligned well is taken as an input image as shown in Fig. 8(a),

Fig. 8. Input image collection and defect detection results using our method.
(a) Collection of 7× 5 test images. (b) Binary saliency map obtained in Step
1 of our method (Cs = 3). (c) Final detection result obtained in Step 2 of our
method.

in which the four test images shown in Figs. 4(a)–7(a) are
included. Some images have horizontal, vertical, and rotational
misalignments. The salient regions calculated from Step 1 of
the proposed method are shown in Fig. 8(b), with the salient
regions representing the defects marked by red circles. We can
see that the pixels representing the defects have large salient
values. After Step 2, the defects are successfully detected
as shown in Fig. 8(c). Comparing to the former four meth-
ods, no false positive is detected with the existence of minor
spatial shift between the test images and other tiny product
variations.

All the methods presented above are applied to all the test
images of type A, B, C, and D. Here, the precision, recall, and
F-measure are used to evaluate the performance. Precision P
is computed as the ratio of the number of the defective pix-
els which are correctly detected to that of all the pixels which
are detected as defective. Recall R is defined as the ratio of
the number of the detected defective pixels to that of all the
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TABLE II
EXPERIMENTAL PERFORMANCE OF DIFFERENT METHODS

defective pixels. F-measure which combines the precision and
recall is given by

Fα =
(1 + α) · P ·R
α · P +R

(22)

where α is a weight coefficient, which is set as 0.3. The results
of the precision, recall, and F-measure are shown in Table II
for these five compared methods, from which we can see that
the NCC, partial NCC, and the optical flow-based method have
a relatively high recall rate but low precision rate because of
mistaking the defect-free pixels as defective ones. The partial
NCC-based method has a better precision rate than NCC-based,
optical flow-based methods and Agier and Talbot’s method,
and it is more robust to spatial alignment. Agier and Talbot’s
method performs worse than the other methods because many
normal regions are wrongly identified as defects, and its recall
rate is not satisfactory because of its insensitivity to some types
of defects such as lines or scratches. Our method achieves
much better performance than the other four methods in terms
of precision, recall, and F-measure. Additionally, with differ-
ent parameter Cs (varies from 1 to 4), the performance of the
proposed method is similar.

The computational complexity and average computational
time per test image of all these methods are also summarized
in Table II, where w is the size of the neighborhood window
and N is the number of pixels in the test image. In terms of
computational efficiency, our method is comparable to the fast
NCC-based, optical flow-based methods and Agier and Talbot’s
method when Cs is set as 3 or 4. There is much influence for
the value of parameter Cs on the computational complexity,
especially when it is set as 1 and many pixels are required for
processing in Step 2.

C. Further Analysis and Discussion

In Step 1, we fast locate candidate-defective regions using
saliency detection model, and in Step 2, the true defects are
extracted. Comparing with Agier and Talbot’s method [28]
which directly uses POFT in each single test image to find
the defect, our method is different in that we use a collection
of images together as the input for processing and utilize the
self-similarities among the multiple images, making themselves
form a global periodic pattern, which can be removed by POFT
efficiently. So the proposed method has two major advantages
over Agier and Talbot’s method.

Fig. 9. (a) Collection of well aligned and defect-free test images of Type C.
(b) Binary saliency map obtained in Step 1 by using the proposed method.

1) The defects such as scratches or lines which Agier
and Talbot’s method cannot be detected are successfully
detected by the proposed method, as these types of defects
are no more regular when compared to the global periodic
pattern.

2) In Agier and Talbot’s method, many normal regions with
high contrast or irregular patterns, such as corners, are
misclassified as defects.

In the proposed method, due to the effect of spatial misalign-
ment, some normal regions still pop out in Step 1 as shown
in Fig. 8(b). The template-matching-based comparison at each
salient pixel in Step 2 ensures that only the true defects are
detected, as shown in Fig. 8(c).

Ideally, if the test images are all detect-free and aligned well,
all these normal regions will be automatically removed in Step 1
because of the global pattern. In practice, only a finite number
of test images are available for processing. Due to the effect
of window function in Fourier transform, some normal regions
still pop out as salient regions in Step 1, even though there is no
spatial misalignment. For example, there is a collection of well-
aligned and defect-free images shown in Fig. 9(a). The binary
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saliency map is obtained as Fig. 9(b). The proposed method will
not detect any defect finally because of the image comparison
used in Step 2. (The detection result is not shown here as it is a
totally blank image.)

Another issue is how to determine the proper array size
Nx ×Ny of the collection of test images. Nx ×Ny should be at
least 2× 2 to form a global periodic pattern among the multiple
test images. In practice, it should be larger than 2× 2 to include
more defect-free test images into the collection. Consider an
extreme case in which we only have 2× 2 test images and all
the four test images have defects at the same location. These
four defects will form a periodicity which makes them diffi-
cult to be detected by POFT. More defect-free test images are
needed to avoid such cases. Thus, it is preferred to have a rela-
tively large array size. Meanwhile, given an image acquisition
system, the image resolution of each test image will drop as the
array size increases, so some tiny defects may not be captured.
To ensure a good resolution for each test image, the array size
should not be too large. Overall, for simplicity, the proper array
size is set a little smaller or equal to an upper bound which is
subject to some limitations, such as resolution requirement for
each test image.

V. CONCLUSION

Effective and efficient defect detection is important in semi-
conductor manufacturing and electronic production environ-
ment. Before packaging process, the dies are cut down from
the wafer and aligned in an array for defect detection, and then
the packaged electronic chips are delivered for further inspec-
tion. In this paper, we take a collection of test images aligned
into an array as the input image for defect detection and have
proposed a new method for fast defect-detection in images of
electronic chips or dies from semiconductor production line.
First, we apply the POFT to the whole collection of test images
to obtain the salient regions. We theoretically prove that POFT
can efficiently and effectively eliminate the periodic signals cor-
responding to the duplicated normal regions in multiple test
images and greatly amplify the nonperiodic and sparse signals
corresponding to the defects in the collection. However, there
are spatial misalignment between the aligned test chips, which
may also lead to salient regions. In the second step, the defects
are extracted from the salient regions by matching the local
image statistics around the salient pixels with that in the tem-
plate image, in order to exclude false saliency. Experimental
results have shown better performance of the proposed method
compared with the relevant existing ones.
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