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Abstract. Learning deep neural networks requires huge hardware
resources and takes a long time. This is due to the need to process
huge data sets multiple times. One type of neural networks that are
particularly useful in practice are denoising autoencoders. It is, there-
fore, necessary to create new algorithms that reduce the training time
for this type of networks. In this work, we propose a method that, in
contrast to the classical approach, where each data element is repeatedly
processed by the network, is focused on processing only the most diffi-
cult to analyze elements. In the learning process, subsequent data may
lose their significance and others may become important. Therefore, an
additional algorithm has been used to detect such changes. The method
draws inspiration from boosting algorithms and drift detectors.

Keywords: Denoising autoencoders · Artificial neural networks · Drift
detectors.

1 Introduction

In recent years, we can easily observe the rapid development of deep learning
techniques. This mainly applies to various types of neural networks. Among
the most popular techniques are convolutional neural networks [26], which are
often used to images analysis; recursive neural networks, commonly used, among
others, to natural language processing [40]; or restricted Boltzman machines used
for density estimation or detection of changes in incoming data [21]. Less popular
techniques, like spiking neural networks, are also developing significantly [28].

Much attention should be paid to autoencoders, which are a special type of
neural networks. Their task is to recreate at the output the information given at
the input. Depending on the application, several types of autoencoders are dis-
tinguished, such as sparse, contrastive, variational, and denoising autoencoders.
In this work, we will focus on denoising encoders. This means that noisy data
elements are fed to the autoencoder input, and at the output, we expect to
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receive noise-free information. This approach is particularly useful in working
with missing and uncertain data.

A spectacular performance deep neural networks in solving speech and image
processing problems, have made both researchers and companies pay special
attention to them. However, training such models require the collection of huge
amounts of data, and the learning process, epoch after epoch, makes that data
are processed many times. As a result, training deep models requires both a lot
of time and computers with sufficient computing power [1,18,24,27].

On the other hand, the problem of analysis of the huge amounts of data,
so-called Big Data analysis (BDA), has become a separate research field [25].
Among the various approaches, one of the most promising is data stream min-
ing (DSM). This approach requires that the data are not stored in the system
but are processed as soon as arrive from the stream, and next, forgotten as
soon as possible. Another important condition is to ensure that the algorithm
can respond immediately, regardless of the rate at which data elements arrive.
Therefore, it is not recommended to use long-term learning processes, such as
epoch learning of neural networks. The last but not least feature of DSM is the
ability of algorithms to detect and react to changes in the environment. This
phenomenon is called concept-drift. Data stream mining can be applied in many
fields, i.e. iterative learning control [35,36].

DSM algorithms can be divided by the way they process data. The on-line
algorithms process single data elements immediately after arrival. This group
includes, among others, the classification [20,32,33,39], regression [10,11,19,31]
and density estimation algorithms [13]. This approach is also used in other, more
complex systems [43]. Another approach is to process data chunks. This method
is often combined with ensembles of classifiers [9,12]. There are also solutions
based on storing in memory only a constant number of recently arrived data
elements. This approach is called sliding windows [3].

We can also divide these algorithms by the way they react to concept drift.
We distinguish a passive and active approach here. The passive approach is based
on the self-adaptation of the model to changes in the environment through its
continuous learning. In an active approach, the algorithm indicates the moment
when the concept changed and then tries to create a new model that will be bet-
ter adapted to the new environment. The change detection mechanism is called
the drift detector (DD). The other approach to detecting changes is proposed in
[34,37].

In the classic approach of neural network training, data from the training set
are divided into batches and given into the network’s input. After forward prop-
agation, the network error is calculated and propagated backward, to change the
values of the weights. Such a process is sometimes unfavorable, as the processing
of data elements that do not tune the network takes the same amount of time
as the processing of important data (i.e. those that have the greatest impact
on the learning process). Work [8] shows how we can select subsets of training
data so that the network can learn from the most important data. In contrast
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to this work, which focuses only on the classification task, we concentrate now
on applying this method to learning the denoising autoencoders.

The rest of the paper is divided into the following sections. In Sect. 2 recent
works on autoencoders and drift detectors are presented. Section 3 describes the
proposed algorithm. The simulation results are presented in Sect. 4. Finally, the
conclusions are given in Sect. 5.

2 Related Works

One of the most interesting structures applicable to unsupervised learning are
autoencoders [2], which learn how to reconstruct original data. In [7] the authors
presented a denoising autoencoder that extracts features from data with noise.
In [16] the authors proposed a convolutional denoising autoencoder to process
medical images. In [42] an application of denoising autoencoders to the recom-
mender system is presented. Solving the problem of single-channel audio signal
separation is considered [17]. In [41] the authors apply autoencoders to improve
electricity price forecasting.

One of the most important tools developed within SDM is the drift detector.
Several approaches are proposed in the literature. The Drift Detection Method
(DDM) [14] monitors the correctness of classification by the current model.
Treating observations as a result of Bernoulli trials, the authors propose a sta-
tistical test to inform about warning or alarm state. In paper [15] the authors
propose the Adaptive Random Forests algorithm, which combines classical ran-
dom forest procedure with Hoeffding’s decision trees. To react to changes in data
stream, a procedure based on the ADWIN algorithm [3] and the Page-Hinkley
test [30] can be applied. In [5], the authors proposed the WSTD algorithm, which
applied the Wilcoxon rank-sum statistical test to improve false positive detec-
tion. In [6], the authors proposed computing multiple models explanations over
time and observing the magnitudes of their changes.

It should also be noted that several authors tried to merge the fields of deep
learning and data stream mining. In [4] the authors combined the evolving deep
neural network with the Least Squares Support Vector Machine. Deep neural
networks were also successfully applied in semi-supervised learning tasks in the
context of streaming data. It was demonstrated how such structures can be
used for online learning from data streams. In [29] the Deep Hybrid Boltzmann
Machines and Denoising Autoencoders were proposed. In [38] the idea was to
train the Deep Belief Network in an unsupervised manner based on the unla-
beled data from the stream. Then, few available labeled elements were used to
occasionally fine-tune the model to the current data concept. In [21] and [22] the
authors proposed to apply the RBM as a concept drift detector. It was demon-
strated that the properly learned RBM can be used to monitor possible changes
in the underlying data distribution. This method was further analyzed from the
resource-awareness perspective in [23].
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3 The BBTADD Algorithm for Denoising Autoencoders

The approach presented in this paper is mainly based on the BBTA algorithm
proposed in [8].

Let T be a training set consisting of N elements, where each of them is
d-dimensional feature vector Xi for i = 1, . . . , N , i.e.

T = {Xi|i = 1, . . . , N,Xi ∈ A}, (1)

where A is a d-dimensional feature space. Moreover, a new factor has been added
to each element describing a probability of drawing (pod) from the stream.

TS = {(Xi, vi)|Xi ∈ T, vi ∈ (0, 1)}. (2)

Through subsequent, independent draws of elements from the set TS , we can
create a data stream St as follows

St = (Y1, . . . , Yt|Yi = (Xji , cji), 1 ≤ i ≤ t, 1 ≤ ji ≤ N), (3)

where t is an index of the last element coming from the stream.
The denoising autoencoder is a function mapping from set A to itself, f :

A → A. Without loss of generality, we can assume that the autoencoder consists
of l layers. Then the function f can be expressed in the following way

f(X) = φl ◦ φl−1 ◦ · · · ◦ φ1(X), (4)

where X is the input vector. A single layer φj : Zj−1 → Zj, where j = 1, . . . , l,
Zj is an Nj dimensional space of (j − 1)-th layer output values, Z0 = Zl = A,
can be defined as follows

φj(z) = [ρ1j (
∑Nj−1

i=1 wi,1zi + b1), . . . , ρ
Nj

j (
∑Nj−1

i=1 wi,Nj
zi + bNj

)] (5)

where z = [z1, . . . , zNj
] ∈ Zj−1, wi,m is a weight between the i-th neuron of

the (j − 1)-th layer and the m-th neuron of the j-th layer, ρmj is an activation
function for the m-th neuron on the j-th layer and bm is the bias for the m-th
neuron.

The classic approach to learning multidimensional neural networks involves
updating weights according to the following formula

wi,m := wi,m − η
∂L

∂wi,m
, (6)

where η > 0 is the learning rate and L is a loss function.
In [8], three methods of determining vi value were proposed. In our work

we will use the NLB approach. First, the temporary values vi are determined
according to the following formula

v′
i = tanh(L(Xi))/Mi, (7)
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where Mi indicates the number of times the i-th data element was drawn in the
past. In consequence, big values of loss function give high index of drawing this
element, close to 1, and the small ones close to 0.

Next, as values v′
i are not probability mass function (since they do not have

to sum up to 1), they are normalized after processing the whole mini-batch in
the following way

vi =

{
v′
i/Z, for xi ∈ B

vi/Z, for xi ∈ T\B
(8)

where Z is a normalization factor, given as

Z =
∑

{v′
i|Xi∈T}

v′
i. (9)

After processing one mini-batch of data, another one is generated and the
procedure is repeated until the stopping condition is fulfilled.

Changing the weights of the network only according to elements that are not
well classified can lead to network untune, which means to misclassifying ele-
ments that previously processed correctly. Another threat is the fact that con-
stantly analyzing the same data can lead to network overfitting. Consequently,
an important element of the algorithm is the drift detector, which allows indi-
cating a moment since when elements draw according to the current pod values
do not affect the learning process well.

As in [8], we used the CuSum algorithm as a drift detector, given by the
following formula

Cus0 = 0, (10)
Cusi = max(0, Cusi−1 + L(Bi−1) − L(Bi) − α), (11)

for i = 1, 2, . . . , where L(Bi) is a value of the loss function in the i-th mini-bath
and α is a fixed parameter. The drift is detected when Cusi exceeds the value
of the threshold λC .

The summary of the BBTADD algorithm is presented in Algorithm1.

4 Experimental Results

In this chapter, the application of the algorithm described in Sect. 3 is tested for
autoencoders training. To this end, the MNIST data set is used. The training
set consists of 60 000 elements representing hand-drawn numbers. The test set
has 10 000 elements. The performance of the proposed method will be compared
with the performance of the autoencoder trained by the classical approach.

To perform the simulations, a convolution neural network consists of 9 layers
was used. The first 5 layers are convolution and max-pooling layers, alternately
placed. The convolution layers consist of 16, 8, and 8 filters, respectively. Next,
the two alternately arranged deconvolution and upsampling layers are placed.
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Input: S - data stream, M - batch size, α, λC

1 CuSum = 0 ;
2 Collect a new batch B from the stream S;
3 for every data element in B do
4 Increase counter of drawn of the current element;
5 Train the network on current element;
6 Compute loss function for a current element;
7 Update vi according to (7)

8 for every data element in T do
9 Update pods according to (8)

10 Compute loss function on a validation set;
11 Update CuSum according to (10);
12 if CuSum > λC then
13 Reinitialize pod’s values;
14 Return to line 1 ;

15 else
16 Return to line 2 ;

Algorithm 1: The BBATDD algorithm.

The deconvolution layers consist of 8 and 1 filters, respectively. The sizes of
the filters in all convolution and deconvolution layers was set to 3 on 3, and in
pooling and upsampling to 2 on 2. The relu activation function was used. The
diagram of the network is presented in Fig. 1.

Fig. 1. Convolutional autoencoder

The first experiment presents a comparison of the network training in a classic
way and using the BBTADD algorithm. The size of the batches used during
training was set to 128 elements. The classical network has been trained by 100
epochs, which is equivalent to 46,875 batches used for learning the BBTADD
algorithm. Figure 2 shows the loss function obtained for both approaches on
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the test set. The loss function used during training is binary cross-entropy. It
can be easily seen that the value of the loss function for the proposed algorithm
decreases faster compared to the classical approach.

Fig. 2. The loss function computed on the test set for subsequent batches

An example of denoising images obtained by using the classic approach and
the BBTADD algorithm is shown in the Figs. 3 and 4, respectively.

Fig. 3. The original and denoised images by the classic autoencoder

Fig. 4. The original and denoised images by the BBTADD algorithm

The next experiment was a comparison of the performance of the proposed
algorithm trained on different batch sizes. For this purpose, the number of ele-
ments in a batch was set to 128, 256, 512, and 1024. The values of the loss func-
tion for these simulations are presented in Fig. 5. It shows that smaller batch
sizes allow for greater accuracy. On the other hand, it is also important to com-
pare the training time for different batch sizes. Calculations on larger batches
are faster. For batches from 128 to 1024, they take 2555, 1311, 719, and 1024 s,
respectively.
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Fig. 5. The loss function values for the BBTADD algorithm trained with different sizes
of batches

5 Conclusions

This paper explores the possibility of training autoencoders by selecting certain
subsets of data from the training set. The carried out simulations showed the use-
fulness of the proposed method. The values of the loss function decreased faster
than in the case of autoencoders trained classically. The effects of noise reduction
on the image data were satisfactory. In the future, the proposed method will be
used to train deeper models as well as it will be applied to other types of data.

References

1. Akdeniz, E., Egrioglu, E., Bas, E., Yolcu, U.: An ARMA type pi-sigma artificial
neural network for nonlinear time series forecasting. J. Artif. Intell. Soft Comput.
Res. 8(2), 121–132 (2018)

2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1),
1–127 (2009)
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