
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-020-09398-0

T-MAN: a neural ensemble approach for person
re-identification using spatio-temporal information

Nirbhay Kumar Tagore1 ·Pratik Chattopadhyay1 · LipoWang2

Received: 17 January 2020 / Revised: 10 July 2020 / Accepted: 21 July 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Person re-identification plays a central role in tracking and monitoring crowd movement in
public places, and hence it serves as an important means for providing public security in
video surveillance application sites. The problem of person re-identification has received
significant attention in the past few years, and with the introduction of deep learning, sev-
eral interesting approaches have been developed. In this paper, we propose an ensemble
model called Temporal Motion Aware Network (T-MAN) for handling the visual context
and spatio-temporal information jointly from the input video sequences. Our methodology
makes use of the long-range motion context with recurrent information for establishing
correspondences among multiple cameras. The proposed T-MAN approach first extracts
explicit frame-level feature descriptors from a given video sequence by using three different
sub-networks (FPAN, MPN, and LSTM), and then aggregates these models using an ensem-
ble technique to perform re-identification. The method has been evaluated on three publicly
available data sets, namely, the PRID-2011, iLIDS-VID, and MARS, and re-identification
accuracy of 83.0%, 73.5%, and 83.3% have been obtained from these three data sets, respec-
tively. Experimental results emphasize the effectiveness of our approach and its superiority
over the state-of-the-art techniques for video-based person re-identification.
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1 Introduction

Person re-identification is a process of establishing one-one correspondence among the
images of individuals captured by non-overlapping cameras at different points of time. A
basic re-identification system can be broadly segregated into three phases, i.e., person detec-
tion, tracking, and final retrieval. The problem of person re-identification has got expanding
consideration [58] [27], which intends to identify an individual captured by one camera in
the field of view of another camera positioned at a different place. Computer vision-based
person re-identification must be robust against variation of lighting, postures, perspectives,
etc. Also, the continuous recording of videos from camera network results in a huge volume
of data, manual monitoring of which is time-intensive and error-prone. Hence, there is a
high demand for developing automated person re-identification algorithms that can be read-
ily deployed in practical sites. Our work focuses on developing a re-identification algorithm
that can meet these aforementioned challenges effectively.

Here, we propose to design a framework that can jointly handle the texture features
along with pose and spatio-temporal information from the video sequences of individuals
to perform person re-identification. The main contributions of the paper are as follows:

1. Introducing novel motion-based features and proposing a new ensemble architecture
termed as Temporal Motion Aware Network (T-MAN) for person re-identification.

2. Carrying out temporal modelling of motion information by employing an ensem-
ble of deep neural network models, namely, (i) Full-Body Pose Attention Network
(FPAN), (ii) Motion Pooling Network (MPN), and (iii) Long-Short Term Memory
Neural Network (LSTM).

3. Performing extensive evaluation and comparative analysis with state-of-the-art
approaches using three public benchmark data sets to establish the effectiveness of our
approach.

The structure of the rest paper is as follows. In Section 2, we discuss previous approaches
related to person re-identification with a major focus on deep learning-based models. In the
following section, i.e., Section 3, we explain the proposed approach along with the network
architecture in detail. Section 4 focuses on the experimental results and analysis, as well as
comparison with competing approaches. Finally, we conclude our paper in Section 6 and
point out future research scopes.

2 Related work

Person re-identification approaches from still images primarily focus on metric learning
and feature representation techniques that are invariant to change of viewpoint and other
physical conditions like illumination and occlusion. Existing research in this domain can be
broadly classified into the following categories: image-based person re-identification and
video-based person re-identification, which are discussed in the next two sub-sections.

2.1 Image-based person re-identification

In [15], a view-invariant re-identification approach has been described that takes into con-
sideration the spatial information along with color features in image frames by ensembling
classifier predictions with discriminant localized features. Since maximum spatial infor-
mation about a subject can be obtained from silhouette regions closer to the body axes of
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symmetry, the authors in [10] computed symmetry and asymmetry perceptual attributes of
visual features to effectively perform re-identification. The work in [5] focuses on extract-
ing color-based features from body parts, i.e., chest, head, thighs, and legs, to handle the
pose variation problem in person re-identification. Kviatkovsky et al. [21] proposed an illu-
mination invariant feature representation technique using log-chromaticity attributes. This
approach has been shown to perform satisfactorily in the presence of varying lighting condi-
tions. The approach given in [31] creates a global representation of images by transforming
the neighborhood descriptors into the Fisher discriminant space. In [43], distance metric
learning has been employed after feature extraction for emphasizing the inter-person dis-
tance while simultaneously de-emphasizing the intra-person distance. Here, a large margin
nearest neighbor metric (LMNN) has been used as an improvement over the traditional
k-Nearest Neighbor classification technique. In [37], Prosser et al. use an ensemble of
Rank-SVMs to learn pairwise similarity and, henceforth, formulate a ranking problem. In
[54], a Relative Distance Comparison (RDC) scheme has been proposed based on a soft
discriminative scheme for large and small distances corresponding to incorrect matches
and correct matches, respectively. An unsupervised Bag-of-Words descriptor for person
re-identification as well as a new benchmark data set termed as Market-1501 has been intro-
duced in [55]. However, this data set contains only a few image frames from each individual,
but not a complete video sequence. Since we aim to construct motion-based features for
person re-identification, this data set has not been used in the study. In [45], a comparative
study of several classification methods for person re-identification task has been presented,
namely, the regularized Pairwise Constrained Component Analysis, Kernel Local Fisher
Discriminant Analysis, Marginal Fisher Analysis, and a ranking ensemble voting scheme. A
new feature termed as the Local Maximal Occurrence (LOMO) is derived and a Cross View
Quadratic Analysis metric is learned for person re-identification in [24]. The authors of [20]
present a simple yet effective distance metric learning strategy from equivalence constraints
which can work even in the absence of labelled data. The introduction of deep learning
has significantly benefited research on Computer Vision-based person tracking including
detection, recognition, re-identification [4, 30, 36, 39, 48]. The use of Deep learning in per-
son re-identification started with the work of [22], following which several improved deep
learning approaches to solve the same problem have also been developed. Among this, a
Deep Siamese network-based approach has been proposed in [2] in which two parallel con-
volution networks are used that are tied with weights to generate the feature descriptors at
its two channels. These features are next compared to predict if the given pair of images are
the same or different.

2.2 Video-based person re-identification

Previous work on temporal modelling methods on video-based person re-identification use
either Recurrent Neural Network (RNN) models, or temporal attention-based models. In
[33], McLaughlin et al. first introduced the concept of modelling temporal information
between frames by Recurrent Neural Network (RNN), in which the average of RNN cell
outputs have been used as clip level representations. Like [33], Yan et al. [47] also employed
RNN to encode sequence features and considered the last hidden state to preserve the entire
video information. Liu et al. [27] presented a Quality Aware Network (QAN), which is an
attention weighted average to compute temporal features, where the attention scores are
created from frame-level feature maps. The approaches described in [57] and [46] extract
attention features as well as temporal RNN-based features to preserve the dynamic motion
information. The two-stream network developed by Chung et al. in [6] computes features
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from both RGB images as well as optical flow, and uses simple temporal pooling to aggre-
gate the features descriptors. In [34], a classification ensembling approach is discussed by
fusing a number of deep networks to improve the generalization. Another end-to-end train-
able architecture, namely, the Accumulative Motion Context (AMOC) has been proposed in
[25] to jointly handle the appearance representation and motion context present in a given
video sequence. In [49], an unsupervised approach for label estimation is presented based
on a dynamic graph matching (DGM) framework to improve the label estimation process
in person re-identification. Here, intermediate labels have been used to iteratively refine the
graph structure for labelling the data. The work in [23] describes an unsupervised approach
that can jointly learn from camera tracklet association and cross-camera tracklet correla-
tion to improve the scalability of the model without the requirement of rigorous manual
labelling. In [40], re-identification is performed by identifying the most discriminative fea-
tures in an image sequence, whereas in [26], pose-based alignment of image frames in a
video is carried out using spatio-temporal appearance features before the subsequent person
re-identification step. Re-identification from video sequences is done in [19] by computing
local descriptors based on 3D spatio-temporal gradients. The Temporally Aligned Pooling
Feature Representation (TAPR) computed in [14] extracts motion information from the
video sequences by tracking super-pixels at the lowest portions of human beings. In [18],
the re-identification problem is formulated as a block sparse recovery problem which is
then solved using alternating directions framework. The work in [52] introduces top-push
distance learning model for video-based person re-identification to overcome the chal-
lenges due to change of pose and camera view-point, occlusion, and lighting variation.
Another covariance descriptor for face verification and person re-identification has been
described in [32] that can handle both background and illumination variations. The work
in [56] employs a Confidence Weighted Similarity (CWS) for similarity measurement and a
cascaded fine-tuning strategy to carry out the classification process.

2.3 Attention-basedmodels

Since, in this work we derive attention-based features from the input video sequences, we
next review some recently developed attention-based methods that have been used in com-
puter vision tasks such as image segmentation, recognition, etc. Recent use of attention
features can be found in fine-grained image recognition methods such as [13, 53]. The work
in [13] presents a mutually reinforced way to jointly learn the discriminative region attention
and region-based feature representation, while that in [53] describes a similar approach by
proposing a multi-attention convolutional neural network consisting of three sub-modules,
namely convolution, channel grouping, and part-classification to handle the localization and
part-based fine-grained feature learning. Attention-based models have also been used in [9,
29] for video object detection and segmentation. The authors of [29] present a new Siamese
model termed as Co-attention Siamese Network (COSNet) to process multiple reference
frames together for segmentation and encoding of useful image features. On the other hand,
[9] addresses the challenge of saliency shift by introducing a new model equipped with
saliency-shift-aware conv-LSTM. An adaptive region proposal scheme for object detection
is given in [28] that uses trainable correlation filters to develop a two-stream framework to
distinguish between background and foreground targets and help in accurate segmentation.

From the extensive literature survey, it is seen that there does not exist suitable techniques
that jointly handle both the spatio-temporal as well as attention-based features to solve the
problem of person re-identification. In this paper, we propose a new architecture based on
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a stacked ensemble model of three deep networks to improve over other state-of-the-art
re-identification techniques.

3 Proposed work

In this work, we follow an ensemble-based classification scheme to re-identify individuals
in the fields of view of two cameras. Specifically, predictions from three different deep neu-
ral networks are fused to estimate the class of a test subject. The three sub-networks used in
the ensemble model are (i) a Full-Body Pose Attention Network (FPAN), (ii) a Motion Pool-
ing Network (MPN), and (iii) a Convolutional Long-Short Term Memory Network (LSTM).
These three models are based on the popular ResNet-101 architecture [16], and preserve
information related to the different aspects of human motion. While the FPAN captures
mainly appearance-related information of an individual, the MPN captures dominant motion
features, and the LSTM derives dynamic information from the spatial correlation between
frames in a captured sequence. Use of ResNet-101 as the base network is justified since
its effectiveness in object detection and recognition has already been well-established [7,
44]. The pre-trained version of the ResNet-101 architecture [38] has been used here to gen-
erate the frame-level feature descriptors from the input image sequences. The complete
re-identification approach and detailed discussion on the above-mentioned sub-networks are
given next. The overall pipeline of the proposed re-identification approach consists mainly
of three modules: (i) training of the individual sub-networks, namely, FPAN, MPN, and
LSTM, (ii) aggregation for features from the trained models, and (iii) predicting the class of
a test subject, and is explained with the help of a signal-flow diagram, as shown in Fig. 1.

With reference to the figure, initially, the entire video is segmented into non-overlapping
clips of T frames. Each set of T frames present in a clip is next passed one-by-one through
a pre-trained ResNet-101 model, and these T ResNet features are input to each of the
three sub-networks, i.e., FPAN, MPN, and LSTM, to compute clip-level motion features.
Similarly, clip-level features are computed from each of the other clips at the three sub-
networks, and finally, these clip-level features at each sub-network are aggregated to obtain
three different features from an input video sequence, which preserve important kinematic
characteristics of human motion. Figure 1 shows separate ResNet-101 blocks to make it
easier for the readers to understand the flow of the work. During implementation, a single
such ResNet block may be considered, and each frame may be passed separately through
that network to obtain the deep features corresponding to that frame. Let the dimensions of
each feature map at the final convolution layer of the ResNet-101 model be w×h. Since,
this layer contains 2048 feature maps, the tensor size at this layer can thus be represented
by [w, h, 2048]. Let us denote the tensor corresponding to the t th frame of clip c by f t

c ,
where t = 1,2,..., T and c= 1,2,...C. If there are C total clips, each of FPAN, MPN, and
LSTM fuses information from the C clips to compute class probabilities F1, F2, and F3,
which are finally fused to predict the final class.

Full-Body Pose Attention Network In Full-Body Pose Attention Network (FPAN), the
average of attention scores corresponding to different clips (i.e., fragments of an input
sequence) are computed. This is done by employing a temporal attention layer after the final
convolution layer of the ResNet-101 as explained next. To compute the attention score for
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clip c, we consider the attention tensor bt
c as the average of the T ResNet-101 generated

tensors {f 1
c , f 2

c , ..., f T
c } as shown in (1):

bt
c = 1

T

T∑

t=1

f t
c . (1)

The size of tensor bt
c can also be represented as [w, h, 2048]. Next, we multiply each of the

T ResNet-101 tensors, f 1
c , f 2

c , ..., f T
c , with the attention tensor bt

c, element-wise, and sum
up all the resultant tensors to obtain a single attention-infused tensor for clip c denoted by
mc. Mathematically,

mc =
T∑

t=1

bt
c⊗f t

c , (2)

where ⊗ denotes the tensor product operator. The size of tensor mc is also [w, h, 2048]. The
feature maps obtained after the multiplication operation are now passed through a convolu-
tion layer with 256 kernels, each of dimensions w×h to reduce the tensor size to [w, h, 256],
following which a fully connected layer with a single node is considered that computes the
attention score for clip c. If this score is denoted by Sc, then the final attention score (S)

Fig. 1 A signal flow diagram of the proposed approach
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provided by the FPAN sub-network is obtained by summing up the attention scores from
each of the C clips as shown in (3):

S =
C∑

c=1

Sc. (3)

Now, if there are N subjects in the gallery set, then we compute N such scores following (3).
Let us denote these N scores by S1, S2, ..., SN . If the attention score of an input test subject
is denoted by St , then FPAN provides the final feature F1 in which each attribute represents
the probability of the test subject to belong to a particular class. Thus, we can write:

F1 = {F 1
1 F 2

1 ...FN
1 }, (4)

where,

F
j

1 = |Sj − St |
∑N

j=1 |Sj − St | ,∀j = 1, 2, ..., N . (5)

Motion PoolingNetwork A Motion Pooling Network (MPN), with average pooling layers,
has been employed as the second network, which preserves important information about the
shape of a subject in each clip c by averaging the tensors f t

c obtained corresponding to each
frame t in the clip. Average pooling enables the preservation of useful dynamic information
by aggregating clip-level temporal feature descriptors. It is understandable that, if the value
of the clip length (i.e., the value of T ) is 1, the model will behave like a simple frame-
based model, and will not be able to retain temporal features, while for higher values of
T, the network will fail to capture the kinematic information of a person’s movement at a
high resolution. To determine the best configuration for this sub-network, we experimented
with different values of T using the MARS data [58], which is an extensive data set with
1191003 images and 1262 identities (refer to Table 1), and observe that T =4 provides the
best performance among all the different values of T considered here. Thus, for the MPN,
the clip length T is set to 4, and we use this configuration to report further results from other
data sets as well. The tensor at the penultimate layer of this network is of size [w, h, 2048],
following which a fully connected classification layer is introduced with the number of
nodes equal to the number of classes in the data set. This classification layer outputs a
vector F2 in which each attribute represents the probability of a test subject to belong to the
corresponding class.

Long-Short TermMemory Network This network is used to capture recurrent information
from a walking sequence. It is well-known that an LSTM network can represent any time-
series data effectively. Since a walking sequence can also be looked upon as a time-series
data, the features provided by the LSTM network are expected to preserve unique motion
features for each subject. Specifically, we use two LSTM cells on top of the feature descrip-
tor from the ResNet-101 to generate correspondences among the frames in an input video

Table 1 Overview of the data sets used in the study, and the evaluation metric used

Data set names Number of Number of Number of Evaluation

cameras images identities

PRID-2011 [17] 2 24541 749 CMC

iLIDS-VID [40] 2 42495 300 CMC

MARS [58] 6 1191003 1261 CMC/map
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sequence. The inputs to the second LSTM cell are the original image frames along with the
hidden layer features from the first LSTM cell. If the feature vector corresponding to clip c,
as obtained from this second LSTM cell, is denoted by oc, then

oc = σ(Wo.[xi, hi−1] + bo). (6)

where Wo represents the weight matrix associated with the network, and xi and hi−1 respec-
tively represent the inputs at the current cell and output from the previous cell, and b0
denotes the bias. Similar to MPN, here also we compute the averaged LSTM feature from
all the clips and obtain the feature vector F3 from the final layer whose attributes represent
the individual class probabilities. To select the best LSTM configuration for this third sub-
network, we test with different hidden state sizes (i.e., 256, 512, and 1024) using the MARS
data set, and observed that the best hidden state size for this model is 512. The sequence
length (T ) used here is fixed to 8 to obtain effective temporal features.

Ensemble models have been previously used in [11, 35, 41, 50] to perform joint feature
learning or to fuse predictions from multiple classifiers. Here, we also follow a similar
ensemble-based approach by stacking the different deep models to make the final prediction
about the class of a test subject based on the average probability obtained from the three
sub-networks. Due to fusing information from the multiple models, our proposed approach
results in accurate and reliable predictions. This stacked ensemble model has been named as
Temporal Motion Aware Network (T-MAN) since it accumulates the prediction of several
temporal motion models. For visualization, we also present the feature maps generated at
the final convolution layer by each sub-network as well as the ensemble model T-MAN in
Fig. 2a–d. Although, 256 different feature maps are computed at the penultimate layer of
each sub-network, here we present randomly chosen 64 feature maps among these for ease
of visualization.

Fig. 2 Feature maps generated at the intermediate layers of a FPAN, bMPN, c RNN, d T-MAN



Multimedia Tools and Applications

4 Evaluation settings

In this section, we briefly explain the details of the data sets used in the study, system
configuration, and a thorough evaluation of our approach along with a comparative analysis
with other competing approaches.

Data Sets The important characteristics (i.e., number of cameras, the total number of
images, number of identities, and evaluation metric used) for each data set are highlighted
in Table 1 along with relevant citations.

PRID-2011 [17]: This dataset consists of images from 749 persons captured by two
non-overlapping cameras, and 200 individuals among these appear 749 subjects in both the
camera views. The data set is less challenging since the images present here are captured
in non-crowded regions with rare occlusion and relatively clear background. As in [33],
for our experiments, we consider only the common set of 200 subjects that appear in the
fields-of-view of both the cameras.

iLIDS-VID [40]: This data set consists of pedestrian images captured in an airport arrival
hall. It is constructed from two non-overlapping camera views and contains 600 image
sequences from 300 distinct individuals. This data set incorporates more challenging sce-
narios as compared to that in PRID-2011 by considering occlusion, background clutter,
viewpoint and lighting variations, etc. The number of frames present in the video sequences
in this data set ranges from 23 to 192 with an average of 73.

MARS [58]: This data set is the largest video re-identification data set to date. It consists
of about 20000 video sequences from 1261 individuals. Each of the sequences is obtained
automatically by using the Deformable Part Model [12] detector. The tracking of individuals
is carried out through the GMMCP [8] tracker. In this data set, video sequences of each
person are captured by a minimum of two cameras and a maximum of six cameras. On
average, it contains 13 video sequences for each person.

Evaluation Metrics Effectiveness of the proposed approach is evaluated by observing the
rank-based recognition rate for different values of the rank. In most real-life applications
of re-identification, finding the correct class as the best match of a classifier is not highly
desirable. Rather, for practical purposes, it is sufficient if the correct class falls within the
top few matches. Rank-based classification performance analysis provides a better estimate
about the effectiveness of a classifier by providing not only the Rank-1 accuracy but also
accuracy values at some higher ranks. Apart from this, we also report the Mean Average
Precision (map) of the proposed approach for the MARS data set and compare it with the
state-of-the-art techniques.

Implementation Details We have implemented our algorithm using Python and Tensor-
flow [1] on a system having 64GB of RAM and NVIDIA TITAN Xp with GeForce GTX
GPU with 34 GB memory capacity. The soft-max cross-entropy loss function has been used
to train each of the individual networks, i.e., FPAN, MPN, and LSTM.

Loss(Sof tmax) = − 1

NC

N∑

i=1

C∑

a=1

gi,a log pi,a . (7)

The training batch has been created by randomly selecting N identities and C clips for
each identity. So, in total there are (N×C) clips in a batch, and let gi,a and pi,a denote
the ground truth and prediction for sample (i,a). We perform experiments with different
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values of learning rate and weight decay, and observed that the values 0.0003 and 0.0005
suit best for the learning rate and weight decay factor, respectively. Training of each of the
sub-networks, i.e., FPAN, MPN, LSTM, has been done for a maximum of 1000 epochs, or
till the loss value does not alter significantly in two successive epochs.

5 Experimental evaluation

Here, we present the results obtained from the evaluation of the proposed T-MAN on differ-
ent data sets as discussed in Section 4, and compare it with state-of-the-art re-identification
techniques including [10, 14, 18–20, 24–26, 32, 40, 45, 47, 52, 55, 56]. As explained in
Section 3, although conv-LSTM has been used as the final sub-network, to evaluate the
effectiveness of the ensemble model, the combination of FPAN and MPN has also been
tested with other recurrent network models. In our first experiment, we perform this experi-
ment by considering three different RNN cells, namely, (i) simple Recurrent Neural Network
(RNN ), (ii) Long-Short term Memory (LSTM) as in the proposed work, and (iii) Gated
Recurrent Unit (GRU) using the data sets discussed in Section 4. The hidden state size (Ht )
and sequence length (T ) for each type of RNN cell have been fixed to 512 and 8, respec-
tively. The results are shown in the form of a grouped bar chart in Fig. 3, in which each bar
corresponds to a particular ensemble model as indicated in the legend of the plot. Data set
names have been specified along the horizontal axis, whereas the vertical axis shows the
Rank-1 accuracy.

It can be seen from the figure that the proposed ensemble model T-MAN with LSTM as
the recurrent layer performs better than any other ensemble model for all the data sets i.e.,
PRID-2011, iLIDS-VID, and MARS. This justifies the use of LSTM as a recurrent feature
extractor over the other RNN models. In our next set of experiments, we compare the per-
formance of the proposed approach with state-of-the-art techniques using each of the three
data sets. Results for the first two data sets are shown in Tables 2 and 3 in terms of Rank-1,
Rank-5, and Rank-10 accuracy, whereas results for the third data set are shown in Table 4 in
terms of Rank-1, Rank-5, and Rank-20 accuracy and the map score. In each table, along with

Fig. 3 Rank-1 accuracy for different combinations of RNN Models (i.e., Simple RNN, LSTM, and GRU)
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Table 2 Comparative results on PRID-2011 data set for Ranks 1, 5 and 10

Data set PRID-2011

Methods Rank-1 Rank-5 Rank-10

Baseline [33] 70.0 90.0 95.0

STA [26] 64.1 87.4 90.0

TDL [52] 56.7 80.1 87.6

DVR [40] 40.4 71.8 84.6

TAPR [14] 74.0 94.6 94.2

SRID [18] 35.2 59.5 70.0

RFA-Net [47] 58.2 85.8 93.5

AMOC [25] 83.7 98.3 99.4

TAUDL [23] 49.4 78.7 92.6

DGM+XQDA [49] 81.1 95.1 98.9

our FPAN 65.0 71.5 83.0

our MPN 62.4 72.0 85.5

our LSTM 81.5 88.2 93.5

our T-MAN 83.0 96.4 98.8

(FPAN+MPN+LSTM)

the competing approaches, we have also tested the effectiveness of each of the sub-networks
used in the proposed T-MAN model, if used separately for person re-identification.

From Table 2, it can be seen that for the PRID-2011 data set, we have achieved quite
satisfactory Rank-1 accuracy of 83% with the proposed ensemble model T-MAN. For Rank-
10, this accuracy is more than 98%, which can be said to be significantly good, given the
data set consists of 749 identities. The benefits of choosing an ensemble model can be
verified from the final four rows of this table. It can be seen that the ensemble model signif-
icantly improves upon the accuracy of the individual sub-networks, namely, FPAN, MPN,
and LSTM. It is also observed from the table that although for this data set, the accuracy
of our approach for the different rank values is significantly high, the approach in [25] per-
forms slightly better than ours. Similar observation also follows from Table 3. Here, also
our approach performs much better than most of the existing techniques. Only the results
given by [25] are closely comparable with our work. We observe that although the Rank-1
accuracy of our method exceeds that of [25] by about 5%, the Rank-5 and Rank-10 accuracy
of [25] is slightly better than ours.

Table 4 shows a comparative performance analysis of our work with ensembles of
other existing approaches on the MARS data set. Three different metric learning algorithms
and seven feature descriptors have been used in this study, as given next. The descriptors
include SDALF [10], HOG3D [19], HistLBP [45], gBiCov [32], LOMO [24], BoW [55]
and IDE [56] whereas metric learning methods are DVR [40], KISSME [20], and XQDA
[24]. Although among all the previous video-based re-identification approaches the work
in [25] performs the best, the proposed T-MAN-based re-identification method outperforms
this approach by 15% Rank-1 accuracy. Thus, for large data sets, our ensemble model can
be said to perform more reliably than that of [25]. Additionally, T-MAN has achieved a
mean average precision (map) score of 76.7%, which is significantly higher than any of the
state-of-the-art methods. The superior performance of the proposed T-MAN model is due
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Table 3 Comparison results on iLIDS-VID data set for Ranks 1, 5 and 10

Data set iLIDS-VID

Methods Rank-1 Rank-5 Rank-10

Baseline [33] 58.0 84.0 91.0

STA [26] 44.5 71.7 83.7

TDL [52] 56.5 87.6 95.6

DVR [40] 39.4 61.1 71.8

TAPR [14] 55.1 87.4 93.3

SRID [18] 25.0 44.5 55.6

RFA-Net [47] 49.3 76.7 85.4

AMOC [25] 68.7 94.3 98.3

TAUDL [23] 26.7 51.3 78.6

DGM+XQDA [49] 42.6 67.7 76.6

our FPAN 61.1 69.4 81.0

our MPN 59.0 66.5 76.4

our LSTM 64.9 77.2 85.0

our T-MAN 73.5 91.4 96.6

(FPAN+MPN+LSTM)

to making prediction by fusing three important motion-related information from the three
sub-networks.

Next, we observe the effectiveness of the different ensemble models that can be
formed by combining two or more sub-networks used in the study, and report the

Table 4 Comparison results on MARS data set for Ranks 1, 5 and 20 with Mean Average Precision (map)

Data set MARS

Methods Rank-1 Rank-5 Rank-20 Mean Average precision

(map)

SDALF [10]+DVR [40] 4.1 12.2 25.4 1.8

HOG3D [19]+KISSME [20] 2.7 6.4 12.5 0.8

HistLBP [45]+XQDA [24] 18.2 33.1 46.0 8.0

BoW [55]+KISSME [20] 30.6 46.4 60.1 15.5

LOMO + XQDA [24] 30.8 46.4 60.9 16.5

gBiCov [32]+XQDA [24] 9.2 19.8 33.4 3.7

IDE [56]+XQDA [24] 65.5 82.0 89.0 47.5

AMOC+EpicFlow [25] 68.3 81.4 90.6 52.9

TAUDL [23] 43.8 59.9 72.8 29.1

DGM+IDE [49] 48.1 64.7 77.4 29.1

our FPAN 60.1 69.9 78.4 49.5

our MPN 57.5 66.1 79.0 45.0

our LSTM 68.7 79.8 89.2 53.4

our T-MAN (FPAN+MPN+LSTM) 83.3 93.5 95.6 76.7
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Table 5 Comparative analysis of different combinations of proposed models (FPAN, MPN, and T-MAN)

Data set MARS

Methods Rank-1 Rank-5 Rank-20 Mean Average precision (map)

Ensemble 1 65.2 76.4 89.0 51.6

(FPAN+MPN)

Ensemble 2 73.1 89.0 92.6 64.9

(MPN+LSTM)

Ensemble 3 79.2 92.1 95.5 74.1

(FPAN+LSTM)

our T-MAN 83.3 93.5 95.6 76.7

(FPAN+MPN+LSTM)

Rank-1, Rank-5, and Rank-20 accuracy for each in Table 5. Specifically, we consider
the following ensemble models: Ensemble 1 (FPAN+MPN), Ensemble 2 (MPN+LSTM),
and Ensemble 3 (FPAN+LSTM). The extensive MARS data set has been used for this
experiment.

From this table also, we can see that the proposed ensemble model performs better than
any other combination of the sub-networks.

In our final experiment, we evaluate the robustness of our proposed Temporal Motion
Aware Network (T-MAN) against various initialization parameters of the three sub-
networks. To do this, we first train the individual models three different times, and next
ensemble these to get three different trained models. We test the performances of each of
the above trained models and observe the Rank-1 accuracy. Results are shown in the form
of a grouped bar diagram in Fig. 4.

Fig. 4 Rank-1 accuracy obtained by executing our ensemble T-MAN model three times along with the
standard deviation
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Here, the height of each bar corresponds to the Rank-1 recognition accuracy, and each
group of three bars represents the accuracy obtained by running the three different trained
models on each data set. The data set names and the standard deviation of the recognition
accuracy are shown along the horizontal axis. It is observed from the figure that the Rank-1
accuracy for PRID-2011, iLIDS-VID, and MARS data set ranges between [80.2 83.0], [71.0
73.5], and [76.8 83.3], respectively. The standard deviation values for the PRID-2011 and
iLIDS-VID data sets are well below 1.5, which implies that the proposed T-MAN model
is robust to varying initialization parameters of the sub-networks. A slightly higher value
of standard deviation (i.e., 2.7) has been observed for the MARS data set. This is since
the MARS data set consists of low resolution images that pose significant challenge to the
classification algorithms. However, despite its slightly less robustness, the Rank-1 accuracy
values obtained from the differently trained models are remarkably high.

Discussions The above experimental results show that the proposed T-MAN based re-
identification method is accurate, robust to varying initialization parameters, and also
outperforms almost every state-of-the-art approach for the different experimental settings.
We would especially like to emphasize the point that, during evaluation using the chal-
lenging MARS data set (which consists of very low resolution images), our technique
performs better than the existing techniques by at least 15% in terms of Rank-1 accu-
racy. Most of the previous approaches working on MARS data set have used either a
single network model or ignored the important motion-related information from the video
sequences. In contrast, we combine the contextual, motion, and temporal information into
the Temporal Motion Aware Network (T-MAN) model to carry out person re-identification
effectively.

6 Conclusions and future work

In this work, we propose an ensemble model T-MAN to perform video-based person re-
identification by combining predictions from three different deep networks, namely, FPAN,
MPN, and LSTM. The proposed model jointly handles temporal attention with motion and
recurrent information from input video sequences. We comprehensively study and compare
the performance of the proposed model in terms of rank-wise classification rate with state-
of-the-art techniques. Our approach has been seen to outperform most of the state-of-the-
art techniques for the different experimental settings used in the study, and it performs
significantly better than the previous techniques for the extensive MARS data set, which
consists of a large number of subjects. Effective spatio-temporal modelling and attention-
based feature extraction are the main reasons behind the superiority of our model over the
previous approaches.

Static and dynamic occlusion handling in crowded environments by employing
GAN-based inpainting [3], or some recurrent network models, and open-set person re-
identification maybe considered as future scopes for work. Instead of aggregating features
from all the frames in a sequence, as done in the first two sub-networks, i.e., FPAN and
MPN, pose-based feature extraction might help in improving the overall accuracy of the
model, which maybe studied in the future. Also, saliency detection techniques, as described
in [3, 42, 51], maybe incorporated in our model to extract the most important (i.e., salient)
features at the frame level or the sequence level, and enable the sub-networks to make better
predictions in a more time-efficient manner.



Multimedia Tools and Applications

Acknowledgements The authors would like to acknowledge NVIDIA for supporting their research with a
TITAN Xp Graphics processing unit.

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G,
Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16), pp 265–283

2. Ahmed E, Jones M, Marks TK (2015) An improved deep learning architecture for person re-
identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 3908–3916

3. Cai W, Wei Z (2020) PiiGAN: generative adversarial networks for pluralistic image inpainting. IEEE
Access 8:48451–48463

4. Chen L, Lou J, Xu F, Ren M (2019) Grid-based multi-object tracking with siamese CNN based
appearance edge and access region mechanism. Multimed Tool Appl :1–19

5. Cheng DS, Cristani M, Stoppa M, Bazzani L, Murino V (2011) Custom pictorial structures for
re-identification. In: Proceedings of the British machine vision conference. Citeseer, pp 1–11

6. Chung D, Tahboub K, Delp EJ (2017) A two stream siamese convolutional neural network for
person re-identification. In: Proceedings of the IEEE international conference on computer vision,
pp 1983–1991

7. Dai J, Li Y, He K, Sun J (2016) R-FCN: object detection via region-based fully convolutional networks.
In: Proceedings of the advances in neural information processing systems, pp 379–387

8. Dehghan A, Modiri Assari S, Shah M (2015) GMMCP tracker: globally optimal generalized maximum
multi clique problem for multiple object tracking. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 4091–4099

9. Fan D-P, Wang W, Cheng M-M, Shen J (2019) Shifting more attention to video salient object
detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 8554–8564

10. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-
driven accumulation of local features. In: Proceedings of the IEEE computer society conference on
computer vision and pattern recognition. IEEE, pp 2360–2367

11. Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P (2019) Deep neural network ensembles for time
series classification. arXiv:1903.06602

12. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2009) Object Detection with Discrimina-
tively Trained Part-Based Models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645

13. Fu J, Zheng H, Mei T (2017) Look closer to see better: recurrent attention convolutional neural network
for fine-grained image recognition. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 4438–4446

14. Gao C, Wang J, Liu L, Yu J-G, Sang N (2016) Temporally aligned pooling representation for video-based
person re-identification. In: Proceedings of the IEEE international conference on image processing,
IEEE, pp 4284–4288

15. Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with an ensemble of localized features.
In: Proceedings of the European conference on computer vision, Springer, pp 262–275

16. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 770–778

17. Hirzer M, Beleznai C, Roth PM, Bischof H (2011) Person re-identification by descriptive and dis-
criminative classification. In: Proceedings of the scandinavian conference on image analysis. Springer,
pp 91–102

18. Karanam S, Li Y, Radke RJ (2015) Sparse re-id: block sparsity for person re-identification.
In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops,
pp 33–40

19. Klaser A, Marszałek M, Schmid C (2008) A spatio-temporal descriptor based on 3D-gradients. In:
Proceedings of the 19th british machine vision conference, pp 275:1–10

20. Koestinger M, Hirzer M, Wohlhart P, Roth PM, Bischof H (2012) Large scale metric learning from
equivalence constraints. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. IEEE, pp 2288–2295

21. Kviatkovsky I, Adam A, Rivlin E (2012) Color invariants for person reidentification. IEEE Trans Pattern
Anal Mach Intell 35(7):1622–1634

http://arxiv.org/abs/1903.06602


Multimedia Tools and Applications

22. Li W, Zhao R, Xiao T, Wang X (2014) DeepReID: deep filter pairing neural network for person re-
identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 152–159

23. Li M, Zhu X, Gong S (2018) Unsupervised person re-identification by deep learning tracklet association.
In: Proceedings of the European conference on computer vision, pp 737–753

24. Liao S, Hu Y, Zhu X, Li SZ (2015) Person re-identification by local maximal occurrence representation
and metric learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 2197–2206

25. Liu H, Jie Z, Jayashree K, Qi M, Jiang J, Yan S, Feng J (2017) Video-based person re-identification with
accumulative motion context. IEEE Trans Circuits Syst Video Technol 28(10):2788–2802

26. Liu K, Ma B, Zhang W, Huang R (2015) A spatio-temporal appearance representation for video-based
pedestrian re-identification. In: Proceedings of the IEEE international conference on computer vision,
pp 3810–3818

27. Liu Y, Yan J, Ouyang W (2017) Quality aware network for set to set recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 5790–5799

28. Lu X, Ma C, Ni B, Yang X (2019) Adaptive region proposal with channel regularization for robust object
tracking. IEEE Trans Circuits Syst Video Technol

29. Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: unsupervised video object
segmentation with co-attention siamese networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 3623–3632

30. Ma M (2019) Infrared pedestrian detection algorithm based on multimedia image recombination and
matrix restoration. Multimed Tools Appl :1–16

31. Ma B, Su Y, Jurie F (2012) Local descriptors encoded by fisher vectors for person re-identification. In:
Proceedings of the European conference on computer vision. Springer, pp 413–422

32. Ma B, Su Y, Jurie F (2014) Covariance descriptor based on bio-inspired features for person re-
identification and face verification. Image Vis Comput 32(6-7):379–390

33. McLaughlin N, Martinez del Rincon J, Miller P (2016) Recurrent convolutional network for video-
based person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 1325–1334

34. Minetto R, Segundo MP, Sarkar S (2019) Hydra: An ensemble of convolutional neural networks for
geospatial land Classification. IEEE Trans Geosci Remote Sens
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