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Abstract 

 

Chaotic simulated annealing (CSA) proposed by Chen and Aihara has been successfully used to solve a variety of 

combinatorial optimization problems. CSA uses a penalty term to enforce solution validity as in the original 

Hopfield-Tank approach. There exists a conflict between solution quality and solution validity in the penalty 

approach. It is often difficult to adjust the relative magnitude of the penalty term, so as to achieve a high quality 

solution which is at the same time valid. To overcome this, we incorporate augmented Lagrange multipliers into 

CSA, obtaining a method that we call augmented Lagrange chaotic simulated annealing (AL-CSA). Simulation 

results on two constrained optimization benchmarks derived from the Hopfield-Tank formulation of the traveling 

salesman problem show that AL-CSA can maintain CSA’s good solution quality while avoiding the potential 

difficulties associated with penalty terms. Furthermore, AL-CSA’s convergence time is shorter and choice of system 

parameters is easier compared to CSA.  
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1.   Introduction 

 

Since Hopfield and Tank’s seminal work on solving combinatorial optimization problem with neural networks, 

many researchers have attempted to improve solution quality and solution validity. Chen and Aihara [1-3] proposed 

an interesting method called chaotic simulated annealing (CSA) that can harness the advantage of both chaotic 

neurodynamics and conventional convergent neurodynamics. Reports show that CSA has richer dynamics and 

higher ability of searching for globally optimal or near-optimal solutions. In particular, Chen and Aihara’s 

experimental studies demonstrated the effectiveness of CSA in obtaining good solutions for traveling salesman 

problems (TSPs) much more easily compared to the Hopfield-Tank approach. Earlier Nozawa showed [22][23] that 

a chaotic neural network has much higher searching ability for solving the TSP in comparison with the Hopfield-

Tank approach, the Boltzmann machine [7], and the Gaussian machine. Chen and Aihara [24] provided theoretical 

conditions for the existence of chaos in these chaotic neural networks [14]-[21]. Since then, CSA has been 

successfully applied to a variety of combinatorial optimization problems [25], such as the channel assignment 

problem in mobile communications [26], CDMA multi-user detection [27][28], and image restoration [29]. 

However, in CSA there exists a difficulty in obtaining solutions of good quality and valid solutions simultaneously, 

similar to the original Hopfield-Tank approach. From a practical point of view, one needs to perform time-

consuming, trial-and-error work to choose the relative sizes between the terms that represent solution quality and the 

terms that represent solution validity. This is because the original Hopfield-Tank approach and its modified models, 

including CSA, belong to the penalty method for constrained real optimization. On one hand, in order to converge to 

a feasible solution with the penalty method, the weighting factor for the penalty term must be sufficiently large. On 

the other hand, if the penalty term is too large, the role of the original objective function becomes relatively weak. 

Solutions found in this way may be more likely to be valid; however, the solutions may be less favorable in terms of 

the original optimization objective. Furthermore, if the penalty term is too large, the problem becomes ill-

conditioned. Simulations show that CSA’s solution quality and likelihood to find valid solutions are sensitive to the 

choice of penalty terms and other system parameters [20]. 

To completely avoid ill-conditioned problems and effectively eliminate the unfavorable influence of the penalty 

terms on solution quality, we shall in this paper incorporate augmented Lagrange multipliers [8][9][11]  into CSA, 
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obtaining a method that we call augmented Lagrange chaotic simulated annealing (AL-CSA). As detailed below, the 

difference between the present work and the previous papers by Zhang and Constantinides [9], Li [11] is that we 

include chaotic dynamics resulted from negative self-coupling of the neurons, whereas the previous papers [9][11] 

considered only Hopfield-type neural networks without negative self-coupling in the neurons or chaotic dynamics, 

and chaotic dynamics increase search capabilities compared to Hopfield-type gradient descent dynamics. With the 

Lagrange multipliers, the constraints are satisfied exactly without the need of penalty terms (Sections 2 and 3). To 

demonstrate AL-CSA, we shall conduct computer simulations on two constrained optimization benchmarks derived 

from the Hopfield-Tank formulation of the TSP (Section 4).  

 

2.  A Brief Review of the Augmented Lagrange Method 

In this section, we present a brief review on the augmented Lagrange method for solving constrained optimization 

problems. A combinatorial optimization problem can be formulated as the following constrained minimization: 

minimize   )(xE                                             (1)      

subject to   PpxCp ,...,2,1,0)( ==        .               (2) 

Here RRERxxxx nnT
n →∈= :,),...,,( 21

, )(xE  is the objective function to be optimized (minimized). T
PCCCC ),...,,( 21=  is 

a set of real functions that represent some equality constraints and take the value of zero when the constraints are 

satisfied. Pn RRC →: . E  and C  are assumed to be twice continuously differentiable. P is the number of constraints. 

An augmented Lagrange function can be formed: 
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Here T
P ),...,,( 21 λλλλ =  is a set of Lagrange multipliers. Ppap ,...,2,1,0 =>  are finite weighting factors. The 

introduction of the quadratic term ∑
=

P

p
pp xCa

1

2)]([  with 0)( =xCp
 does not alter the location of the saddle points or 

the optima of the system. In fact, this term can effectively stabilize the system. 

Then the first-order necessary condition of optimality can be expressed as a stationary point ( **,λx ) of ),( λxLa
 over 

x  and λ . That is, 
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2

*
1 ,...,,  and P

**
21

* ,...,, λλλ  , can be solved from equations (4) and (5). 

 

3. Augmented Lagrange Chaotic Simulated Annealing (AL-CSA) 

Chen and Aihara proposed a transiently chaotic neural network (TCNN) by modifying a chaotic neural network 

which Aihara et al proposed earlier [6]. In contrast to the conventional stochastic simulated annealing (SSA), the 

optimization process of the TCNN is deterministically chaotic rather than stochastic, thus the TCNN is also called 

chaotic simulated annealing (CSA). CSA uses slow damping of the negative self-feedback to produce successive 

bifurcations so that the neurodynamics eventually converges from chaotic attractors to a stable equilibrium point. 

CSA model is defined as follows [3]: 

ε/)(1
1)( tyij ije

tx −+
=                                             (6) 

))()(())(()()1( 0
,,,1,

ItxtzItxwtkyty ij

n

jilklk
ijklijklijij −−++=+ ∑

≠=

α   (7)                          
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where 

ijx  = output of neuron ji, ;  

jiy ,
 =  internal state of neuron ji, ;  

jiI ,
=  input bias of neuron ji, ; 

k = damping factor of nerve membrane ( 10 ≤≤ k ); α = positive scaling parameter for inputs; 

)(tz = self-feedback connection weight or refractory   strength  )0)(( ≥tz ; 

β  = damping factor of the time dependent )(tz  ( 10 ≤≤ β ); 0I  = positive parameter; 

ε  = steepness parameter of the output function (ε >0); 
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∑
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,,,1,
/';0; =  connection weight from neuron lk,  to neuron ji, ; 

'E =  energy, which in CSA consists of the objective to be minimized (E in eq.(3)) and penalty terms 

representing constraints [3]. 

We propose the following augmented Lagrange chaotic simulated annealing  (AL-CSA): 
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In the experiments, 
pa is usually increased to speed up convergence. So it can be changed into 

paγ , where γ is a non-

decreasing factor. In eq.(10), the energy does not include penalty terms associated with constraints and includes only 

the objective function to be minimized. 

 

4. Computer Simulations 
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To demonstrate AL-CSA proposed in the previous section, we now apply the algorithm to the traveling salesman 

problem (TSP) that was used to demonstrate the original Hopfield-Tank approach [4] and CSA without augmented 

Lagrange [3][10][12][13].  

Hopfield and Tank [4] mapped the solution of an n-city TSP to a network with nn×  neurons. 1=ijx  represents 

the fact that city i  is visited in visiting order j , whereas 0=ijx  represents that city i  is not visited in visiting 

order j . The energy function representing the length of a tour is  

∑∑∑
= =

≠
=

−+ +=
n

i

n

j

n

ik
k

kjkjijik xxxdxE
1 1 1

11 )(
2
1)(             ,            (13) 

where ikd is the distance between city i  and city k [4][5]. We use the following equality constraints that were used 

by Hopfield and Tank, as well as many other researchers: 
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Hence the total number of constraints is nnnnnn 22 222 +=+++ . Eq.  (10) for the TSP consists of the following: 
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First we experiment on Hopfield-Tank’s 10-city TSP. Figure 1 is the known optimal route with length=2.691 [4,5]. 
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Figure 1. The optimal tour of Hopfield-Tank’s 10 city TSP. 

To compare the performance with CSA, we use a set of εβα ,,,k similar to Chen and Aihara’s [3]: 

8.0)0(;65.0,250/1,015.0,01.0,99.0,,, 0 === zIk εβα  

The other parameters of AL-CSA we used are as follows: 

,0)0( =pλ ,05.021 == aa  00001.043 == aa .  

To increase the convergence speed, γ  is increased from 0.1 to 10 (or 100) by 1% in each iteration, i.e. γγ 01.1→ . 

In our experiment, one iteration means that all neuron states are cyclically updated once. The neuron outputs are 

discrete as in Chen and Aihara [3]. 

Our experiment reveals that the above parameters can be chosen quite flexibly in AL-CSA, i.e., the solutions of AL-

CSA are not very sensitive to system parameters, especially their initial values. For example, in AL-CSA the self-

feedback term )0(z can be chosen from 0.08 to 0.8. On the contrary, )0(z in CSA needs to be chosen carefully, since 

the constraint weights are fixed during all the evolution period [20]. 

Table 1.  Results of 5000 runs with CSA and AL-CSA using independently selected random initial neuronal states. 

 CSA AL-CSA 

Global minima 4946 (98.9%) 4952 (99.04%) 

Local minima 31     (0.6%) 48    (0.96%) 
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Infeasible solutions 23     (0.5%) 0      (0%) 

 

As shown in Table 1, among the 5000 cases with different initial conditions of neuron inputs generated randomly in 

the region [-1,1], 4952 cases in AL-CSA converge to global minima (tour length=2.691), the other 48 cases to local 

minima, such as tour length = 2.74, 2.78, etc. There are no infeasible solutions in AL-CSA. In contrast, CSA has a 

slightly lower rate of reaching local minima; however, it does lead to some infeasible solutions. 

We also experimented on the 48-USA-city TSP that has been solved by Chen and Aihara [3]. CSA parameters we 

used are the same as Chen and Aihara’s [3]: 

10.0)0(;50.0,250/1,105,015.0,90.0,,, 0
5 ==×= − zIk εβα  

The other  AL-CSA parameters we used are as follows: 

,1)0( =pλ ,0003.021 == aa  00001.043 == aa  

We ran the simulations 100 times with different randomly selected initial network state using AL-CSA. Table 2 

shows a comparison between our results and those of CSA (The data of CSA on the 48-city TSP come from [3]). 

AL-CSA can always converge to a feasible solution, i.e., with 0% invalid tour. In contrast, Chen and Aihara’s CSA 

produces 5% invalid tours after selecting the penalty weighting. It is therefore difficult to compare average tour 

length with their results. If the invalid tours are not included in averaging, their average tour length is 10805.7, 

which is comparable to ours. Their average time of iterations is 25632, which is much longer compared to ours, i.e., 

AL-CSA converges much faster than CSA does when solving larger TSPs.  

 

Table 2. Comparison of CSA and AL-CSA on a 48-city TSP. 

 CSA AL-CSA 

Valid Tours 95% 100% 

Invalid Tours 5% 0% 

Average iterations 25632 12016 
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Average tour lengths 10805.7* 10839.0 

*The 5% invalid tours were not included in the calculation. 

 

 

Figure 2. Lagrangian energy evolution process in AL-CSA. 

 

Fig.2 shows the evolution of energy ),( λxLa  in equation (3). Its behavior is apparently different from the usual 

decreasing Lyapunov energy, which is due to the presence of the negative self-coupling in the neurons (a non-zero z 

in equation (7)) which takes away the monotonicity in the Hopfield dynamics. It is this non-monotonous behavior 

that helps the neural network to search for better optimal solutions. Fig.3 shows the Lyapunov energy (eq.(13)) 

evolution process in CSA. 

 

Figure 3. Lyapunov energy evolution process in CSA. 
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We note that Hopfield and Tank’s prescription of mapping the TSP onto a neural network as described above, i.e., 

eqs.(13) and (14), is not the most effective way for solving the TSP using either neural networks [30] or chaotic 

dynamics [31]. Because of the need for n2 neurons for an n-city TSP, the size of the TSP that can be handled by this 

prescription is limited. Other prescriptions specially tailored for the TSP can significantly increase the size of the 

TSP that can be handled (e.g., [30],[31]). In our present paper, we shall not attempt to adopt other mapping 

prescriptions in order to solve larger TSPs. Rather, the purpose of the present work is to demonstrate the 

improvements of AL-CSA over CSA for a given objective function and a given set of constraints. In other words, 

neither the 10-city TSP nor the 48-city TSP studied in this paper may be considered difficult; however, minimizing 

the objective functions given by eq.(13) together with the constraints given in eq.(14) and the parameters drawn 

from the 10-city TSP and the 48-city TSP is indeed non-trivial and can therefore be used as benchmarking 

optimization problems to compare various optimization algorithms, such as CSA and AL-CSA.  

 

5. Conclusion 

In this paper we have incorporated augmented Lagrange multipliers into Chen and Aihara’s CSA model, obtaining a 

method that we call augmented Lagrange chaotic simulated annealing (AL-CSA). Compared to CSA, AL-CSA 

eliminates the need for trial-and-error adjustments of the weighting of the penalty terms. We demonstrated the 

approach using two constrained optimization benchmarks. Our experiments showed that the neural network 

converges faster and the results are less sensitive to system parameters in comparison with CSA. The solution 

validity can always be guaranteed, which is quite desirable for real-world applications.  
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