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Abstract
Image de-fencing is one of the most important aspects of recreational photography in which the objective is to remove the
fence texture present in an image and generate an aesthetically pleasing version of the same image without the fence texture.
In this paper, we present an automated and effective technique for fence removal and image reconstruction using conditional
generative adversarial networks (cGANs). These networks have been successfully applied in several other domains of computer
vision, focusing on image generation and rendering. Our approach is based on a two-stage architecture involving two cGANs
in succession, in which the first cGAN generates the fence mask from an input fenced image, and the next one generates the
final de-fenced image from the given input and the corresponding fence mask obtained from the previous cGAN. Training
of these networks is carried out independently using suitable loss functions, and during the deployment phase, the above
two networks are stacked together in an end-to-end manner to generate the de-fenced image from an unknown test image.
Extensive qualitative and quantitative evaluations using challenging data sets emphasize the effectiveness of our approach
over state-of-the-art de-fencing techniques. The data sets used in the experiments have also been made available for further
comparison.

Keywords Automated de-fencing · Two-stage cGAN network · Fence mask detection · Image inpainting

1 Introduction

Despite technological advances in the domain of digital pho-
tography, capturing a clear snapshot of an object of interest
often becomes difficult if some obstructions are present in
the front or behind the object. For example, in a zoo, the
presence of fence/cage bars occludes the field of view of the
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camera, which hinders capturing an unobstructed view of the
bird or animal behind the cage bars. Image de-fencing refers
to the task of generating an aesthetically pleasing image of
the intended object by eliminating the fence structure. Tra-
ditionally, this problem has been viewed as a combination of
two separate subproblems: (i) fence mask generation, which
essentially clusters the image region into fenced and non-
fenced regions, and (ii) image inpainting, which involves
artificially synthesizing colors to the fenced regions to make
the rendered image look realistic [1–9]. This is explained
diagrammatically with the help of Fig. 1a–c.

Conditional generative adversarial networks (cGANs)
[10–13] have already demonstrated strong potential in per-
forming image-to-image translation by satisfying a set of
user-defined conditions [14–17]. Hence, in this work, we
propose to use cGAN-based model for image de-fencing.
To the best of our knowledge, this is the first-ever work that
attempts to develop an end-to-end cGAN-based architecture
for the image de-fencing task. Specifically, we propose a two-
stage algorithm consisting of two sub-networks (cGANs)
to carry out the fence mask generation and image inpaint-
ing stages in succession. Encouraging results are obtained
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Fig. 1 a Input image, b fence mask detection stage, c inpainting stage

from extensive qualitative and quantitative analysis of our
approach. The overall paper has been organized as follows:
Sect. 2 summarizes the related literature in automatic fence
detection, image inpainting, and image de-fencing, while the
proposed approach is described in detail in Sect. 3. Exper-
imental evaluation and analysis of results are presented in
Sect. 4, while conclusions, alongwith future research scopes,
are highlighted in Sect. 5.

2 Related work

We provide an overview of the existing approaches to fence
mask generation, image inpainting, and image de-fencing in
the following three subsections.

2.1 Fencemask detection

Fence mask detection is the process of segmenting an input
image with a fence into two clusters, such that all the fence
pixels are assigned a particular cluster, and each of the other
pixels is assigned a different cluster. To date, several research
articles exist in the domain of regular and near-regular pattern
detection [2,18–20]. The work in [18] uses higher-order fea-
ture matching to discover the lattices of near-regular patterns
in real images based on the principal eigenvector of the affin-
ity matrix. In [19], a method for detection of deformed 2D
wallpaper patterns in real-world images has beenproposedby
mapping the 2D lattice detection problem into a multi-target
tracking problem, which is solved within a Markov random
field framework. In [21], the problem of near-regular fence
detection is handled by employing an efficient mean-shift
belief propagationmethod to extract the underlyingdeformed
lattice in the image. In [22], a soft fence detection method
is discussed that uses visual parallax as a cue to distinguish
between fenced and non-fenced regions.

2.2 Image inpainting

Image inpainting is the process of restoration of the unfilled
portions of an imagewith appropriate plausible content/color.
Image inpainting methods used in the literature can be
broadly divided into two categories: (a) diffusion-based
methods [23,24] and (b) exemplar-based methods [25–28].

The former category of approaches uses smoothness priors to
propagate information from known regions to the unknown
region, while the latter category fills in the occluded regions
by employing similar patches from other locations in the
image. Exemplar-based methods have the potential of filling
up large occluded regions and recreate missing textures to
reconstruct large regions within an image. But these methods
are unable to recover the high-frequency details of the image
properly. To the best of our knowledge, context encoder [29]
is the first deep learning approach used for image inpainting
in which an encoder maps an image with missing regions to
a low-dimensional feature space that is used by the decoder
to generate the inpainted output image. The work in [30]
uses a pre-trained VGG network to minimize the feature dif-
ferences in the image background, thereby improving the
work of [29]. In [14], a GAN-based approach is described
that maps the image inpainting task into a constrained image
generation problem, such that the encoding of the inpainted
image in a latent space is close to that of the unfilled input
image in the same latent space in terms of weighted context
loss and prior loss. The technique in [31] estimates missing
regions in an unfilled image, following which it employs an
attention-basedmechanism for fine-tuning the results.A two-
stage adversarialmodel is described in [32] that consists of an
edge generator network to detect boundaries of the unfilled
patches within an image and an image completion network
to fill these patches with appropriate colors.

2.3 Image de-fencing

The first work on image de-fencing has been developed
in [1], in which the fence patterns are segmented based
on spatial regularity, and an inpainting algorithm [25] is
applied to fill in the fence pixels with appropriate colors.
An improvement to this work is suggested in [2], which
employs an online learning algorithm for lattice detection
and segmentation, and finally, a multiview inpainting tech-
nique is adopted to improve the image restoration process.
Both approaches assume the fence structure to be near reg-
ular. In [3], a multi-frame de-fencing technique is described
that uses loopy-belief propagation [33] across frames and
uses an image matting technique [34] for fence segmenta-
tion with the assumption that the color of the fence pixels is
significantly different from the background. Another video
de-fencing approach discussed in [35] extracts a fence mask
from each frame with the aid of depth maps captured by a
Kinect sensor, following which it employs an optical flow
algorithm to find correspondences between adjacent frames.
By modeling the de-fenced image as a Markov random field,
the maximum a posteriori estimate obtained by applying
loopy-belief propagation is considered to be the final de-
fenced image. A similar technique to identify the occluded
regions using multiple image frames has also been described
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in [36]. In [7], signal de-mixing has been used to detect the
fence structure by capturing the sparsity and regularity of
the different image regions. A popular inpainting algorithm
[25] is next applied to output the de-fenced images. This
approach requires manual specification of a large number of
parameters due to which it is not very suitable for practical
use. Another semi-automated approach for image de-fencing
is described in [6], where several fence pixels in the image
are manually marked, following which a Bayesian classifier
is used to classify each pixel as fence or non-fence based
on the color distribution of the marked pixels and the non-
marked pixels. As understandable, both the approaches [6,7]
are prone to human error and are also time intensive. His-
togram of oriented gradients has been used for fence mask
detection in [8], and the same inpainting algorithm [25] (as
in most of the previous de-fencing techniques) has been used
for inpainting.

Recently, a few deep learning-based video de-fencing
approaches have been developed. For example, the work
in [4] employs a convolutional neural network (CNN) to
detect the fence pixels in an input image and then uses a
sparsity-based optimization framework to fill in the fence
pixels, which is time intensive. The work in [5] utilizes a
pre-trained CNN coupled with an SVM classifier for fence
texel joint detection and then connects these joints to obtain
scribbles for image matting. However, this approach fails to
provide satisfactory performance if a fenced image with an
irregular pattern is provided as the input. Another approach
for fence segmentation using fully convolutional neural net-
works is presented in [37], which is accompanied by an
efficient occlusion-aware optical flow-based image recovery
algorithm. In [9], fenced images, artificially synthesized from
natural images, have been used to train aResNet-based image
recovery network to predict the de-fenced images. However,
the initial spatial filtering step involved in this algorithm
requires the specification of a set of user-defined parame-
ters, which is likely to vary for different images. Moreover,
the results of de-fencing presented in this work also lack in
visual quality.

As seen from the extensive literature survey, previous
approaches to fence detection suffer from either the unrealis-
tic assumption of (i) color consistency in fence structures and
(ii) the presence of near-regular repeated fence elements in
any given fenced image. In contrast to these previous tech-
niques, our method uses cGAN-based prediction for both
the fence mask detection and the inpainting stages. Qualita-
tive and quantitative results presented in Sect. 4 verify that
our approach performs robustly and carries out de-fencing
effectively even in challenging situations such as irregular
fence structures and occlusion, which the previous methods
have failed to achieve. The main contributions of our work
are:

– Proposing a novel two-stage end-to-end image de-
fencing network involving a fence mask generator and
an image recovery sub-networks, each of which is based
on cGANs.

– Training the models suitably to handle challenging situ-
ations such as images with occlusion or broken/irregular
fence structures in a time-efficient manner.

– Performing extensive experimental evaluation and mak-
ing the pre-trained models and data sets used in the
experiments publicly available to the research commu-
nity.

3 Proposed approach

A schematic diagram of the proposed de-fencing approach
is shown in Fig. 2.

With reference to the figure, two cGANs have been used to
carry out the fence mask detection and the image inpainting
steps. The generator and discriminator pair of the two net-
works are denoted by (G1,D1) and (G2,D2). The generator
G1 takes as input a fenced image along with its Canny edge
map and outputs a fence mask, while the generator G2 uses
the fence mask generated by G1 along with the input image
to output the final de-fenced image. Adversarial losses at the
discriminators D1 and D2 are used to train the networks sep-
arately. During deployment, the generators G1 and G2 are
stacked one after another to form an end-to-end network for
translating any fenced image at the input of G1 to its de-
fenced version at the output of G2. The cGAN architectures
and the training steps are explained in Sects. 3.1 and 3.2.

3.1 Fencemask generator

The task of the fencemask generatorG1 is to predict a binary
fence mask image from a given fenced image. Using the
available ground truth, this network learns a function G1 that
takes as input a fenced image I f as well as a Canny edge
map of I f (denoted by Ic) to generate a fence mask Ip. This
function can be represented as:

Ip = G1(I f , Ic), (1)

which is learned using the first cGAN (Fig. 2). The generator
G1 consists of an encoder with seven down-sampling layers,
followed by a decoder with seven up-sampling layers. The
detailed architecture of G1 is as follows:

It can be seen that the G1 generator consists of a total of
14 layers, in which convik represents a 2D convolution layer
with a stride value of two, and k filters at the i th layer, and
dconvik represents up-sampling followed by a 2D convolu-
tion layer with k filters at the i th layer. Skip connections are
used between i th dconv and (14− i)th conv layers. The final
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Fig. 2 Two-stage image de-fencing network

Detailed architecture of the fence mask generator

conv164- conv2128- conv3256- conv4512- conv5512- conv6512- conv7512-

dconv8512- dconv9512- dconv10512- dconv11256-

dconv12128- dconv1364- out
14
c

layer, represented by outic , performs up-sampling by a factor
of two followed by 2D convolution with c filters along with
tanh activation. The c filters correspond to the c channels in
the generated image. Since for the fence mask generator, the
output image is a binary mask, the value of c is one. The
discriminator D1 is a 16×16 PatchGANMarkovian discrim-
inator that is also a deep convolution classification network
with the following configuration:

Discriminator architecture of the mask generator

conv164 - conv2128 - conv3256 - conv4512 - val51

Here, val51 represents the final 2D convolution layer with
a single filter and outputs classification of each 16×16 patch
of an image as either real or fake.
We use Im and Ip, conditioned on I f as inputs to the discrim-
inator to predict the fence mask image as real or fake. The
network is trained with the objective function comprising of
the adversarial loss LA

1 and the L1 loss as shown in (2):

min
G1

max
D1

LG1 = min
G1

(
α1 max

D1

(LA
1 ) + β1(LL1,1)

)
, (2)

whereD1 represents the function learnedby the discriminator
of the cGAN, and α1 and β1 are regularization parameters.
Here, we choose α1 = 1 and β1 = 10. The above two loss

functions are mathematically defined as follows:

LA
1 =E

I f ,Im

[
log(D1(Im, I f ))

]
+E

I f ,I p

[
log(1−D1(Ip, I f ))

]
,

(3)

LL1,1 = E
[
||Ip − Im ||1

]
. (4)

Here, E denotes the expectation operator and other symbols
carry their usual meanings. The network is trained in mul-
tiple epochs, and the training is stopped once the absolute
difference between the network loss values in two succes-
sive epochs reaches less than a small threshold ε (we use
ε = 10−3). It may be noted that the generator can also be
trained using I f alone (i.e., without using the Canny edge
map Ic). However, appending the Canny edge map along
with the input image during training helps in improving the
fence mask detection results, since the Canny edge map cap-
tures crucial structural information and properties present in
an image and thus provides high-frequency detail of an image
which is useful for fence mask detection, thereby enabling
the cGAN to precisely differentiate between the fenced and
the non-fenced structures present in the image.

3.2 Image recovery network

Asexplained before, the image recovery network architecture
is also based on cGAN. Let Id be the ground-truth de-fenced
image and Ĩ f be its ground-truth fence mask. The cGAN
learns a function G2 to generate the final de-fenced image Ĩ p,
conditioned on I f as shown in (5):

Ĩ p = G2( Ĩ f , I f ). (5)

The generator and discriminator architectures used here
are similar to those used in the case of the fence mask gen-
erator network, as explained in Sect. 3.1 with the exception
that in the final layer, the convolution operation considers
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three filters instead of just one. This is since the inpainted
image to be generated by this cGAN is an RGB image with
three channels. This network is trained by a joint objective
function consisting of the adversarial loss, perceptual loss,
style loss, and L1 loss, along with SSIM loss. The adversar-
ial loss computed at the discriminator D2 of this cGAN is
defined as:

LA
2 = E

I f ,Id

[
log(D2(Id , I f ))

]
+ E

I f , Ĩ p

[
log(1−D2( Ĩ p, I f ))

]
.

(6)

The perceptual loss term Lperc provides the differences
between the high-level feature representations between the
ground-truth and the GAN-generated images, and this is
computed using a pre-trained CNN [38]. It is computed as:

Lperc = E
[ ∑

i

1

Ni
||ai(Id) − ai( Ĩ p)||1

]
, (7)

where ai denotes the activation map, and Ni represents the
number of filters in the i th layer of the VGG-19 network. As
seen from (7), this loss imposes a higher penalty if the output
image is not perceptually similar to the ground truth. To train
the cGAN, we also minimize a style loss term quantified by
the amount of correlation present between the features maps
of the generated and ground-truth images at a particular layer
and it is calculatedwith the help ofGrammatrixG [39]. Each
element of this matrix represents the inner product between a
pair of vectorized featuremaps at aCNN layer. For the feature
map of size C j × Hj ×Wj , the style loss is mathematically
defined as:

Lsty = E j

[
||Gj

a( Ĩ p) − Gj
a(Ide f )||1

]
, (8)

whereGj
a is theCj×Cj Grammatrix corresponding to feature

map aj. Both L perc and Lsty enable the generatorG2 to learn
the input data distribution at a high resolution. The L1 loss
function is computed as:

LL1,2 = E
[
|| Ĩ p − Id ||1

]
. (9)

For obtaining visually pleasing images from the generator,
we also incorporate a structural similarity loss term [40,41]
as shown in (10), which indicates the differences between
the luminance, contrast, and structure between the gener-
ated de-fenced image and the ground-truth de-fenced image.
Mathematically,

LSSI M = 1

N

∑
p

(1− SSIM(p)), (10)

where p refers to a particular pixel position and N corre-
sponds to the number of pixels in the image. Mathematically,

SSIM(p) = 2μxμy + C1

μx
2μy

2 + C1
.
2σxy + C2

σx 2σy
2 + C2

, (11)

and it refers to the structural similarity index between the
ground-truth and the generated image at pixel position p. In
the above expression, μx and μy represent mean intensities
in the neighborhood of p, while σx and σy represent stan-
dard deviations for two nonnegative image signals x and y,
respectively, σxy represents the covariance of x and y, and
C1 and C2 are constants 1. The overall loss function for the
image recovering network is computed as:

min
G2

max
D2

LG2 = minG2

(
α2 maxD2(LA

2 ) + β2(LL1,2)

+γ (Lperc) + δ(Lsty) + η(LSSI M )
)
, (12)

where α2, β2, γ , δ, and η are regularization parameters. In
our experiments, we set α2=0.1, β2=10, γ=2, δ=1, and η=1.

4 Experiments and results

Our experiments have been performed on a systemwith three
graphics processing units (GPUs), out of which one is Nvidia
Titan Xp with 12-GB RAM, total FB memory as 12196 MB
and total BAR1 memory as 256 MB, and the other two are
Nvidia GeForce GTX 1080 Ti with 11-GB RAM, total FB
memory as 11178 MB and total BAR1 memory as 256 MB.
For training the fence mask detector, a public fence segmen-
tation data set [37] has been used, which consists of fences
with regular patterns only. Along with this, we also use a
synthetic data set containing images with irregular fence pat-
terns that are made by adding artificial fence structures on
a set of natural images from the Pascal VOC data set [42].
We construct a large number of irregular fence structures
by applying warping and other image transformation tech-
niques on the ground-truth fence masks from the first data set
and next superimpose these fence structures on the selected
images from the Pascal VOC data. The total number of pairs
of fenced images and their corresponding fence masks in the
training set is 29013. To train the image recovery network
also, we had to construct an artificial data set since no pub-
lic data set exists with both fenced and the corresponding
de-fenced images. For this purpose, we create another syn-
thetic data set by superimposing artificial fence structures
on images selected from the Pascal VOC data [42] and the

1 Appropriate values for C1 and C2 to compute the SSIM loss can
be found in https://github.com/keras-team/keras-contrib/blob/master/
keras_contrib/losses/dssim.py.
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COCO data [43]. The total number of images in this gallery
set is 29413. For evaluating our approach, we construct the
following sets of test images: (a) 150 images with regular
fence patterns, (b) a set of images with varying fence patterns
(referred to as the Test-1 set), (c) a set of images with occlu-
sion (referred to as the Test-2 set), and (d) a set of imageswith
broken/irregular structures (referred to as the Test-3 set). The
total number of images in Test-1, Test-2, and Test-3 sets is
equal to 150. Since the two sub-networks accept 256×256-
dimensional image input only, at the outset, each image is
resized to dimensions 256×256. The data sets used during
training and testing the two sub-networks, as well as the pre-
trained models, have been made available here.

4.1 Evaluation with different Canny thresholds

As explained in Sect. 3, the input to the fence mask genera-
tor is a Canny edge map along with the fenced image. Since
the computation of the Canny map requires specification of
two threshold parameters, in the first experiment, we make
an appropriate choice of these threshold parameters by con-
sidering different combinations of choices and selecting the
one that performs the best on the training set. The ground-
truth fence mask is compared with the generated fence mask,
and the F1-Score is computed based on the number of fence
and non-fence pixels that are predicted correctly. The differ-
ent sets of minimum/maximum threshold parameters for the
Canny edge detector and the corresponding F1-Scores are
shown in Table 1.

It can be seen that the F1-Score does not alter much for
the different sets of threshold parameters. Still, we select the
minimum and maximum thresholds as 100 and 200 since
this combination yields the maximum F1-Score, and these
are also used to report all the future results.

Table 1 F1-Score for different Canny thresholds

Min threshold 200 100 100 100 100

Max threshold 500 500 400 300 200

F1-Score 0.954 0.958 0.957 0.956 0.959

4.2 Results on regular fence images

Figure 3 shows the qualitative performance of the proposed
image de-fencing network on a sample test set consisting of
regular fence structures.

The first row of the figure represents the input image, the
second row represents the output of the fencemask generator,
while the last row represents the output of the image recov-
ery network. Visually, it can be observed that the generated
images after inpainting are of high quality. In all cases, the
de-fenced images are able to successfully remove the fence
texture andproduce realistic de-fenced results.Use of cGAN-
based image de-fencing has twofold benefits: (i) Firstly, due
to the powerful generalization capability of generative neu-
ral networks, high-quality image de-fencing results can be
obtained if trained with a sufficiently large amount of data,
and (ii) secondly, it is highly time efficient. We observe that
the twogenerators used in our de-fencing approachhave aver-
age response times of 24 and 27 milliseconds, respectively.
Thus, the de-fencing of an input fenced image can be com-
pleted in only about 51 milliseconds.

4.3 Results on challenging real-world images

To evaluate the effectiveness of our approach in handling
complex irregular, or occluded fence structures, we consider
the test sets Test-1, Test-2, and Test-3, as explained before.
Samples images from the Test-1 set are shown in Fig. 4a,
while few samples from test sets Test-2 and Test-3 are shown
in Figs. 5a and 6a, respectively. The output of the fence mask
generator corresponding to each image in Figs. 4a, 5a, and
6a is shown in Figs. 4b, 5b, and 6b, while the final de-fenced
outputs provided by the image recovery network are shown
in Figs. 4c, 5c, and 6c.

It can be seen that the de-fenced images generated by the
recovery network for each of the three challenging scenarios
are visually quite appealing. It can also be concluded from the
results that the synthetic data sets constructed by our team are
appropriate enough to train a model to perform satisfactorily
on any real-world fenced image.

Fig. 3 Qualitative results of the proposed approach, a input, b generated mask, and c de-fenced image
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Fig. 4 Sample de-fenced results on Test-1 images

Fig. 5 Sample de-fenced results on Test-2 images

Fig. 6 Sample de-fenced results on Test-3 images

4.4 Comparison with existing de-fencing techniques

To verify the efficacy of our image de-fencing approach,
we perform both qualitative and quantitative comparative
analysis of our work with five other existing image de-
fencing approaches, namely [1,6–9]. Apart from these, we
also compare the results of our work with two other deep
learning-based approaches [13,44]. While [13] introduces
the popular pix2pixGAN that is trained using adversarial loss
and L1 loss, the work in [44] proposes a deep network that
behaves as an image processing operator to carry out tasks
such as image smoothing, photographic style transfer, and
non-local de-hazing. Both these networks have demonstrated
strong effectiveness in solving various image-to-image trans-
lation tasks and have thus been used in the comparative study.
For the work of [6], 30 random fence pixels are manually
selected from each input image, and next, theMATLAB code
of this work shared by the authors in [45] has been used to
generate the de-fenced results. Qualitative results obtained
from the different approaches are shown in Fig. 7. In this
figure, the first row shows a set of input fenced images used
during testing, while each of the other rows (except the last
one) represents the output de-fenced images corresponding
to the input images as given by the different approaches used
in the comparative study. Proper citations to each method are

Fig. 7 Qualitative results of image de-fencing approaches

specified on the left side of the corresponding row. The final
row represents the de-fenced results of our work.

It can be observed that the proposed method outperforms
each of the other approaches used in the comparative study
in terms of the visual quality of generated images. Although
the performance of the proposed method on the tiger face
image (shown in the third column of the last row) does not
appear to be satisfactory, a careful observation reveals that
only the shadow of the fence exists on the de-fenced image,
whereas the actual fence has been properly removed through
de-fencing.

The approaches in [1,6,7] are non-machine learning-based
and are dependent on several user-defined parameters and
thresholds, due to which these cannot perform robustly
against varying input conditions, e.g., non-regular fence
structures. As can also be seen from the second, third, and
fourth rows in Fig. 7, these methods are unable to remove the
fence structures effectively from all the input images. The
approach of [1] has the worst overall performance, since it
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Table 2 Quantitative results of
image de-fencing approaches

Quantitative metric De-fencing algorithm

[1] [6] [7] [8] [9] [13] [44] Ours

MOS 2.96 2.82 2.76 3.24 3.76 4.12 3.94 4.34

SSIM 0.39 0.27 0.57 0.78 0.81 0.83 0.80 0.87

LPIPS 0.43 0.44 0.41 0.28 0.24 0.21 0.25 0.17

performs fence detection by finding regular lattice structures
in an image, and hence, it fails once images with irregular
fence patterns are provided. Additionally, here inpainting is
done with the assumption that the foreground, i.e., the fence
structure, is more regular than the background, and hence, its
performance degrades if the image background is textured.
The methods in [6,7] require user intervention to manually
select a set of fence pixels or texel (i.e., the smallest repeating
structure) in the input image, and hence, practical applica-
tion of these methods is limited. The de-fencing approach in
[8] performs fence segmentation based on the histogram of
gradient features with the unrealistic assumption of uniform
background, and as shown in Fig. 7, it fails to perform well,
if the background is textured, or if certain edge-like objects
are present in the background. Due to the use of only MSE
loss during training, the inpainting network described in [9]
fails to retain detailed texture-level information present in the
images and hence provides unsatisfactory de-fenced results.
The pix2pix GAN [13] directly generates the de-fenced out-
put from the input image without any intermediate fence
mask detection stage and shows a reasonably good perfor-
mance. However, due to skipping the mask estimation stage,
it sometimes fails to eliminate each and every fence structure
present in the input image, as can be seen from the last col-
umn of the seventh row in Fig. 7. Similarly, for [44], traces of
fence structures are found to be present in the output images
(refer to the second-last row of Fig. 7), and hence, this is
also not an effective de-fencing method. The LPIPSmetric is
computed from the internal activation of a VGG-16 network,
and its value is closer to human-level perceptual judgments
compared to other feature-based metrics. Unlike MOS and
SSIM, a lower value of the LPIPS metric indicates a better
match between two images.

It can be seen from the table that our approach outperforms
the existing de-fencing techniques in terms of each of the
three quantitative metrics used in the study. All the above
results and discussions emphasize the effectiveness of our
work over the previous de-fencing techniques.

5 Conclusions and future work

We explore the applicability of conditional generative adver-
sarial networks (cGANs) for image de-fencing. The proposed

approachmakes use of two networks: a fencemask generator
network and an image recovery network. Results on a set of
test images with varying fence patterns show that in addition
to being significantly time efficient, our method outperforms
each of the existing image de-fencing techniques in terms of
the visual quality of generated images as well as in terms of
three metrics: MOS, SSIM, and LPIPS.

Our work will also serve as a baseline approach for
deep neural network-based image de-fencing, and future
researchers can use the extensive data set created by our team
to come up with further improved models. Improving the
efficiency of the de-fencing process and robustly handling
videos with high frame rate may be considered as future
scopes of work. This can be achieved through simplification
of the cGAN architecture, and/or proposing improved loss
functions, and needs to be further studied. Our approach can
also be suitably extended to perform other popular image-
to-image translation tasks like image de-hazing, de-noising,
etc.
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