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This paper surveys main principles of feature selection and their recent applications in big data bioinfor-
matics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to
feature selection, we formulate feature selection as a combinatorial optimization or search problem
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where heuristic search methods may further be categorized into those with or without data-distilled fea-
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1. Introduction

We have entered an era of big data. Data are becoming bigger
not only in terms of the abundance of patterns (data instances or
tuples), but also the dimensionality of features (or data attributes).
This can significantly degrade the accuracy and efficiency of most
learning algorithms, especially when there exist irrelevant or
redundant features. Sometimes, the sheer size of the data even ren-
ders the data mining algorithms completely useless. The situation
is particularly acute in bioinformatics [1,2,3,4,5,6,7].

Laney [8] characterized big data with 3Vs, i.e., volume (enor-
mous size of data sets), variety (many sources and types of data)
and velocity (fast pace at which data flows in from sources) [9].
Later, Normandeau [10] added the 4th V, i.e. veracity, to describe
biases, noise and abnormality in data. A large variety of bioinfor-
matics data includes genomics, proteomics, biomedical imaging,
clinical trial data, etc. In particular, Stephens [11] compared geno-
mics with three other major generators of big data: Twitter, You-
Tube, and astronomy, in terms of annual storage space required.
Twitter requires 1–17 PB (Petabyte or 1 million GB), whereas You-
Tube and astronomy require 1 EB (Exabyte or 1 billion GB) and
1–2 EB, respectively. Genomics, which is only a part of bioinfor-
matics data, requires 2–40 EB per year! The authors further
estimated that between 100 million and as many as 2 billion
human genomes could be sequenced by the year 2025, represent-
ing 4–5 orders of magnitude growth in 10 years and far exceeding
the growth in the 3 other big data domains. Privacy concerns often
require biomedical data to be modified before analysis, which can
exacerbate veracity in the bioinformatics domain, compared to
other big data domains.

Langley et al. [12,13] pointed out that the predictive accuracy of
the learning algorithms are reduced in the presence of irrelevant
features. Koller et al. [14] proved that the distribution of truly
relevant features for the main task are blurred by irrelevant or
redundant features [15]. Fu and Wang [16] showed that deleting
those irrelevant features can not only improve the classification
accuracy, but also reduce the structural complexity of the radial
basis function (RBF) neural network and facilitate rule extraction.
Hence data dimensionality reduction (DDR) is of paramount
importance for mining big data [15,17,18,19].

There are various taxonomies for DDR. Depending on whether
or not the original features are transformed into new features,
one may categorize DDR techniques into feature extraction or fea-
ture selection (FS) techniques, respectively. Depending on whether
or not a classifier is used to evaluate the performance of a feature
subset during feature search, DDR techniques can be categorized
into wrapper or filter methods, respectively. Feature extraction
methods, e.g., principal component analysis (PCA) [20], linear dis-
criminant analysis (LDA) [21,22,23] and extensions [24,25,26,27]
transform the original set of features into a new set of features.
Because the new features are different from the original features,
it may be difficult to interpret the meaning of the new features.

There are some excellent survey papers related to soft comput-
ing techniques, FS, machine learning approaches, and bioinformat-
ics, for example, [1,2,3,4,5,6,7]. Saeys et al. presented a review on
FS techniques in bioinformatics, although this paper was published
nearly a decade ago and was not so much concerned with big data.
Some of the existing survey papers are for specific domain
problem-solving in bioinformatics, not necessarily focusing on FS,
for example, Lazar et al. [28] presented a survey on filter tech-
niques for FS in gene expression microarray analysis. Mitra et al.
[2] reviewed soft computing methodologies used in genetic net-
works. Phan et al. [3] discussed a biomarker identification pipeline
in cardiovascular genomics. Chen et al. [4] described several intel-
ligent techniques for identifying single nucleotide polymorphism
(SNP) interactions. Kourou et al. [5] surveyed various machine
learning applications in cancer prognosis and prediction. Neto [6]
discussed methods for microarray classification. Other overview
papers are more general, for example, Liang et al. [7] described
computational functional genomics. In our present paper, we
attempt to survey more recent studies on FS in bioinformatics
and relate to big data whenever appropriate. We emphasize on
the algorithmic aspects in FS, rather than the domain problems.

The rest of the paper is organized as follows. In Section 2, we
discuss FS in general and view FS as a combinatorial optimization
or search problem. We then describe truly optimal FS, i.e., exhaus-
tive search. Section 3 reviews various sub-optimal FS approaches,
i.e., heuristic search methods with and without data-distilled fea-
ture importance ranking. Section 4 covers hybrid FS approaches,
i.e., semi-exhaustive search and other hybrid FS techniques.
Finally, Section 5 concludes the paper and discuss future
challenges.
2. Truly optimal feature selection: exhaustive search

FS aims at selecting a subset (or subsets) of the original features
while achieving the best for a pre-determined objective, often the
highest classification accuracy (for test data) [17]. Note that the
best feature set may very well be the original features in the
absence of redundant or irrelevant features. In the presence of
redundant or irrelevant features, there can be multiple subsets of
features that are equally good for a given objective, that is, FS
may not necessarily result in a unique subset of features.

FS eliminates redundant and irrelevant features, and obtains the
best subset(s) of features which most successfully discriminate(s)
among classes. FS techniques are widely explored because it is
easier to interpret selected features compared to extracted new fea-
tures. Numerous applications, including document classification,
object recognition, disease diagnosis, and computer vision, require
the aid from FS.

Among the large number of classifiers available, it will be
sensible to choose good classifiers, such as random forests [29],
support vector machines (SVMs) [30,31,32], cluster-oriented
ensemble classifiers [33], random vector functional link (RVFL)
[34], and radial basis function (RBF) neural networks [35,36,37].

Searching for the truly optimal subset(s) of features is usually
computationally expensive and has been shown to be NP-hard
[38]. Basically, in order to find the very best feature subset(s),
one would need to exhaustively try out all possible M-feature
combinations of the N original features, with M=1,2, . . . ,N. This
‘‘combinatorial explosion” for an exhaustive search leads to a
computational load that grows exponentially as the total number
of features increases. In practical terms, this becomes impossible
even for the most powerful computers if there are more than 30
features to be searched.
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3. Sub-optimal feature selection: heuristic search

Hence, in most practical situations, exhaustively searching for
the truly optimal subset(s) of features cannot be accomplished.
For a combinatorial optimization problem like FS, one has no
choice but resort to various types of heuristic search techniques.
‘‘Heuristic search” is search guided by ‘‘experience” or ‘‘sensible
choices”, ‘‘in the hope” that good sub-optima or even global optima
are searched before other unfruitful subsets. In practice, well-
designed heuristic search is likely to out-perform random search,
although this cannot be guaranteed, since in some cases, random
search could quickly stumble on a global optimum by luck. The
actual performance of a heuristic search depends largely on the
design of the heuristic algorithm, as well as the problem at hand,
i.e., the dataset in consideration for FS.

Furthermore, good heuristic search algorithms should find a
global optimum if given enough time to search.

There are many well-known heuristic search algorithms which
have two essential ingredients: (i) local improvement and (2) inno-
vation. The first ingredient ‘‘local improvement” is to search the
neighbors in the state space for solutions that are better than the
current solution. If an algorithm does only local improvements,
for example, gradient decent or steepest ascent (depending on
whether the solution evaluator is a cost function or an objective
function), the algorithm may become stuck at a local optimum.
The second ingredient, ‘‘innovation”, allows the search to accept
some solutions that are not as good as the present solution, so that
the search can escape from local optimum.

For example, simulated annealing [39,40] mimics the physical
annealing process where metals are heated up to a high tempera-
ture and gradually cooled down, so that the atoms move around at
the high temperature and settle down at better locations as the
metal cools, thereby hardening the metal. During search in simu-
lated annealing, better solutions are always accepted, while worse
solutions are accepted with a probability that reduces as the ‘‘tem-
perature” (now a variable) decreases. The algorithm is able to find
good local optima within a reasonable period of time and would
always find a global optimum if annealing is carried out suffi-
ciently slowly.

A genetic algorithm (GA) [41,42,43,44] is a heuristic search
algorithm inspired from the natural evolutionary process and has
been widely used in solving many optimization problems. The sim-
plest form of GA starts with a population of randomly generated
candidate solutions (phenotypes or individuals). Each individual
has a fitness value according to the objective function that quanti-
fies how good the candidate solution is. Each candidate solution
has a set of properties (chromosomes or genotype) usually repre-
sented as binary strings of 0s and 1s. In each generation, the fitter
individuals are selected from the current population, and each
individual’s genome is modified, i.e., by cross-over and randomly
mutation, to form a new generation. The algorithm terminates
when either a maximum number of generations has been pro-
duced, or a satisfactory fitness level has been reached.

Other heuristic search algorithms include ant colony optimiza-
tion (ACC) [45,46], particle swarm optimization (PSO) [47,48,49],
chaotic simulated annealing [50,51], tabu search [52,53], noisy
chaotic simulated annealing [54,55,56,58], branch-and-bound
[57], etc.
3.1. Feature selection via heuristic search without data-distilled
feature importance ranking

Siedlecki et al. [59] and Raymer et al. [23] proposed an approach
to selecting feature subsets using GA, where GA was used to find a
binary vector (feature mask) and each bit represents the presence
(1) or absence (0) of a feature. The nearest neighbor classifier was
used to evaluate the fitness (the classification accuracy) of each
feature subset. Xiong [60] developed a novel hybrid method of
case-based reasoning and GA for FS. Case-based reasoning is car-
ried out on a leave-one-out procedure to obtain an error estimate,
which is used together with selected attributes to provide an eval-
uation function for GA search.

Fu andWang used GA to select features, thereby simplifying the
structure of a RBF neural network and extracting succinct rules
from data [61,62,63]. Lin et al. [64] used GA for FS and proposed sil-
houette statistics as a discriminant function to distinguish between
six subtypes of pediatric acute lymphoblastic leukemia by using
microarray with thousands of gene expressions. Kleftogiannis
et al. [65] combined SVM with genetic algorithms (GA) for FS
and parameters optimization. The best model trained on human
data successfully predicted pre-miRNAs to other organisms includ-
ing the category of viruses.

Zhang [66] introduced peak tree to represent the peak informa-
tion in mass spectrometry (MS) spectra. They presented an
improved ant colony optimization biomarker selection method to
build the MS analysis system. Experiments on real SELDI data
showed that their peak detection method can better resist spec-
trum variations and provide higher sensitivity and lower false
detection rates than other methods.

After a good classifier, such as a SVM or a neural network, is
trained, the input weights for any irrelevant input features should
become very small or vanish. One can then eliminate those input
features associated with small weights in the classifier trained
with the data. This is sometimes called the ‘‘embedded” FS method,
i.e., classifiers embedded with FS procedures. If one desires, one
can still call these weights in the classifiers some sort of feature
importance ranking measures; however, these feature importance
measures are derived from trained classifiers, rather than distilled
directly from input data (as in the approaches to be covered in the
next subsection). Similarly, for a regression problem, e.g., risk prog-
nosis and time series prediction, a regression algorithm (e.g., sup-
port vector regression or SVR) should be used as the objective
evaluator, in place of a classifier. Occasionally, instead of classifiers,
clustering algorithms can also be used. These ‘‘embedded” FS
methods are sub-optimal, since training of the objective evaluator
(classifier, regression algorithm) is not guaranteed to reach global
optima. All methods below in this subsection belong to ‘‘embed-
ded” FS.

Guyon et al. [67] proposed a support vector machine method
based on recursive feature elimination (RFE). The SVM-RFE algo-
rithm trains a SVM with a linear kernel and removes the feature
with smallest w value of the decision hyperplane given by the
trained SVM. Zhong et al. [68] used SVM-RFE to select features
for predicting essential proteins and removed the features that
share biological meaning with other features according to Pearson
Correlation Coefficients (PCC). Experiments were carried out on S.
cerevisiae data. 6 features were determined as the best subset.
They compared with SVM, Naive Bayes, Bayes Network, and
NBTree.

Furlanello et al. [69] presented E-RFE, a variant of the SVM-RFE
in which features are eliminated using entropy of the weights
distribution of a SVM classifier. A dynamic time warping (DTW)
algorithm was then applied to define a metric between sample-
tracking profiles. An unsupervised clustering based on the DTW
metric allowed for automating the discovery of outliers and of sub-
types of different molecular profiles. They applied the algorithm to
synthetic data and two gene expression studies.

Duan et al. [70] carried out a statistical analysis of weight
vectors of multiple linear SVMs trained on subsamples of the
original training data, as opposed to one such SVM in SVM-RFE.
They tested the method on four gene expression datasets for
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cancer classification. This study suggested that, for gene
expression-based cancer classification, an average test error from
multiple partitions of training and test sets can be recommended
as a reference of performance quality.

To address the problem that the SVM-RFE is highly sensitive to
the ‘‘filter-out” factor, i.e., how many genes are removed at one
step, Tang et al. [71] proposed a two-stage SVM-RFE algorithm
for microarray gene selection. The algorithm effectively eliminated
most of the irrelevant, redundant and noisy genes while keeping
information loss small at the first stage. A fine selection for the
final gene subset was then performed at the second stage. The
two-stage SVM-RFE overcame the instability problem of the
SVM-RFE and achieved improved results.

Yousef et al. [72] proposed the SVM-RCE technique, which com-
bines K-means, a clustering method, to identify correlated gene
clusters, and the SVM, a supervised machine learning classification
method, to identify and score (rank) those gene clusters for the
purpose of classification. K-means is used initially to group genes
into clusters. Recursive cluster elimination (RCE) is applied to iter-
atively remove those clusters of genes that contribute the least to
classification. Luo et al. [73] improved recursive cluster elimination
based on SVM (SVM-RCE). This ISVM-RCE method first trains a
SVM model with all clusters, then applies the infinite norm of
weight coefficient vector in each cluster to score the cluster, finally
eliminates the gene clusters with the lowest score. In addition,
ISVM-RCE eliminates genes within the clusters instead of removing
a cluster of genes when the number of clusters is small. The
authors tested ISVM-RCE on six gene expression data sets and
compared their performances with the original SVM-RCE and lin
ear-discriminant-analysis-based RFE (LDA-RFE). The experiment
results on these data sets show that ISVM-RCE greatly reduces
the time cost of SVM-RCE, while obtaining comparable classifica-
tion performance as SVM-RCE.

Li et al. [74] designed margin influence analysis (MIA) to work
with SVM for selecting informative genes. MIA should reveal genes
which have statistically significant influence on the margin in the
SVM by using Mann–Whitney U test. The main reason for using
the Mann–Whitney U test rather than two-sample t test is that
the former is a nonparametric test method without any
distribution-related assumptions.

To predict protein structure classes, Hayat et al. [75] proposed a
model employing a hybrid descriptor space in conjunction with an
optimized evidence-theoretic K-nearest neighbor algorithm. The
hybrid space consists of two descriptor spaces including multi-
profile Bayes and bi-gram probability. The authors selected dis-
criminative descriptors from the hybrid space using PSO. They
compared the performance of their approach to other algorithms
on benchmarking data.

Blocking is an experimental design strategy where similar con-
ditions are used to compare alternative configurations to assure
that observed differences in accuracy are due to underlying differ-
ences rather than to fluctuations or noise. Bontempi [76] proposed
a blocking strategy for improving FS which aggregates the valida-
tion outcomes of several learning algorithms to assess a gene sub-
set. The paper showed that the blocking strategy significantly
improves the performance of a conventional forward selection
for a set of 16 publicly available cancer expression data sets. The
experiments involve six different classifiers and show that
improvements are independent of the classification algorithm
used.

Quantitative structure–activity relationships (QSARs) correlate
biological activities of chemical compounds with their physico-
chemical descriptors. Wong and Burkowski [77] used kernel align-
ment as an evaluation tool, using recursive feature elimination to
compute a molecular descriptor containing the most important
features needed for a classification application. Their empirical
results showed that the algorithm worked well for the computa-
tion of descriptors for various applications involving different
QSAR data sets.

To automatically detect lexico-semantic event structures in
biomedical texts, Ozyurt [78] designed a noun argument structure
(NAS) annotated corpus and a SRL system to identify and classify
these structures. A GA-based FS (GAFS) method was used to signif-
icantly improve the performance of the system.

Ghorai et al. [79] carried out GA-based simultaneous feature
and model selection for an ensemble of nonparallel plane proximal
classifiers (NPPCs). Experimental results on cancer data sets
showed that the NPPC ensemble offers comparable testing accu-
racy to that of SVM ensembles with reduced training time on
average.

Fong et al. [80] used PSO to search for optimal feature subsets,
together with three classifiers, i.e., pattern network, decision tree,
and Navies Bayes. The approach was shown to achieve high accu-
racy in classification in two empirical biomedical datasets, i.e., the
Arrhythmia dataset and the MicroMass dataset.

Sun et al. [81] extended the L1-L2 SVM classifier proposed by
others [82,83,84] to regression analysis, thereby achieving cancer
prognosis and automatic FS from the trained SVR. The proposed
method was compared with other seven prognostic prediction
methods on three real-world data sets.

Liu et al. [85] proposed a SVMs with Lp (p < 1) regularization
that is applicable to deal with high-dimensional data sets with
both discrete and continuous data types. The regularization param-
eters were estimated through maximizing the area under the ROC
curve (AUC) of the cross-validation data. They carried out experi-
ments on protein sequence and SNP data. The accurate and sparse
LpSVM leads to effective FS.

The support feature machine (SFM) finds the least number of
features of a data set such that two classes are linearly separable
without error. The dimensionality of the data is thus more effi-
ciently reduced than with support vector based FS. Klement et al.
[86] provided a new formulation of the SFM where classification
of unbalanced and nonseparable data was straightforward. They
applied the SFM to a functional magnetic resonance imaging data
set.

Mohapatra et al. [87] proposed two variations of kernel ridge
regression (KRR) [88,89,90], namely wavelet kernel ridge regres-
sion (WKRR) and radial basis kernel ridge regression (RKRR) for
classification of microarray medical datasets. The authors also pro-
posed a modified cat swarm optimization (MCSO), a naturally
inspired evolutionary algorithm, to select the most relevant fea-
tures from the datasets. They used several biomedical datasets to
demonstrate their algorithms.

Maji and Pal [91] proposed a rough-fuzzy C-Medoids algorithm
for selection of bio-basis for amino acid sequence analysis. The
membership function of fuzzy sets enables efficient handling of
overlapping partitions, while lower and upper bounds of rough sets
[92,93] deal with uncertainty, vagueness, and incompleteness in
class definition. The crisp lower bound and fuzzy boundary of a
class in the algorithm enables efficient selection of the minimum
set of the most informative bio-bases. Maji and Partha Garai [94]
presented a FS method based on fuzzy-rough sets by maximizing
both relevance and significance of the selected features. They also
presented different feature evaluation criteria such as dependency,
relevance, redundancy, and significance for attribute selection
using fuzzy-rough sets. The performance of different rough set
models was compared with some existing techniques based on
the accuracy of nearest neighbor rule, SVM, and decision tree on
a set of microarray gene expression datasets.

Maulik and Chakraborty [95] proposed a fuzzy preference based
rough set (FPRS) method for feature (gene) selection with semisu-
pervised SVMs. They compared the performance of this technique
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with the signal-to-noise ratio (SNR) and consistency based FS
(CBFS) methods. They demonstrated their scheme using six bench-
mark gene microarray datasets, including both binary and multi-
class classification problems.

Pang et al. [96] used the random forests to identify a set of prog-
nostic genes. They compared their method with several machine
learning methods and various node split criteria using several real
data sets. They showed that their method incorporates multivari-
ate correlations and is advantageous over single-gene-based
approaches.

Wu et al. [97] proposed a Laplace naive Bayes model with mean
shrinkage (LNB-MS). The Laplace distribution was used instead of
the normal distribution as the conditional distribution of the sam-
ples because it is less sensitive to outliers. The L1 penalty was
imposed on the mean of each class to achieve automatic FS. Exper-
imental results were shown for simulated data sets and 17 publicly
available cancer data sets.

Array comparative genomic hybridization (aCGH) is a relatively
new method for the detection of copy number abnormalities asso-
ciated with human diseases with special focus on cancer. Metsis
et al. [98] presented a FS method based on structured sparsity-
inducing norms to identify the informative aCGH biomarkers. They
experimentally compared the proposed approach with existing FS
methods on four publicly available aCGH data sets.

Boareto et al. [99] introduced an analytic geometric FS method
called supervised variational relevance learning (Suvrel), a varia-
tional method to determine metric tensors to define distance based
similarity in pattern classification. The variational method was
applied to a cost function that penalizes large intraclass distances
and favors small interclass distances. They found analytically the
metric tensor that minimizes the cost function.

Tan et al. [100] proposed a minimax sparse logistic regression
(LR) model for very high-dimensional FSs, which can be efficiently
solved by a cutting plane algorithm. To solve the resultant nons-
mooth minimax subproblems, the authors designed a smoothing
coordinate descent method.

Wang et al. [101] designed unified objectives for FS, multiple
kernel learning, sparse coding, and graph regularization. By opti-
mizing the objective functions iteratively, they achieved FS and
multiple kernel learning. They demonstrated their approach with
experimental results on two challenging tasks, N-linked glycosyla-
tion prediction and mammogram retrieval.

Garcia-Pedrajas et al. [102] proposed an evolutionary simulta-
neous instance and FS algorithm that is scalable to millions of
instances and thousands of features, using divide-and-conquer.
They demonstrated their algorithm with 13 very large datasets.

3.2. Greedy search with data-distilled feature importance ranking

Although FS approaches via heuristic search discussed in the
previous subsection are less computationally expensive compared
to exhaustive search, it may still take a long time to find a good fea-
ture subset. An alternative approach is to first evaluate the ‘‘impor-
tance” of each feature individually, using some sort of feature
importance information distilled from the data, and then either
select a certain number of the most important features without
any search aided by a classifier (often called the filter approach
[103]), or by simple greedy search with the help of a classifier
(the wrapper approach). A greedy search can be either a backward
search (the least important features are gradually removed from
the full feature set) [104] or forward search (the most important
features are gradually added to an empty feature set) [105].

Even for the filter methods, very often the final goal is classifi-
cation and a classifier is eventually involved. For example, if an
input feature represents a biomarker for a disease, this input fea-
ture should contribute positively towards classification (diagnosis)
performance. Although there are numerous types of classifiers and
a feature subset best for one classifier may not be the best for
another classifier, it is not a good idea to leave out classifiers alto-
gether for FS.

Examples of data-distilled feature importance measures include
t-test [106,107], fold-change difference [108], Z-score [109], Pear-
son correlation coefficient [110], relative entropy [111], mutual
information [112,113], separability-correlation measure [16], fea-
ture relevance [114,115], label changes produced by each feature
[116], information gain [117], etc. The feature importance is
directly derived from the input data, as opposed to being extracted
from a trained classifier.

Chu and Wang [118,119] used the SVM for cancer classification
with microarray data. Dimensionality reduction methods, such as
class-separability measure, Fisher ratio, principal components
analysis (PCA), and t-test, were used for gene selection. A voting
scheme was then employed to do multi-group classification by
multiple binary SVMs. They were able to obtain the same classifi-
cation accuracy but with much fewer features compared to other
published results.

Liu et al. [120] carried out comparisons on FS for Affymetrix
(Affy) microarray studies across different labs. They investigated
four FS methods: t-test, significance analysis of microarrays
(SAM), rank products (RP), and random forest (RF). They applied
the four methods to acute lymphoblastic leukemia, acute myeloid
leukemia, breast cancer, and lung cancer Affy data which consist of
three cross-lab data sets each. Their results showed that SAM has
the best classification performance. RF also obtained high classifi-
cation accuracy, but was not as stable as SAM.

Zhou and Wang [121,122] first ranked each feature (SNP) using
a modified t-test or F-statistics. From the ranking list, they formed
different feature subsets by sequentially choosing different num-
bers of features (e.g., 1, 2, 3, . . ., 100.) with top ranking values, train
and test them by the SVM, thereby finding one subset which had
the highest classification accuracy. Their method was able to iden-
tify a very small number of important SNPs that can determine the
populations of individuals.

To address the problem that the selected genes by the same
method often vary significantly with sample variations, Yu et al.
[123] proposed a general framework of sample weighting to
improve the stability of FS methods under sample variations. The
framework first weights each sample in a given training set accord-
ing to its influence to the estimation of feature relevance, and then
provides the weighted training set to a FS method. Experiments on
a set of microarray data sets showed that the proposed algorithm
significantly improved the stability of representative FS algorithms
such as SVM-RFE and ReliefF, without sacrificing their classifica-
tion performance.

Peters et al. [124] used cross-entropy on a human lymph node
data set to show that a significant number of genes perform well
when their complementary power is assessed, but ‘‘pass under
the radar” of popular FS methods that only assess genes individu-
ally on a given classification tool. They also showed that this phe-
nomenon becomes more apparent as diagnostic specificity of the
tissue samples analyzed increases.

Valavanis, Maglogiannis, and Chatziioannou [125] used an inte-
grated multimodal dataset related to cutaneous melanoma that
fuses two separate sets providing complementary information,
i.e., gene expression profiling and imaging. The first goal was to
select a subset of genes that comprise candidate genetic biomark-
ers. The derived gene signature was then utilized in order to select
imaging features, which characterize disease at a macroscopic
level, presenting mutual information content to the selected genes.
Using information gain ratio and exploration of the gene ontology
tree, they identified a set of 32 uncorrelated genes significant to
melanoma. Selected genes and imaging features were used to train
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various classifiers that could generalize well when discriminating
malignant from benign melanoma samples.

Gumus et al. [126] used a multi objective optimization tech-
nique called Pareto Optimal for selecting SNP subsets offering both
high classification accuracy and correlation between genomic and
geographical distances. Discriminatory power of an SNP was deter-
mined using mutual information. They demonstrated their method
with the Human Genome Diversity Project (HGDP) SNP dataset.

Bennasar et al. [127] introduced Joint Mutual Information Max-
imization (JMIM) and Normalized Joint Mutual Information Maxi-
mization (NJMIM); both these methods use mutual information
and the maximum-of-the-minimum criterion, which alleviates
the problem of overestimation of the feature significance as
demonstrated both theoretically and experimentally. They com-
pared their proposed methods using eleven publicly available data-
sets with five competing methods.

Maji [128] presented different f-information measures as the
evaluation criteria for gene selection. To compute the gene-gene
redundancy, these information measures calculate the divergence
of the joint distribution of two-gene expression values from the
joint distribution when two genes are considered to be completely
independent. The performance of different f-information measures
was compared with that of mutual information based on accuracy
of naive Bayes classifier, K-nearest neighbor rule, and SVM on the
breast cancer, leukemia, and colon cancer datasets.

Ranganarayanan et al. [129] used information gain and SVM to
select glucose-binding pockets in human serum albumin (HSA).
The predictions were further corroborated using docking studies.
They argued that these findings can complement studies directed
towards the development of HSA as an alternate biomarker for gly-
cemic monitoring.

Leung et al. [130] selected potential markers for DNA sequences
of Hepatitis B virus based on information gain for further classifier
learning. They developed a new classification method by nonlinear
integral and collected HBV DNA sequences from over 200 patients
specifically for this project.

Phosphorylation is a crucial post-translational modification and
regulates most cellular processes. Xu et al. [131] used minimum-
redundancy-maximum-relevance (mRMR) measure [132] and for-
ward FS, together with the SVM. Their results outperformed other
classifiers, such as Bayesian decision theory, k nearest neighbor
and the random forest.

Mohabatkar et al. [133] implemented the mRMR FS method,
together with the SVM, and successfully predicted amino acid
gamma-aminobutyric-acid receptors (GABAARs).

To address the problem that the original mRMR FS model for
minimizing the redundancy between sequentially selected fea-
tures uses a greedy search, Wang et al. [134] attempted to globally
minimize the feature redundancy by maximizing the given feature
ranking scores, which can come from any supervised or unsuper-
vised methods.

Lin et al. [135] added combinatorial fusion to their previous
hierarchical learning architecture (HLA) using neural networks
for protein structure prediction. Feature selection was facilitated
with a diversity score function. The resulting classification has an
overall prediction accuracy rate of 87% for four classes and 69.6%
for 27 folding categories, which were significantly higher than
the accuracy rate of 56.5% previously obtained by Ding and
Dubchak.

To identify main trends of activity through time in gene time
series, Furlanello et al. [136] proposed a reconstruction method
based on stagewise boosting, using a similarity measure based on
the dynamic time warping (DTW) algorithm and defining a
ranked set of time-series components contributing most to the
reconstruction. The approach was applied on synthetic and public
microarray data.
Mohammadi et al. [137] proposed a Maximum-Minimum
Correntropy Criterion (MMCC) for selection of informative genes
from microarray data sets. They determined the optimal num-
ber of features for each dataset using evolutionary optimization.
They showed that their algorithm worked better compared to
other algorithms for 25 commonly used microarray data sets.
In particular, they showed that high accuracy in classification
by SVM was achieved by fewer than 10 genes in all of the
cases.

To model prior knowledge about the network topology in the
inference problem of gene regulatory networks (GRNs) from
expression profiles, Lopes et al. [138] aggregated scale-free proper-
ties to the Sequential Floating Forward Selection (SFFS) FS method
to guide the inference. They carried out experiments using syn-
thetic and real data, and showed that this technique provided
smaller estimation errors compared to techniques without aggre-
gating scale-free properties.

Zhang et al. [139] proposed an unsupervised feature ranking
method to evaluate the importance of the features based on con-
sensus affinity, by comparing the corresponding affinity of each
feature between a pair of instances based on the consensus matrix
of clustering solutions. Experiments on real gene expression data
sets demonstrated improvement over other techniques.
4. Hybrid feature selection techniques

4.1. Semi-exhaustive search

Wang et al. [140] attempted at finding the smallest set of genes
that can ensure highly accurate classification of cancers from
microarray data. Their simple yet effective approach consists of
the following two steps. In the first step, some important genes
are chosen using a feature importance ranking measure. In the sec-
ond step, an exhaustive search is carried out within the top-ranked
genes: the classification capability of each simple (i.e., 1-gene, 2-
gene, 3-gene) combinations of those important genes is evaluated
using a good classifier. For three ‘‘small” and ‘‘simple” data sets
with 2, 3, and 4 cancer (sub) types, this approach leads to very high
accuracy with only 2 or 3 genes. For a ‘‘large” and ‘‘complex” data
set with 14 cancer types, the authors divided the whole problem
into a group of binary classification problems and applied the 2-
step approach to each of these binary classification problems.
Through this ‘‘divide-and-conquer” scheme, they obtained accu-
racy comparable with previously reported results but with only
28 genes rather than 16063 genes. In general, this semi-exhaustive
search method can significantly reduce the number of genes
required for highly reliable diagnosis.

In another study, Li and Yin [141] proposed a multi-objective
biogeography based optimization method to select small subsets
of informative genes. They first used the Fisher-Markov selector
choose the 60 top genes. Multi-objective binary biogeography
based optimization (MOBBBO) was proposed for gene selection
and support vector machine was used as the classifier with the
leave-one-out cross-validation method (LOOCV).

Wu et al. [142] propose a stratified sampling method for feature
subspace selection to generate decision trees in a random forest for
genome-wide association (GWA) high-dimensional data. To avoid
the high computational costs associated with exhaustive search,
they devised an equal-width discretization scheme to divide SNPs
into multiple groups. They randomly selected the same number of
SNPs from each group and combined them to form a subspace to
generate a decision tree. The method was demonstrated using
two genome-wide SNP data sets, i.e., the Parkinson case-control
data (408 803 SNPs) and the Alzheimer case-control data (380
157 SNPs).
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Bonilla-Huerta et al. [143] proposed a hybrid framework com-
posed of two stages for gene selection and classification of DNA
microarray data. At the first stage, five traditional statistical meth-
ods were combined for preliminary gene selection (Multiple Fusion
Filter). Then different relevant gene subsets were selected by using
an embedded GA, Tabu Search (TS), and SVM. A gene subset was
obtained by analyzing the frequency of each gene in the different
gene subsets. The most frequent genes were shown to be a final
gene subset with high performance.

Sajjadi et al. [144] proposed a network-based framework to
identify effective biomarkers by searching for groups of synergistic
risk factors with high predictive power to disease outcome. They
constructed an interaction network with node weights represent-
ing individual predictive power of candidate factors and edge
weights capturing pairwise synergistic interactions among factors.
They then formulated this network-based biomarker identification
problem as a graph optimization model to search for multiple cli-
ques with maximum overall weight. To search for optimal or near
optimal solutions, both an analytical algorithm based on column
generation method and a fast heuristic for large-scale networks
were derived. They demonstrated their algorithms with two
biomedical data sets: a Type 1 Diabetes (T1D) data set from the
Diabetes Prevention Trial-Type 1 (DPT-1) study and a breast cancer
genomics data set for metastasis prognosis.

4.2. Other hybrid feature selection approaches

Feature extraction techniques can be used to effectively aid FS.
Liu et al. [145] proposed an efficient method for selecting rele-

vant genes. Firstly they used spectral biclustering to obtain the best
two eigenvectors for class partition. Then gene combinations were
selected based on the similarity between the genes and the best
eigenvectors. They demonstrated their semi-unsupervised gene
selection method using two microarray cancer data sets, i.e., the
lymphoma and the liver cancer data sets, where their method
was able to identify a single gene or a two-gene combinations
which can lead to predictions with very high accuracy.

In order to improve the performance of sparse principal compo-
nent analysis, Liu et al. [146] proposed a class-information-based
sparse component analysis (CISCA) method which introduces the
class information via a total scatter matrix. They first normalized
the RNA-Seq data by using a Poisson model to obtain their differ-
ential sections. They then obtained the total scatter matrix by com-
bining the between-class and within-class scatter matrices. Third,
they decomposed the total scatter matrix by using singular value
decomposition and constructed a new data matrix by using singu-
lar values and left singular vectors. To obtain sparse components,
they further decomposed the constructed data matrix by solving
an optimization problem with sparse constraints on loading vec-
tors. Finally, they identified differentially expressed genes by using
the sparse loading vectors. The method was demonstrated with
results on real RNA-Seq data.

Pinto da Costa et al. [147] proposed a weighted PCA-based FS
method, by pointing out that the principle components are
weighted sums of various features, which indicates the importance
of each features. They applied the method, together with SVM, to
microarray data.

Liu et al. [148] used robust principal component analysis (RPCA)
and linear discriminant analysis (LDA) to identify the features of
gene expression data. The SVM was applied to classify the tumor
samples of gene expression data based on the identified features.

Niijima and Okuno [149] extended Laplacian linear discrimi-
nant analysis (LLDA) to unsupervised cases and proposed an unsu-
pervised FS method, called LLDA-based recursive feature
elimination (LLDA-RFE). They applied LLDA-RFE to several public
data sets of cancer microarrays and compared its performance
with those of Laplacian score and SVD-entropy, two state-of-the-
art unsupervised methods, and with that of Fisher score, a super-
vised filter method.

Zheng et al. [150] select genes using nonnegative matrix factor-
ization (NMF) or sparse NMF (SNMF) and then extracted features
from the selected genes by virtue of NMF or SNMF. They used
SVM to classify the tumor samples using the extracted features.

Considering the nonstationary characteristics of surface elec-
tromyography (sEMG), signals of superficial muscles from the skin
surface, Naik and Nguyen [151] use NMF to select features for hand
gesture recognition. They conducted experiments for simple and
complex finger flexions with an artificial neural network classifica-
tion scheme.
5. Conclusions and future challenges

We have surveyed main principles of FS and their recent appli-
cations in big data bioinformatics. Instead of the commonly used
categorization into filter, wrapper, and embedded FS approaches,
we viewed FS as a combinatorial (discrete) optimization problem
and categorize FS methods into exhaustive search, heuristic search,
and hybrid methods, where heuristic search methods may further
be categorized into those with or without data-distilled feature
ranking measures.

Tremendous amount of excellent research has been produced in
this area and major progress has been made. Some challenges still
remain.

5.1. The small sample size problem

In some biomedical problems, notably for DNA microarray data,
the dimensionality can be quite high (e.g., up to 20,000 genes),
whereas the sample size is rather small (e.g., around 50 patients)
[152]. In this situation, the number of independent variables
exceeds by far the number of training samples, leading to possible
overfitting and overoptimism.

For example, Wang et al. [140] found that a microarray data
with thousands of genes can be classified with 100% accuracy with
only 2 genes and there are many 2-gene combinations that can do
this. Adequate cautions were taken during training to assure that
testing data were not involved in FS during training. From a pure
computational point of view, all these 2-gene combinations are
equally good feature subsets; however, 2 important questions
may be raised: (1) what happens if more patient data are added
this the dataset? (2) Are all or any of these many genes selected
truly biomarkers? Some authors used ensembles of FS methods
to tackle the second question: they used a set of different FS meth-
ods for the same data and selected the final feature subset by some
sort of averaging or majority vote by these different FS methods
[153,154]. Further research is needed on this topic.

5.2. Imbalanced data

Most of the time, data available in different classes (e.g., control
subjects and patients) are different in numbers, which is called
imbalanced data or skewed data. Training results may become
biased towards classes with more training data and therefore
may become unreliable. There have been various ways of dealing
with this problem, for example, up-sampling classes with fewer
data, down-sampling classes with more data, or making classifica-
tion errors sensitive to classes (cost-sensitive learning)
[155,156,157].

Wasikowski and Chen [158] carried out systematic comparisons
of three types of methods developed for imbalanced data classifica-
tion problems and seven FS metrics evaluated on small sample
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data sets from different applications. They evaluated the perfor-
mance of these metrics using area under the receiver operating
characteristic (AUC) and area under the precision-recall curve
(PRC). They compared each metric on the average performance
across all problems and on the likelihood of a metric yielding the
best performance on a specific problem. They showed that
signal-to-noise correlation coefficient (S2N) and Feature Assess-
ment by Sliding Thresholds (FAST) are great candidates for FS in
most applications.

Zhu et al. pointed out [159] that traditional gene selection based
on empirical mutual information suffers from the data sparseness
issue due to the small number of samples. To overcome this, they
proposed a model-based approach to estimate the entropy of class
variables on the model, instead of on the data themselves. They
used multivariate normal distributions to fit the data, because mul-
tivariate normal distributions have maximum entropy among all
real-valued distributions with a specified mean and standard devi-
ation. They carried out experiments on seven gene data sets and
compared with other five approaches.

5.3. Class-dependent feature selection

In the above approaches to FS, one usually chooses the same
feature subset for all classes in a given classification problem,
which is called class-independent FS [16,114,23116,59]. In contrast,
one may also allow for a different feature subset for each class,
which is called class-dependent FS [160,161], since different fea-
tures may have different capabilities in discriminating different
classes. Class-independent FS commonly practiced can therefore
be considered as a special case of the more general class-
dependent FS.

Oh et al. proposed [160,161] selected class-dependent features
for handwriting digits. They used the estimated class distributions
to calculate each feature’s class separation for the 10 digits
(classes). Then in terms of class separation, an ordered list of fea-
tures was provided for each class and according to the ranking list
each class obtained a feature vector with a predefined dimension
256. Although all the 10 feature vectors have the same dimension,
they have different feature compositions.

In [162], Fu and Wang used GA to select a feature subset for
each class based on an RBF classifier. This approach made explicit
use of the clustering property of the RBF neural network and there-
fore may not work for other types of classifiers, for example, the
SVM and the multi-layer perceptron (MLP) neural network.

Baggentstoss [163,164] proposed to select class-specific fea-
tures on the basis of the probability density function (PDF) projec-
tion theorem. Baggenstoss [163,164] also provided theoretical
proof for this method and demonstrated applications on signal
processing problems.

In addition, class-dependent feature extraction methods have
been proposed. For example, Liu et al. [165] proposed to extract
class-specific features through principle component analysis
(PCA) from class-specific subspaces.

Wang et al. [166] proposed a general approach to class-
dependent FS by arguing that for a C-class classification problem,
C 2-class classifiers, each of which discriminating one class from
the other classes and having a characteristic input feature subset,
should in general out-perform, or at least match the performance
of, a C-class classifier with one single input feature subset. For each
class, they selected the best feature subset which leads to the low-
est classification error rate for this class using a classifier for a
given feature subset searchranking algorithm. The performance
of the method was evaluated on two artificial data sets and several
real-world benchmark data sets, with the SVM as the classifier, and
with the RELIEF, class separability, and minimal-redundancy-maxi
mal-relevancy as feature importance measures. The experimental
results indicated that the class-dependent feature subsets found
by this approach can effectively remove irrelevant or redundant
features, while maintaining or improving (sometimes substan-
tially) the classification accuracy, in comparison with other (espe-
cially class-independent) FS methods.

Zhu et al. [167] introduced full class relevant (FCR) and partial
class relevant (PCR) features. Particularly, FCR denotes genes that
serve as candidate biomarkers for discriminating all cancer types,
whereas PCR are genes that distinguish subsets of cancer types. A
Markov blanket embedded memetic algorithm was proposed for
the simultaneous identification of both FCR and PCR genes. Results
obtained on commonly used synthetic and real-world microarray
data sets showed that the identification of both FCR and PCR genes
improved classification accuracy on many microarray data sets.

Rajapakse and Mundra [168] decomposed multiclass ranking
statistics into class-specific statistics and then used Pareto-front
analysis for selection of genes. This alleviates the bias induced by
class intrinsic characteristics of dominating classes. They demon-
strated the use of Pareto-front analysis on F-score and KW-score.
A significant improvement in classification performance and
reduction in redundancy among top-ranked genes were achieved
in experiments with both synthetic and real-benchmark data sets.

Freeman et al. [169] presented a method for multiclass classifi-
cation that simultaneously formulates a binary tree of simpler clas-
sification subproblems and performs FS for the individual
classifiers. The feature selected hierarchical classifier (FSHC) was
tested against several well-known techniques for multiclass divi-
sion. Tests were run on nine different real data sets and one artifi-
cial data set using a SVM classifier. The results showed that the
accuracy obtained by the FSHC is comparable with other common
multiclass SVM methods. Furthermore, the results demonstrated
that the algorithm creates solutions with fewer classifiers, fewer
features, and a shorter testing time than the other SVM multiclass
extensions.

Since class-dependent FS requires determination of feature sub-
sets of every class, it is likely to be more computationally expen-
sive compared to other class-independent FS methods. However,
the extra computational cost may be worthwhile in applications
where improvements of accuracy or reduction of data dimension-
ality are crucial.
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