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Abstract—Extracting intra- and inter- subject parameters 
from Electroencephalogram (EEG) representing different 
Situation Awareness (SA) status is a critical challenge for 
objective SA recognition. Most of the existing work focuses 
on the subject-dependent classification that applies power 
spectrum density (PSD) features. In this paper, we propose 
a novel spectral-spatial (S-S) model for cross-subject 
fatigue-related SA recognition. The S-S model not only 
considers the biological topology across different brain 
regions to capture both local and global relations among 
different EEG channels, but also extracts spectral features 
for each EEG channel. Specifically, we firstly model the 
topological structure of EEG channels via an adjacency 
matrix which is built based on the Euclidean distance 
between EEG channels. Then, the graph convolution 
operation is employed to perform the neighbourhood 
aggregation for extracting spatial features. We test our 
model on a public dataset collected during driver’s task 
performance. The subject-independent performance of the 
model is explored. Results demonstrate (1) the superior 
performance of our model compared with the state-of-the-
art models on SA recognition from EEG signals. 
Specifically, our S-S model achieves 70.6% accuracy which 
is higher than traditional machine learning methods by 
2.7%-6.8% and deep learning methods by 10.3%-11.6%; 
(2) EEG signal at the occipital region can better reflect the 
change of SA. 

Keywords-Situation awareness recognition; Graph 
Convolution Networks; EEG 

I. INTRODUCTION 
A driver needs to maintain a good situation 

awareness (SA) to track the dynamic, changing road 
situation efficiently and keep safe driving. Current driver 
situation awareness research mainly focuses on the 
analysis of the secondary task [1] and fatigue [2] effects 
on driver’s SA in normal and automated driving. 
However, little is known about the progression of 
measuring driver’s SA. This paper works on the 
assessment of driver fatigue-related SA. 

Situation awareness (SA) is defined as “the 
perception of the elements in the environment within a 
volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near 
future” [3]. Specifically, SA concerns the knowledge of 
a person’s complex operating environments. Up to now, 
there are six approaches to measuring SA [4], such as the 
freeze-probe technique (SAGAT) [5] and a real-time 
probe technique (SPAM) [6]. Although these techniques 
can measure the SA to some extent, the problems of 
intrusiveness and non-objectiveness cannot be ignored. 
In our study, we utilize the physiological signals to 
evaluate SA, which can better solve the mentioned 
problems. Situation awareness is a cognitive behaviour 
that is related to our brain activity. Among various 
signals, electroencephalogram (EEG) is one of the most 
commonly used signals to record brain activity [7]. 
Therefore, EEG signals play a crucial role in SA, which 
can reflect SA more directly. 

Some attempts on SA recognition using EEG have 
been done in other areas such as aviation [8]. The 
existing EEG-based SA recognition methods are 
primarily based on traditional supervised machine 
learning approaches trained on the extracted power 
spectrum density (PSD) features. Although the PSD 
features plays an important role in subject-dependent SA 
recognition, for the subject-independent classification, 
better classifier and more discriminative EEG 
representations should be explored. Compared with the 
traditional methods which only extract spectral features, 
deep learning methods can learn complex information 
from multiple dimensions simultaneously [9]. However, 
one aspect of EEGs that make both traditional and deep 
learning methods difficult to analyse is the structure of 
channels placed on an EEG headset. For the traditional 
methods, the spatial information is usually not be 
considered. For the deep learning methods, most of the 
existed investigation just applies the convolution layer to 
extract the spatial feature but not considers the real 
connection relationship between EEG channels. By 
referencing the deep learning algorithm applied in the 
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recognition of other mental states, it can be found that the 
common model architectures cannot completely solve 
the spatial problem. Therefore, for the purpose of 
extracting spatial features based on the real 
neighbourhood relationship of EEG channels, we model 
the 3D EEG channels in a graph structure. 

In this paper, we propose a spectral-spatial model 
aiming to address the aforementioned challenges. This 
model differs from the common deep learning method by 
exploiting the topological structure of the EEG channels. 
The key novelty of this work is that the model utilizes the 
spectral feature and spatial feature together to assess 
subject-independent SA. The main contributions are 
listed as follows: 

• A spectral-spatial model is proposed to address 
the fatigue-related SA recognition problem in inter-
subject. 

• Model the topological structure of EEG 
channels. 

• Perform spatial localization of SA in the brain. 
The following parts of this paper are organized as 

follows. Section II reviews the related work. Section III 
describes the dataset we used and the proposed model. 
Section IV presents the experiment results. Section V 
concludes the whole paper. 

II. RELATED WORKS 

A. Situation awareness and fatigue 
Fatigue can impact the driver’s situation awareness. 

Improvements in vigilance and the avoidance of fatigue 
and distraction can have a direct impact on SA [10]. 
Since the effective management of the operators’ 
information acquired from the environment is extremely 
critical for situation awareness, it is important to avoid 
attentional narrowing and negligence of important 
information and tasks, that is, operators need to keep 
good vigilance during the operation, which is the 
foundation of a good SA. When the operator lacks 
vigilance, he/she may neglect to monitor the instruments’ 
parameters, resulting in significant reductions in 
situation awareness [11]. Some study on fatigue 
recognition have been done [12]. In this work, based on 
the different fatigue state of drivers, the two states of SA 
are defined. 

B. Situation awareness measurement from EEG signal 
Raul Fernandez Rojas et al. [13] used LDA algorithm 

to recognize four SA levels (defined by four different 
teleoperation conditions). Their preliminary results 
offered evidence for the potential use of EEG to offer 
real-time indicators for the objective assessment of SA. 
Some other previous attempts to measure SA using EEG 
are limited and have shown diverse results. Catherwood 
et al. [14], used electroencephalography (EEG) to map 
brain activity during loss of situation awareness to 
identify target patterns and threats in urban scenes; their 
results showed that loss of situation awareness activated 
cortical areas associated with cognition, such as 
prefrontal, anterior cingulate, parietal, and visual regions. 
Yeo et al. [15] used EEG to monitor SA in an air traffic 
controller (ATC) task. Their model predicted the 
response latency of the ATC operators with a 10% error. 
French et al. [16] adopted Endsley’s model of SA and 

label three levels of SA with different presentation of 
stimuli. Following, based on the power spectral density 
(PSD), the SA classification is performed with poor 
accuracy. In a different study, Berka et al. [17] also used 
events related to Endsley’s levels of SA. They compared 
event-related potentials (ERPs) and the PSD (1) between 
moments of correct and incorrect target identification, 
and (2) between reading questions and reading 
information. Although they distinguished bad SA from 
good, the problem is that these events cannot be extracted 
in real-time. Vidulich et al. [18] took a completely 
different approach that is more consistent with the 
perceptual cycle model. They manipulated the display in 
a target-identification task to more or less facilitate target 
identification. PSD was also used in their work. Results 
showed that theta power (4-7 Hz) was higher and alpha 
power (8-14 Hz) was lower in many channels in the most 
difficult conditions compared to easier conditions, which 
is consistent with higher attentional demands. 
Unfortunately, the paper was not able to determine the 
task difficulty that affected the quality of SA, limiting the 
implications of their results.  

C. Graph neural network 
In the EEG-based recognition problems, the 

performance of deep convolutional neural networks 
(CNN) and recurrent neural networks (RNN) are superior 
to the traditional EEG analysis methods [19, 20]. 
However, the traditional CNN that can obtain local 
spatial features can only be used in Euclidean space, such 
as images and a regular grid, etc. The actual topological 
structure of EEG electrodes is complex, and the CNN 
cannot clearly reflect it. In this work, we model the EEG 
electrodes in the form of graph. Recently, applying graph 
neural network (GNN) to handle different kinds of 
graph-structured data, especially generalizing the CNN 
to the graph convolution network (GCN) [21], has been 
successfully applied in many applications, including 
document classification [22] and transportation 
prediction [23], etc. 

In 2009, Scarselli first proposed the concept of graph 
convolution neural network (GCNN) [24], which is a 
class of neural networks that are derived from CNN and 
spectral theory [25]. Zhong, et al [26] performed EEG-
based emotion recognition using regularized GNN. They 
proposed node-wise domain adversarial training and 
emotion-aware distribution learning (EmotionDL). 
These two regularizers can help to improve the 
robustness of the model against the EEG variations and 
noisy labels. The adjacency matrix they used is: 

, which is based on the Salvador’s theory that 
the strength of connection between brain regions decays 
as an inverse square or gravity-law function of physical 
distance[27], where  denotes the physical distance. 
Regarding the adjacency matrix. Wang et al. [28] 
proposed phase-locking value (PLV) based GCNN (P-
GCNN) for emotion recognition, in which the phase 
information is considered to be useful and the adjacency 
matrix is defined based on PLV. The P-GCNN uses the 
PLV connectivity of EEG signals to determine the mode 
of emotional-related functional connectivity. However, 
the temporal feature of the EEG signal is not used for 
EEG-based recognition. Covert et al [29] find this 
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challenge that the commonly used deep learning models 
cannot leverage structural and temporal information 
simultaneously and are not proper for time-series signal. 
Thus, they proposed the temporal graph neural network 
for automatic seizure detection. In each layer, the 
temporal information is extracted by convolution, 
followed by the aggregation of EEG nodes signals. The 
parameters in TGCN are shared over both time and space. 
In this paper, we employ graph convolution network 
(GCN) to extract spatial information in EEG signals and 
model the EEG channels based on an adjacency matrix. 

III. MATERIALS AND METHODS 

A. Data description 
We use an open driving dataset in our experiments, 

which is collected during 2005-2012 and released in 
2019 by Cao et al. [30]. The dataset comprises 62 EEG 
datasets of 27 subjects (aged between 22-28) who were 
students or staff from National Chiao Tung University.  

The EEG data were collected when participants drove 
and maintained a car in the centre of the lane. During the 
experiment, lane-departure events were randomly 
introduced every 6-10 seconds, which made the car drift 
to left or right from the centre of the lane. The 
participants were asked to steer the wheel as quickly as 
possible to move back to the centre of the lane when the 
lane departure events happened. The deviation onset, 
movement onset and movement offset were logged, 
which are the start time of lane-departure event, start time 
of participants’ response to the event and the time point 
the car moves back to the course were respectively. For 
inducing the fatigue state of participants, the experiment 
started after lunch and lasted for approximately 90 
minutes.  

The EEG signal was recorded in 32 channels (30 
valid channels plus 2 reference channels) using Quik-
Cap (NeuroScan), which is at a sampling frequency of 
500Hz.  

B. Data preparation 
The pre-processed dataset is used in our study. The 

dataset has been pre-processed by the authors in the 

following ways. (1) The raw EEG signals were filtered 
by 1-Hz high-pass and 50-Hz low pass finite impulse 
(FIR) filters. (2) Apparent eye blinks that contaminate 
the EEG signals were manually removed through visual 
inspection. (3) Ocular and muscular artefacts were 
removed by the Automatic Artifact Removal (AAR) 
plug-in in EEGLAB. We further down-sample the data 
to 128Hz. 

In our study, the fatigue-related SA is analysed. Thus, 
SA is defined qualitatively as fatigue corresponds to poor 
SA while alert corresponds to good SA, the rest of the 
data reflects the neutral state. Considering that fatigue 
and drowsiness can impact the status of SA in disturbing 
ways, we extract 3 seconds EEG data prior to the 
deviation onset on the basis that the measurement result 
of the trial can reflect the subject's SA before the start of 
the trial. Since the subjects’ states cannot be specified 
before the movement onset, that is, the data may mix both 
good and poor SA, we did not use the EEG data between 
deviation onset point and movement onset point. We 
apply the method described in [30] to extract the fatigue-
related SA. Specifically, SA is quantitatively defined 
based on the reaction time (RT), which is the length of 
the interval between the deviation onset and movement 
onset. Additionally, global RT was defined as the 
average of local RTs across all epochs within a 90-
second window before the deviation onset. The baseline 
alert-RT was defined as the 5th percentile of local RT in 
the entire session. Label process is: When both the local 
and global RT are shorter than 1.5 times the alert-RT, the 
corresponding extracted EEG data is labelled as “poor 
SA”, and when both the local and global RT are longer 
than 2.5 times the alert-RT, the data is labelled as “good 
SA”. Transitional states with moderate performance are 
excluded and the neutral state is not considered in this 
work. To ensure sufficient samples of data for training 
the model, we filtered the datasets such that dataset of 
each subject should have at least 50 samples of both 
states. For the subjects that have multiple datasets, we 
select the most balanced one to perform the filter 
operation. Finally, we got a whole balanced SA dataset 
which includes 11 subjects’ 1674 samples data. And the 
data size of one sample was 30 (channels) ×384 (sample 

 

 

 

 

 

 

 

                                                  (a)                                                                         (b) 

 

 
Figure 1. EEG channels. (a) indicates the EEG channel location by name. (b) shows the modelled topological structure. The solid line represents that 
the two connected nodes are 1-step neighbours. 
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points). The number of samples for each subject is shown 
in Table I.  

TABLE I.  SITUATION AWARENESS DATASET CONTENT 

Subject ID 
Number of Samples 

Good SA Poor SA 
1 94 94 
5 66 66 

22 75 75 
31 74 74 
35 85 85 
41 83 83 
42 51 51 
43 70 70 
44 72 72 
45 54 54 
53 113 113 

Total 837 837 

C. Feature extraction 
The spectral band power features are extracted from 

each EEG segment, which were widely used in SA 
recognition studies [13, 17, 18]. The power spectral 
density (PSD) is extracted from these three spectral 
bands: theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz). 
Finally, the shape of each sample is 30 3. 

D. Our Spectral-spatial model 

The spatial information is extracted by graph 
convolution layer. The specific process of modelling the 
EEG electrodes as graph structure and extract the spatial 
dependence is presented in the following. 

Firstly, we model the EEG channels topological 
structure. In EEG signal collection system, given a group 
of EEG electrodes , where n denotes the 
number of EEG nodes on the graph structure. Based on 
the Euclidean distance , computed 
from the Cartesian coordinate value of channels in 
EEGLAB “channel location info”, a distance threshold is 
set that can make every node be connected with its 
nearest, as shown in Figure 1. If the distance of two 
channels  is smaller than the threshold, we set the 
adjacency matrix . Otherwise, . Then, 
we obtain the adjacency matrix  which 
represents the EEG channels topological structure. Here, 
we only set the weight of the connection between one 
node and its nearest neighbourhood nodes as “1”, which 

indicates that the information of one node can only 
spread one step. 

Secondly, we extract the EEG channels spatial 
dependence. The EEG electrodes structure is shown in 
Figure 1(a). The key challenge for designing the 
convolution operation to extract spatial information is the 
different number of neighbours at each node. GNN can 
manage the similar obstacle by using neighbourhood 
aggregation schemes [21, 31, 32]. In our system, 
aggregation is performed across the node  and its 
neighbours (figure 2). The process of layer  can be 
formulated as follows: 

,        (1)         
where  is the set of neighbourhood nodes of node , 
which is defined by the adjacency matrix,  is the 
feature vector of node  in the layer  and  is the 
intermediate feature vectors of node  in the layer . 

In our work, we employ the convolution operation to 
aggregate the neighbouring features of node . The 
specific derivation procedure is described in [31]. The 
output features of layer  are obtained by: 

,                  (2)                 

,                                (3) 

.                              (4) 

where A is the adjacency matrix of the modelled 
undirected EEG electrodes graph,  is the identity 
matrix,  is the degree matrix and  is a trainable 
weight matrix.  denotes an activation function. 

The model input the EEG features (PSD features) to 
the graph convolution layer, which can obtain the feature 
vectors on nodes that contain both spectral and spatial 
features. The RELU nonlinearity is used as in the graph 
convolution layer. We apply regularization on two fully 
connected layers with , and train the models 
using categorical cross-entropy loss. In order to 
understand the details of hyperparameters involved in the 
model, we list the configuration in Table II, where input 
is pre-processed data with PSD features. 

TABLE II.  SPECTRAL-SPATIAL MODEL STRUCTURE 

 Output Activation 

Input (30, 3)  

Graph 
convolution 

layer 
(30, 128) RELU 

Flatten 3840 units  

Dense (1, 512) RELU 

Dense (1, 512) RELU 

Dense (1, 2) SOFTMAX 

E. Setting of baseline models 
We test the subject-independent performance of our 

model on the prepared driving dataset. Logistic 
regression (LR) and support vector machine (SVM) are 

                     (a)                                        (b) 

 Figure 2. Aggregation operation. (a) is the part of EEG channels
topology. The blue nodes indicate the neighbourhood nodes of node 4.
(b) We obtain the spatial feature by performing aggregation on node 4
and its neighbouring nodes. 
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used as baseline methods. These two methods are widely 
used traditional methods for EEG-based classification. 
Besides, since the deep learning models can have a larger 
capacity to store a large number of information of 
different subjects, deep learning models is expected to 
have a better performance than traditional machine 
learning methods. EEGNet [33], specially, is a state-of-
the-art CNN model designed for EEG related signal 
processing, which can extract spatial feature by using 
depthwise-convolution. The hyperparameters setting of 
the baseline models is described as below: 

LR: The model parameters of LR were optimized by 
batch gradient descent which was set to run for 100 
iterations. 

SVM: We employ the Bayesian optimization in 
Matlab to tune the SVM classifier automatically. 

EEGNet: The default parameters set in [33] was used 
in the comparison. Both EEGNet-4.2 and EEGNet-8.2 
were tested. The models were fit by minimizing the 
binary cross-entropy using Adam optimizer. 

F. Model explanalibity and spatial localization of SA 
Since the S-S model focus on the small areas in the 

brain and is based on the graph topologies of EEG 
channels, we employ the “nodes occlusion” method to 
interpret our S-S model, exploring the impact of different 
group of nodes on the graph topology. Nodes occlusion 
is similar to the “sequence dropout” method [29], which 
is to investigate the spatial localization of SA by omitting 
one node and observing the impact on the model’s output. 
We employ two rules to conduct the “node occlusion”. 
The first rule is that we explore the node-wise impact and 
obtain the individual impact of different nodes. The other 
one is that we divide the whole brain into three areas: left 
frontal region, right frontal region and the occipital 
region. 

IV. RESULTS 
The whole experiment is conducted on the Windows 

10 platform powered by an NVIDIA GeForce GTX 1080 
graphics card. We make use of TensorFlow 2.1.0 to 
implement the model with python 3.7.7. 

A. Comparison of spectral-spatial model and baseline 
models 

We performed the leave-one-subject-out cross-
validation for situation awareness classification. The 
accuracy of different methods is shown in Table III. 
From the comparison of the results, we can see that our 
spectral-spatial model performs better than other state-
of-the-art methods. 

We applied one-way ANOVA to analyse the 
significance of difference of models’ results. Significant 
difference in the mean accuracy of the five models 
( ) was observed. 

B. Validation of the graph model of EEG channels 
In order to better understand the importance and the 

validity of our modelled topological structure, we replace 
the modelled {0, 1} adjacency matrix with an identity 
matrix and a random symmetric matrix (the structure is 
an undirected graph). The results are obtained from the 
spectral-spatial model and shown in Table IV. 

The model trained with both identity and random 
 adjacency matrix does not have good 

performance, indicating the validity of the 1-step 
reachable adjacency matrix. The spatial information 
between nodes and corresponding 1-step neighbouring 
nodes can indeed help to improve the performance of the 
cross-subject SA recognition. 

C. Model explanalibity and spatial localization of SA 
Here we test the spatial localization of SA in the brain. 

The channels groups we set for each area of brain are 
shown in Table V, which were used to generate Figure 3 
(b). 

The nodes occlusion visualization method can help 
us to have a better understanding of the relationship 
between SA and our brain. The spatial localization 
results are shown in Figure 3. The intensity of nodes is 
negative related with the classification results. In our 
experiment, we obtain that the nodes “OZ, P4, CP4, FC3, 
F4” are top 5 that can better reflect the change of SA. 
However, most of the classification results are similar. 
Since the neighbouring channels can also contain the 
information of the centre node to some extent and the 
topology has a little change, the useful EEG channels 
cannot be clearly specified. The results of rule 2 can 
better show the localization of SA in the brain. The 
visualization of rule 2 presents that the occipital region 
has the best result among these three areas while the 
counterpart of the right frontal region is the worst. Three 
classification results are: 0.650 (left frontal region), 
0.675 (right frontal region) and 0.606 (occipital region). 
The result of the occipital region which is far less than 
the others can better reflect the fatigue-related SA. The 
results of two rules is compatible with the previous 
investigation that the prefrontal, anterior cingulate, 
parietal, and visual regions are associated with SA [14]. 

V. DISCUSSION 
In this paper, we propose a S-S model for fatigue-

related SA recognition from EEG data. The novelty of S-
S model is that the graph convolutional layer is used to 
extract the spatial features for each EEG channel. 
Comparison results showed that the performance of our 
S-S model is better than other state-of-the-art models. 
From the analysis of spatial localization of SA, it 
demonstrated that the proposed S-S model can indeed 
learn useful features from the graph topology. However, 
the further study on specific learned feature is needed.  

Regarding the recognition accuracy of different 
subjects, we can see that the results of subject 3 are below 
50%. For subject-independent EEG-based mental state 
recognition, because of the individual difference on their 
EEG signal, the binary classification accuracy is not very 
high compared with the subject-dependent mental state 
recognition. This result also shows that the proposed S-S 
model contributes to improving the performance of 
cross-subject SA classifier, but the model still cannot 
extract better features that can overcome the difficulty of 
individual differences. For the problem, in next step, the 
use of eye movement signal could be helpful to improve 
the performance of our model, resulting from the strong 
relation between SA and subjects’ eye movement signal. 
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TABLE III. SITUATION AWARENESS CLASSIFICATION RESULTS OF LEAVE-ONE SUBJECT-OUT CROSS-VALIDATION TEST 

Subject ID LR SVM EEGNet-4.2 EEGNet-8.2 Spectral-spatial 
model 

1 0.686    0.649 0.624 0.660             0.739 

2 0.575 0.409 0.543 0.515 0.591 

3 0.433 0.420 0.489 0.427 0.446 

4 0.682 0.473 0.567 0.534 0.568 

5 0.688 0.606 0.530 0.518 0.741 

6 0.765 0.777 0.579 0.675 0.813 

7 0.735 0.657 0.685 0.774 0.735 

8 0.714 0.793 0.487 0.486 0.814 

9 0.854 0.861 0.736 0.778 0.826 

10 0.712 0.833 0.735 0.731 0.917 

11 0.628 0.535 0.512 0.531 0.575 

Average 0.679 0.638 0.590 0.603 0.706 

TABLE IV. CLASSIFICATION ACCURACY WITH DIFFERENT 
ADJACENCY MATRIX 

Graph Accuracy 

Modelled {0, 1} matrix 0.706 

Identity 0.657 

Random 0.639 

 

TABLE V. CHANNEL GROUPS FOR DIFFERENT BRAIN AREAS 

Area Channels Group 

Left frontal 
region FP1, F7, F3, PT7, FC3, T3, C3, TP7, CP3 

Right frontal 
region FP2, F8, F4, FT8, FC4, T4, C4, TP8, CP4 

Occipital region T5, P3, P1, P4, T6, O1, OZ, O2 

 

 

 

 

 

 

 

 

 

       (a)                                                                                          (b) 

 Figure 3. Spatial localization of SA in the brain. The intensity shows the negative impact of ignoring correspongding nodes on the model’s output. The 
darker blue indicates the higher accuracy reduction. (a) The impact of all individual nodes on the model. (b) The impact of different brain areas on the 
model.  
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VI. CONCLUSION 
In this paper, we present a study of cross-subject 

fatigue-related situation awareness recognition. Firstly, 
the EEG channels are modelled into the topological 
structure and obtain the “EEG graph”. A {0, 1} 
adjacency matrix is obtained based on the physical 
distance between two EEG channels. Secondly, a 
spectral-spatial model is proposed to extract both spectral 
and spatial information in EEG channels. The PSD 
features are extracted. We employ the graph convolution 
operation to perform aggregation for each node, 
extracting spatial feature for each node. We conduct the 
experiment on a public EEG dataset to explore the 
subject-independent performance of the proposed model 
by using leave-one-subject-out cross-validation test. The 
S-S model achieves the best performance (70.6%) 
compared with four state-of-the-art methods: logistic 
regression (67.9%), support vector machine (63.8%), 
EEGNet-4.2 (59.0%) and EEGNet-8,2(60.3%). We also 
perform the “nodes occlusion” method to better 
understand the spatial localization of SA in the brain. The 
visualization results show that the occipital region plays 
an important role in SA recognition. The overall 
experiment results demonstrate the accuracy and utility 
of the model, which is a promising method for cross-
subject situation awareness recognition. In the future, the 
temporal feature extraction can be performed based on 
spatial information, which shall lead to a good 
improvement. 
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