JAISCR, 2020, Vol. 10, No. 4, pp. 287 — 298

§ sciendo

10.2478/jaiscr-2020-0019

A NOVEL DRIFT DETECTION ALGORITHM BASED ON
FEATURES’ IMPORTANCE ANALYSIS IN A DATA
STREAMS ENVIRONMENT

Piotr Duda'"*, Krzysztof Przybyszewski?, Lipo Wang 3

' Department of Computer Engineering, Czestochowa University of Technology,
Czestochowa, Poland

2Information Technology Institute, University of Social Sciences, 90-113 Eddz
and Clark University Worcester, MA 01610, USA

3Nanyang Technological University,
School of Electrical and Electronic Engineering, Singapore

*E-mail: piotr.duda@pcz.pl

Submitted: 5th November 2019; Accepted: 18th May 2020

Abstract

The training set consists of many features that influence the classifier in different degrees.
Choosing the most important features and rejecting those that do not carry relevant in-
formation is of great importance to the operating of the learned model. In the case of
data streams, the importance of the features may additionally change over time. Such
changes affect the performance of the classifier but can also be an important indicator
of occurring concept-drift. In this work, we propose a new algorithm for data streams
classification, called Random Forest with Features Importance (RFFI), which uses the
measure of features importance as a drift detector. The RFFT algorithm implements solu-
tions inspired by the Random Forest algorithm to the data stream scenarios. The proposed
algorithm combines the ability of ensemble methods for handling slow changes in a data
stream with a new method for detecting concept drift occurrence. The work contains an
experimental analysis of the proposed algorithm, carried out on synthetic and real data.

Keywords: data stream mining, random forest, features importance

1 Introduction

The crucial stage in creating machine learning
models is to gather a training set that reflects the
considered issue in the best possible way. On the
other hand, the nature of many real-world problems
changes over time. As a result, it is not possible
to access in one moment the data corresponding to
all possible scenarios, and in consequence to pre-
pare one model, able to handle every change. This
problem has become particularly important in re-

cent years as the number of collected data has in-
creased. Therefore, the researchers paid special at-
tention to a field of artificial intelligence called data
streams mining (DSM) [1-13]. In the data stream
scenario, instead of the static training set, we as-
sume that the data come to the system continuously,
one after the other. The DSM is focused on models
that can adapt to changes in incoming data. More-
over, these algorithms should minimize two addi-
tional criteria: the number of data stored in a sys-
tem and learning time. The model must be able to

288

Piotr Duda, Krzysztof Przybyszewski, Lipo Wang

provide the output at any time, and the resources
used by the model should be strictly limited. The
algorithms of DSM have found many applications,
e.g. in network traffic analysis [14], financial data
analysis [15], or credit card fraud detection [16].
Recently, the possibilities of combining stream pro-
cessing methods with deep learning techniques are
being explored [13,17].

One of the most popular techniques for data
stream mining are ensemble algorithms [18,19]. In
the classic approach, their main idea is to combine
the outputs of models built only on a part of data.
This allows for achieving better results with respect
to a single component. A simple modification of a
classic ensemble algorithm allows us to effectively
adapt the model to the changes observed in incom-
ing data. Training new components on chunks of
recent data can keep the model up-to-date. The ap-
propriate criterion for including a new component
into the ensemble is an important factor that affects
the performance of the model. This issue is cur-
rently the subject of many studies [20-23].

A non-stationarity phenomenon in the context
of data streams is called a concept-drift. In the liter-
ature two types of concept-drifts are distinguished:
virtual, when changes in the distribution of data
do not affect the decision boundaries, and the real,
when the decision boundaries are changed. There
are a few approaches that allow updating the algo-
rithms to operate in a new environment. One of
them is the passive approach [24, 25]. It is based
on the continuous adaptation of the model to cur-
rent data, it is used, inter alia, in ensemble algo-
rithms. Another method, the so-called active ap-
proach, is based on the permanent monitoring of
the stream itself and to indicate in which moment
the concept-drift took place. The methods that indi-
cate the moments of significant change in data dis-
tribution are called drift detectors (DDs). In this ap-
proach, the model is updated only if DD signalizes
that the concept-drift occurred.

The most popular techniques for creating en-
sembles of classifiers are bagging and random
forests (RF). These methods allow the creation of
many different models from one training set. For
this purpose, they use the bootstrap samples tech-
nique. This method consists in generating sev-
eral subsets by sampling with replacement from the
training set. The idea of bagging is to learn inde-

pendent models based on these subsets. The ran-
dom forests algorithm also uses bootstrap samples,
but additionally, different features are excluded in
different subsets. It should be noted that decision
trees are used as weak classifiers in the RF algo-
rithm. The adaptation of these algorithms to work
in the case of data streams requires some modifica-
tions due to the need for minimizing the time for
processing available data.

The motives mentioned above inspired us to
propose a new algorithm for data streams classifi-
cation using the RF method. Our algorithm com-
bines the ability of ensemble methods for handling
slow changes in a data stream (passive reacting)
with a new method, based on FI, developed herein
to detecting (active reacting) concept drift occur-
rence. Developed methods potentially can be ap-
plied to monitor various industrial processes, see
e.g. [26-31].

The rest of the paper consists of the following
sections. Section 2 presents the main trends in the
area of ensemble classifiers, random forest, and fea-
tures importance. In Section 3, the descriptions of
the RF algorithm and the method of computing FI
are shown. The proposed ensemble algorithm and
new drift detector are presented in Section 4. Sec-
tion 5 depicts results obtained in simulations per-
formed on synthetic and real data. The article ends
with the conclusions presented in Section 6.

2 Related works

In this Section, we recall the most significant
and the most recent papers about ensemble meth-
ods, features importance, and drift detectors.

Ensemble methods are popular techniques of
data mining in a static environment. They owe their
popularity to the possibility of using them to solve
many real-world problems, see e.g. [32]. The most
significant features that distinguish various ensem-
ble methods are the method of creating new com-
ponents and the methods for aggregating outputs.
However, their adaptation to operate in the data
stream scenario also requires important modifica-
tions, in particular, a special approach to data pre-
processing.

In the Streaming Ensemble Algorithm (SEA)
[18] the authors proposed to create the new clas-

A NOVEL DRIFT DETECTION ALGORITHM BASED ON ...

289

sifier based on chunks of data (subsequently gath-
ered from the stream and forgotten after process-
ing). To decide about classifying a new instance,
a major voting strategy was applied. In [33] the
authors proposed the Accuracy Weighted Ensemble
(AWE) algorithm, which is an improvement of the
SEA algorithm by weighting the power of a vote of
each component according to its accuracy. Addi-
tionally, the authors proved that the decision made
by the ensemble will always be at least as good as
made by a single classifier. The resampling method
inspired by AdaBoost was proposed in the Learn++
algorithm [34], originally in a static environment.
Additionally, the authors proposed a new way to
establish the weights for the base classifiers. This
idea was adapted to the data stream scenario in [35].
In [22] the authors proposed a method to include
newly create components only if it ensures increas-
ing the accuracy not only for a current chunk of data
but also for a whole data stream. In [23] a new
weighting strategy was proposed, assuming that the
weak learners are decision trees. Instead of assign-
ing a weight to the whole tree, the authors propose
to establish weights in the leaves. The online ver-
sion of Bagging and Boosting was proposed in [19],
and this approach was extended in [36]. For more
recent information about ensemble algorithms, the
reader is referred to [37] and [38].

In the paper [39], the author presents a pro-
cedure of random forest in a static environment,
by introducing randomness both on a training set
and on a feature set. This idea was tailored to the
data stream scenario in several ways. The Dynamic
Streaming Random Forest (DSRF) was proposed
in [40]. In this approach, after the initial phase of
the subsequently generating a finite number of trees,
the algorithm update statistics defining thresholds
for decision trees construction. Then the algorithm
update forest with a fixed percentage of the trees. In
the DSRF algorithm, the entropy of incoming data
is measured for drift detecting. If the drift is de-
tected, all the parameters of the algorithm are re-
set to initial values, and the algorithm replaces a
specific number of trees in the forest, which num-
ber depends on the value of measured entropy. Its
ideas are extended in the paper [41]. In [42] the au-
thors propose the Adaptive Random Forests algo-
rithm, which combines classical random forest pro-
cedure with Hoeffding’s decision trees [43]. To re-
act to changes in data stream, a procedure based on

the ADWIN algorithm [44] and the Page-Hinkley
test [45] is applied.

As a consequence of the model training based
on nonstationary data, the significance of particular
features can change over time. Such type of drift
is called contextual concept drift [46], or feature
drift [47]. In [48] the authors adopt the off-line
evaluating feature importance procedure to oper-
ate in the on-line scenario with classification mod-
els. They proposed two models based on a mean
decrease in Gini impurity and a mean decrease in
accuracy, respectively. In [49] the authors investi-
gate the statistical properties of feature importance
measure to propose a novel algorithm called Rein-
forcement learning trees. The method called Iter-
ative Subset Selection was proposed in [50]. This
method, first ranking the features, and then iter-
atively selecting the best features from the rank-
ing. More about feature selection on the static and
streaming environments can be found in [51, 52],
and [53].

In literature, there exist many drift detecting
methods. One of the most popular DD is the
CUSUM algorithm [45]. It is based on tracing a
performance measure (e.g., the accuracy of classi-
fier). If this measure in the consecutive steps ex-
ceeds a fixed threshold, then the cumulative sum
starts to grow. If it is higher than a certain thresh-
old, then the algorithm indicates concept-drift. The
Page-Hinkley test examines differences between
current observations and means of previously an-
alyzed data in a similar way to the CUSUM algo-
rithm. The DDM [54] (Drift Detection Method) al-
gorithm treats data from a stream as Bernoulli tri-
als (assigning them values of 0 or 1 depending on
whether they were correctly classified by the cur-
rent model). The final decision is based on a test
that takes into account the means and standard de-
viations of the previous trials. It was enhanced to
deal with abrupt concept drift as the EDDM algo-
rithm [55]. The Adwin algorithm [44] is based on
a sliding window. It searches the point on current
windows to obtain two sub-windows with signifi-
cantly different means values. The decision is taken
on a base of the Hoeffding’s bound. Moreover, as
drift detectors, different methods of tracing mov-
ing averages can be used. One of the most popular
is GMADM (geometric moving average detecting
method) [56].

290

Piotr Duda, Krzysztof Przybyszewski, Lipo Wang

3 The formalisms

Let us consider a training set D =
{(Xl,Yl), (Xz,Yz), RN (Xn,Yn)}, where X,‘ is a d-
dimensional feature vector and ¥; € Y = {1,...,l}
is a class label, fori=1,...,n. From the classic ma-
chine learning point of view, the task is to create the
mapping f: X — Y, where X = f| X fo X --- X fq,
and f; corresponds to a single feature, for j =
1,....d.

In a case of ensemble models, the mapping f
consists of many so-called, weak classifiers 4;, for
i=1,...,T, where T is the size of the ensemble.
The decision about predicted class, for vector x, is
indicated by the majority voting

$=f(x)=

argmax|card({h;(x) =cli=1,...,T})], (1)

ceY

where card(A) denotes the cardinality of the set A.

In the random forest algorithm, the ideas of bag-
ging [57] and random subspaces [58] are combined
to create a family of classifiers. Based on the train-
ing set D, a new (smaller) training sets are created
by sampling with replacement. New weak classi-
fiers are trained on those newly created training sets
but restricted only to some subspace of feature.

The different features have different impor-
tances. We can say that the i-th feature is unim-
portant if

P(fa(x) =y) = P(fa\5(x) =), Q)

for every x and y, where f4 is a mapping from
the set A C X into the set Y, f4 : A — Y. From
the other side, we say that the feature is important
if P(fx(x) =y) # P(fx\s,(x) =). To measure a
level of feature importance is not a trivial task. In
particular, the following procedure can be applied
(see [39])

1. Calculate the outputs for every tree based on the
testing set (B).

2. For each of the features separately

3. Perform the permutation of the considered fea-
ture values based on the test set.

4. Calculate the outputs for every tree based on the
changed testing set (B)

5. Set the value of feature importance as the differ-
ence between accuracy obtained on the original
and permuted test set, divided by the standard
deviation of the outputs.

By applying such an approach, the accuracy is
calculated on two different sets for which marginal
distributions are identical. This idea, in the next
Section, will be extended to deal with data streams.

4 Random Forest with Feature Im-
portance Drift Detector

In this Section, the proposed method of adap-
tation of random forest to stream data is de-
scribed. It uses a chunk-based approach, popular
pre-processing method. Let say we have stream
od data S = {(X;,Y1),(X2,Y2),..., }, and data come
to the system continuously one after the other. In
the chunk-based approach, we try to gather a fixed
number of data. After obtaining the first n data from
the stream (chunk B), one can call out a standard
RF algorithm which generates M trees. In the next
step, a new chunk of data (B;), t = 1,2,..., is gath-
ered. Before creating a new component, a current
chunk of data is used to assess a formerly estab-
lished ensemble (such procedure is called sequen-
tial evaluation). Aside from computing an accuracy,
we can also use this chunk of data to obtain the val-
ues of features’ importance. We can assume that ev-
ery particular chunk of data is a set of independent
random variables. Let f; be the RF after process-
ing t chunks, t = 1,2, ..., then values of the function
¢ comparing predictions with actual values are also
random variables defined as

1, if fi(X;) =Y
o) =4 I A
07 if ft(Xl) ?é Yi)
for X; € B;,i=1,2,...,card(B,+1). Then the accu-
racy of the classifier given by the following formula

L o(X)

X€EB 11
card(B;+1)

is a mean of random variables taking values from a
binomial distribution.

3)

Acc(Biy1) = 4)

Comparing values of accuracy in the original
(By+1) and permuted (B/_) training sets we can de-
fine values of feature importance

VI = Acc(Byy1) —Acc(B],),)

A NOVEL DRIFT DETECTION ALGORITHM BASED ON ...

291

forj=1,...,d.

The initial values of FI (VI9) are computed
based on chunk By. Every next value of FI will be
computed on unseen testing set B,;;. The idea of
the proposed drift detection method is to compare,
new values of VI;, with the previously obtained.
The significance of the changes is tested by appli-
cation of the Hoeffding’s bound [59]

R2Inl/a

0
VI —VI; < —

(0)
where R is a range of considered random variable
(in this particular case equal 2), and « is a fixed
parameter. If inequality (6) is satisfied, then any
changes are not made in the ensemble. New trees
can be trained on B, 1, to add them to the ensem-
ble. The number of additional trees, equal to M, is
fixed by the user. In the other case, we replace the
forest by a new one trained on the current chunk of
data and replace VIJO. values by the lastly obtained.

In this paper, we will examine three different
strategies for computing VI; values.

FP - Fixed Permutation. In this approach, one per-
mutation is used for every feature and every
chunk of data during the whole data stream pro-
cessing.

SP - Single Permutation. In this approach, one per-
mutation is used for every feature, but with every
chunk of data, a new permutation is chosen.

MP - Multiple Permutations. The specific choice of
permutation can result in different values of fea-
ture importance. In this approach, we will aver-
age results obtained by many permutations. This
approach allows as to obtain more robust results,
however, the number of considered permutations
is a bottleneck in terms of the speed of coming
data.

The proposed algorithm is called RFFI (Ran-
dom Forest with Features Importance), and its
pseudo-code is given below.

Algorithm 1. The RFFI algorithm

Data: Data stream S in a form of data
chunks By, B1, B, ...; Number of
initial trees My, Number of
addiitional trees M

Result: Ensemble of classifiers

t=0;

Take the first chunk B; from the stream ;

Train Random Forest on B; (M trees);

Compute VI]Q on By by the equation (5),

for j =1,2,...,d;

while new data chunks are available do

t=t+1;

Take next chunk B; from the stream ;

Compute VI; on B; by the equation

(5), for j =1,2,....d;

Compute differences VI]Q — V1I; for

ji=1,....d;

Choose feature F' which maximize the

computed differences;

if inequality (6) is not satisfied for

feature F' then

VI) = VI

Train new Random Forest on B;

(M) trees);

else

Do not make any changes;

Add new M random trees, trained

on By, to the forest;

end

end

S Experimental results

In this Section, the results of the simulation ex-
periments are presented. Even though many pa-
rameters can have an important influence on the
RFFI algorithm performance, because of the lack
of space, the experiments are focused on reacting
on different concept-drift types. The issue of de-
termining the permutation of the values for a given
feature is a key issue for the speed of learning of
the ensemble. It is worth noting that accuracy can
be computed in a parallel way on a new data chunk
and its permutations. On the other hand, different
permutations can result in a different output of the
drift detector. In order to evaluate the repeatability

292

Piotr Duda, Krzysztof Przybyszewski, Lipo Wang

of the FI values, synthetic data was generated us-
ing the Random Tree Generator implemented in the
MOA software [60]. The data were described by
25 numerical features and one of a five-class label.
The first chunk of stream, containing 2000 data el-
ements, was used to train the RFFI algorithm. The
second one, obtained from the same stream (with-
out concept-drift), was used to compute FI. The val-
ues obtained by SP, FP, and MP methods (see Sec-
tion 4), were computed 124 times independently.
The results for one feature, in the form of boxplot,
are presented in Figure 1. The values of MP are the
results of averaging 25 samples.

One can see that the widest variety of values
is in the case of the FP method. The remaining
methods seem to provide similar values. The MP
method gives slightly more stable outputs, but at the
expense of an increasing number of computations,
it seems to be the worse choice for data stream pro-
cessing.

In the following subsections, the SP method is
applied to investigate various types of concept-drift.

0.020

o0 O

0.018

[+]
(+]
0.016 8 8
0.014
0.012
0.010
[+]
sp MP

0.008

FP

Figure 1. FI values, after 124 iterations, computed
by FP (Fixed Permutation), SP (Single
Permutations) and MP (Multiple Permutations)
methods.

5.1 Abrupt concept drift

The Random Tree Generator was applied to
generate 100000 data. The first 50000 was taken
from the first concept and the rest of the data from
the second one. Both concepts have 25 features, and
each element was assigned to one of two classes.
The maximal depths of the trees (to generating data)
were set for considered concepts as 20 and 15, re-
spectively. In the first experiment, the performance
of the RFFI algorithm was compared with differ-
ent Random Forest-based algorithms, in particu-

lar, the Adaptive Random Forest (ARF) algorithm
equipped with various drift detection methods. In
the simulations, the following DD methods, de-
scribed in Section 2 were used: Adwin, CUSUM,
DDM, EDDM, GMADM, and no-change (NoCh).
Those algorithms use VFDT as a weak classifier.
The number of components in the RFFI algorithm
was set to 10, M = 0, and the level of confidence
for the drift detector was equal to oo = 0.9. The ID3
algorithm was applied as the weak classifier. The
results obtained after each 1000 data elements are
presented in Figure 2.

80
75
70{ &%
65
60
55

501

45

0 20000 40000 60000 80000 100000

—=- ARF-Adwin e ARF-EDDM ARF-NoCh
—-- ARF-CuSum - ARF-GMA —— RF-FI

ARF-DDM

Figure 2. The accuracies (in percent) for ARF
algorithm with various DD and RFFI, computed
after every 1000 data elements on the synthetic
dataset with abrupt concept drift.

One can see that most of the considered algo-
rithms give similar results. This should not come
as a surprise due to the fact that all algorithms are
based on the same approach (RF). However, it is
worth noticing that, the RFFI algorithm detects the
change of concept at the earliest. It reacts just like
the first chunk of data from the new concept came.
All the other DDs require more data.

To compare with different state-of-the-art data
streams classifiers, the results were computed for
the following algorithms:

Oza algorithm with 10 components and VFEDT
as weak classifier [Oza-HT-10]

— Ogza algorithm with 50 components and VFDT
as weak classifier [Oza-HT-50]

Oza algorithm with 10 components and VFDT
as weak classifier and ADWIN [Oza-B-10]

VEDT algorithm with entropy as impurity mea-

A NOVEL DRIFT DETECTION ALGORITHM BASED ON ...

293

sure and confidence level of equal to & = 0.05
[HT-E-0.05]

— VFDT algorithm with entropy as impurity mea-
sure and confidence level of equal to & = 0.01
[HT-E-0.01]

— VFEDT algorithm with Gini index as impurity
measure and confidence level of equal to § =
0.05 [HT-G-0.05]

— VEDT algorithm with Gini index as impurity
measure and confidence level of equal to & =
0.01 [HT-G-0.01]

The results are depicted in Figure 3. One can
see that RFFI turned out to be better than most of
the other algorithms. Only the accuracy of Oza-B-
10 was better than RFFI at the end of the stream.
This is due to the type of the used weak classifier.
Oza-B-10 uses the VFDT algorithm, which allows
training components during stream processing. In
the case of the proposed algorithm, the static com-
ponents were used. However, it is worth noticing
that the proposed DD reacts to the change earlier
than other algorithms.

90 -

80 4

704 ¢

60

50 4

0 20000 40000 60000 80000 100000

wmsm WT-E-0[05 wasae HT-G-0.01 === 0za-HT-50
—-:= HT-E-0.01 ----- NB Oza-B-10
HT-G-0.05 Oza-HT-10 —— RF-FI

Figure 3. The accuracies (in percent) for RFFI and
state of the art algorithms, computed after every
1000 data elements on the synthetic dataset with

abrupt concept drift.

5.2 Recurring concept drift

The abilities of the proposed algorithm to react
to the recurring concept-drift were compared with
the same algorithms as in subsection 5.1. Also the
data was generated as in the previous Section. The
only change was the number of concept changes.
For an initial 50,000 data, they were generated from

one concept. Then, data from two different con-
cepts began to be appended to the stream, alter-
nately, each in a package of 2000 elements. Ulti-
mately, the stream contains 100000 elements. The
comparisons with other random forest-based and
stare-of-the-art algorithms are presented in Figures
4 and 5, respectively.

80 -

70 A

604 /

50 A

40 A

0 20000 40000 60000 80000 100000

—-—- ARF-Adwin - ARF-EDDM ARF-NoCh
—.= ARF-CUSUM e ARF-GMA —— RF-FI

ARF-DDM

Figure 4. The accuracies (in percent) for ARF
algorithm with various DD and RFFI, computed
after every 1000 data elements on the synthetic
dataset with recurring concept drift.

80 1 AN ik ghalt
o A VTR
T K MOl

F X6 4%

70 A

604

T

mE
50 ,) ¥
3
40 ¥
0 20000 40000 60000 80000 100000
—-= HT-E-0.05 == HT-G-0.01 --- Oza-HT-50
—-= HT-E-0.01 == NB 0za-B-10
HT-G-0.05 0za-HT-10 —— RF-FI

Figure 5. The accuracies (in percent) for RFFI and
state-of-the-art algorithms, computed after every
1000 data elements on the synthetic dataset with

recurring concept drift.

On a background of the ARF-based algorithm,
it is clearly seen that the type of change and its fre-
quency did not allow any of the considered drift de-
tectors to indicate the moment of drift correctly. All
algorithms re-create the same components for one
concept. The use of static trees instead of VFDT
allowed to achieve better accuracy of the proposed
method. However, this does not change the fact that

294

Piotr Duda, Krzysztof Przybyszewski, Lipo Wang

all these methods cannot cope with the detection of
rapidly changing abrupt drifts. Comparison with
other classifiers shows that they also have a prob-
lem with analyzing such frequently changing data.

5.3 Incremental concept drift

To illustrate the performance of algorithms on
data with slow incremental changes in the concept,
the Hyperplane Generator from the MOA software
was applied. The data consist of 25 features, and 10
of them were subject to concept-drift. The magni-
tude of changes after each data element was set to
0.02 and the probability of reversing the direction
of changes was set to 0.1.

Compared to the algorithms in subsection 5.1,
only the setting of RFFI was changed. Basing only
on the drift detector does not bring satisfactory re-
sults in the case of such changes in the distribution.
For efficient operation, it is necessary to use the
passive property of ensemble algorithms. For this
purpose, each time when the drift was not detected,
four new components, generated from the last ar-
rived data, were attached to the forest (M = 4).
Other parameters remained unchanged. The results
obtained by RFFI and ARF based algorithms are
presented in Figure 6.

80

159

70 A

65 4

60

0 20000 40000 60000 80000 100000

—=-- ARF-Adwin -+ ARF-EDDM ARF-NoCh
=—-= ARF-CuSum <= ARF-GMA —— RF-FI

ARF-DDM

Figure 6. The accuracies (in percent) for ARF
algorithm with various DD and RFFI, computed
after every 1000 data elements on the synthetic
dataset with incremental concept drift.

The results are similar in all methods. This
shows that DDs do not play a key role. The com-
parison with the other classifiers is presented in Fig-
ure 7.

90

85 1
80
75
70 1

651

60 1

T T T T T T
0 20000 40000 60000 80000 100000

v [HISEAD.05 wvees HT-G-0.01 === 0za-HT-50
== HT-E-0.01 =:e=- NB Oza-B-10

HT-G-0.05 0za-HT-10 —— RF-FI

Figure 7. The accuracies (in percent) for RFFI and
state-of-the-art algorithms, computed after every
1000 data elements on the synthetic dataset with

incremental concept drift.

One can see that only the Oza-B-10 algorithm
outperforms the others. It is a consequence appli-
cation of the Adwin algorithm. The application of
sliding windows seems to be especially beneficial
in the case of such changes.

5.4 Real-world data

To perform simulation on real-world data, the
popular benchmark dataset, called electricity, was
applied [54]. The data contains eight features and
belongs to one of two classes. The number of data is
equal to 45312. The obtained results after process-
ing data chunks, each consisting of 1000 elements,
are depicted in Figure 8. The RFFI algorithm was
applied with the same values of parameters as in
subsection 5.3.

a5

90 1

8519

80 1

0 10000 20000 30000 40000
=== 0ZA-10 HT-E-0.05 — RF-FI |
== QZA-B-10 =+ ARF-Adwin

Figure 8. The accuracies (in percent) for RFFI and
state-of-the-art algorithms, computed after every
2000 data elements on the real-world dataset.

A NOVEL DRIFT DETECTION ALGORITHM BASED ON ...

295

In the following experiment, the performance of
the RFFI algorithm is compared with the best oper-
ating algorithm from the previous subsection, i.e.
0OZA —10, OZA—B—10, HT —E —0.05, ARF —
CUSUM. The actual moments of the concept-drift
occurrence are not known in the case of real data.
As the prequential evaluation was used, during the
learning process the algorithms obtain various ac-
curacies for the subsequent data-chunks. The pro-
posed algorithm allows for achieving the best result,
93.9, of all algorithms. However, one can see that
the most stable accuracy was provided by the AFT-
Adwin, which is probably due to the use of sliding
windows. None of the data chunk-based approaches
have given better results.

The aggregated values of accuracy and stan-
dard deviations obtained after processing the whole
stream, and the maximal values of accuracies are
depicted in Table 1.

Table 1. Average accuracies (Aa) and standard
deviations (Sd), in percents, and the maximum
value obtained by the algorithms on real dataset

Algorithm Aa Sd | max
Oza-10 82.5 | 625|914
Oza-B-10 | 84.28 | 4.89 | 91.7
HT-E-0.05 | 82.54 | 47 | 92
ARF-Adwin | 88.8 | 2.22 | 93.5
RFFI 85.37 | 5.79 | 93.9

The presented results demonstrate that the RFFI
algorithm can be effectively used to analyze real
data.

6 Conclusions

In this article, we proposed a new algorithm for
classification in the data stream scenario. Our pro-
posal is based on the random forest algorithm. To
enable the algorithm to adapt to changes in the en-
vironment, two approaches were used: the mecha-
nism of incorporating newly learned trees into the
ensemble and an innovative drift detector. By com-
bining both these techniques, the algorithm can op-
erate in environments of different types of non-
stationarity. The proposed drift detector works no
worse than other commonly used methods. Be-
sides, when catching changes, it provides informa-

tion about which feature (or features) has the most
significant impact on the detected drift.

As part of further work, we will improve the
drift detector to enhance its work in a rapidly chang-
ing environment. In the presented version detector
operates on data chunks. In the future, we will try
to develop its fully on-line version.

References

[1] P. Duda, M. Jaworski, L. Pietruczuk, and
L. Rutkowski, A novel application of Hoeffding’s
inequality to decision trees construction for data
streams, in Neural Networks (IJCNN), 2014 In-
ternational Joint Conference on. IEEE, 2014, pp.
3324-3330.

[2] L. Rutkowski, L. Pietruczuk, P. Duda, and M. Ja-
worski, Decision trees for mining data streams
based on the McDiarmid’s bound, IEEE Transac-
tions on Knowledge and Data Engineering, vol. 25,
no. 6, pp. 1272-1279, 2013.

[3] L. Rutkowski, M. Jaworski, L. Pietruczuk, and
P. Duda, Decision trees for mining data streams
based on the Gaussian approximation, IEEE Trans-
actions on Knowledge and Data Engineering,
vol. 26, no. 1, pp. 108-119, 2014.

[4] L. Rutkowski, M. Jaworski, L. Pietruczuk, and
P. Duda, The CART decision tree for mining data
streams, Information Sciences, vol. 266, pp. 1-15,
2014.

[5] L. Pietruczuk, L. Rutkowski, M. Jaworski, and
P. Duda, The parzen kernel approach to learning
in non-stationary environment, in Neural Networks
(IICNN), 2014 International Joint Conference on.
IEEE, 2014, pp. 3319-3323.

[6] L. Rutkowski, M. Jaworski, L. Pietruczuk, and
P. Duda, A new method for data stream mining
based on the misclassification error, IEEE Trans-
actions on Neural Networks and Learning Systems,
vol. 26, no. 5, pp. 1048-1059, 2015.

[7] P. Duda, M. Jaworski, and L. Rutkowski, Knowl-
edge discovery in data streams with the orthogo-
nal series-based generalized regression neural net-
works, Information Sciences,, 2017.

[8] M. Jaworski, P. Duda, and L. Rutkowski, New
splitting criteria for decision trees in stationary data
streams, IEEE Transactions on Neural Networks
and Learning Systems, vol. PP, no. 99, pp. 1-14,
2017.

296

Piotr Duda, Krzysztof Przybyszewski, Lipo Wang

[9] M. Jaworski, P. Duda, L. Rutkowski, P. Najge-
bauer, and M. Pawlak, Heuristic regression func-
tion estimation methods for data streams with con-
cept drift, in Lecture Notes in Computer Science.
Springer, 2017, pp. 726-737.

[10] M.Jaworski, P. Duda, and L. Rutkowski, On apply-
ing the restricted boltzmann machine to active con-
cept drift detection, in Computational Intelligence
(SSCI), 2017 IEEE Symposium Series on. IEEE,
2017, pp. 1-8.

[11] M. Jaworski, Regression function and noise vari-
ance tracking methods for data streams with con-
cept drift, International Journal of Applied Math-
ematics and Computer Science, vol. 28, no. 3, pp.
559-567, 2018.

[12] P. Duda, M. Jaworski, and L. Rutkowski, Con-
vergent time-varying regression models for data
streams: Tracking concept drift by the recursive
parzen-based generalized regression neural net-
works, International Journal of Neural Systems,
vol. 28, no. 02, p. 1750048, 2018.

[13] P. Duda, M. Jaworski, A. Cader, and L. Wang,
On training deep neural networks using a stream-
ing approach, Journal of Artificial Intelligence and
Soft Computing Research, vol. 10, no. 1, 2020.

[14] A.Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang,
Data streaming algorithms for estimating entropy
of network traffic, in ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 34, no. 1. ACM,
2006, pp. 145-156.

[15] C. Phua, V. Lee, K. Smith, and R. Gayler, A com-
prehensive survey of data mining-based fraud de-
tection research, arXiv preprint arXiv:1009.6119,
2010.

[16] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi,
and G. Bontempi, Credit card fraud detection: A
realistic modeling and a novel learning strategy,
IEEE transactions on neural networks and learn-
ing systems, vol. 29, no. 8, p. 3784-3797, August
2018.

[17] S. Disabato and M. Roveri, Learning convolu-
tional neural networks in presence of concept drift,
in 2019 International Joint Conference on Neural
Networks (IICNN), 2019, pp. 1-8.

[18] W. N. Street and Y. Kim, A streaming ensem-
ble algorithm (sea) for large-scale classification, in
Proceedings of the seventh ACM SIGKDD inter-
national conference on Knowledge discovery and
data mining. ACM, 2001, pp. 377-382.

[19] N. C. Oza, Online bagging and boosting, in Sys-
tems, man and cybernetics, 2005 IEEE interna-
tional conference on, vol. 3. IEEE, 2005, pp. 2340-
2345.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

P. Duda, On ensemble components selection in
data streams scenario with gradual concept-drift, in
International Conference on Artificial Intelligence
and Soft Computing. Springer, 2018, pp. 311-320.

P. Duda, M. Jaworski, and L. Rutkowski, On en-
semble components selection in data streams sce-
nario with reoccurring concept-drift, in 2017 IEEE
Symposium Series on Computational Intelligence
(SSCI). IEEE, 2017, pp. 1-7.

L. Pietruczuk, L. Rutkowski, M. Jaworski, and
P. Duda, A method for automatic adjustment of en-
semble size in stream data mining, in Neural Net-
works (IJCNN), 2016 International Joint Confer-
ence on. IEEE, 2016, pp. 9-15.

L. Pietruczuk, L. Rutkowski, M. Jaworski, and
P. Duda, How to adjust an ensemble size in stream

data mining? Information Sciences, vol. 381, pp.
46-54, 2017.

G. Ditzler, M. Roveri, C. Alippi, and R. Polikar,
Learning in nonstationary environments: A sur-
vey, IEEE Computational Intelligence Magazine,
vol. 10, no. 4, pp. 12-25, 2015.

P. Duda, L. Rutkowski, M. Jaworski, and
D. Rutkowska, On the Parzen kernel-based prob-
ability density function learning procedures over
time-varying streaming data with applications to
pattern classification, IEEE transactions on cyber-
netics, vol 50, no. 4, pp. 1683-1696, 2020.

E. Rafajlowicz, W. Rafajlowicz, Testing (non-
) linearity of distributed-parameter systems from a
video sequence, Asian Journal of Control, Vol. 12,
no. 2, pp. 146-158, 2010.

E. Rafajlowicz, H. Pawlak-Kruczek, W. Rafajlow-
icz, Statistical Classifier with Ordered Decisions as
an Image Based Controller with Application to Gas
Burners , Springer, Lecture Notes in Artificial In-
telligence, vol. 8467, pp. 586-597, 2014.

E. Rafajlowicz, W. Rafajlowicz, Iterative learning
in optimal control of linear dynamic processes , In-
ternational Journal Of Control, vol. 91, no. 7, pp.
1522-1540, 2018.

P. Jurewicz, W. Rafajlowicz, J. Reiner, et al., Simu-
lations for Tuning a Laser Power Control System of
the Cladding Process , Lecture Notes in Computer
Science, vol. 9842, pp. 218-229, Springer, 2016.

E. Rafajlowicz, W. Rafajlowicz, Iterative Learning
in Repetitive Optimal Control of Linear Dynamic
Processes , 15th International Conference on Arti-
ficial Intelligence and Soft Computing (ICAISC),
2016, Springer, vol. 9692, pp. 705-717, 2016.

A NOVEL DRIFT DETECTION ALGORITHM BASED ON ...

297

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

E. Rafajlowicz, W. Rafajlowicz, Control of linear
extended nD systems with minimized sensitivity
to parameter uncertainties , Multidimensional Sys-
tems And Signal Processing, vol. 24, no. 4, pp.
637-656, 2013.

S. A. Ludwig, Applying a neural network ensemble
to intrusion detection , Journal of Artificial Intelli-
gence and Soft Computing Research, vol. 9, no. 3,
pp. 177-188, 2019.

H. Wang, W. Fan, P. S. Yu, and J. Han, Mining
concept-drifting data streams using ensemble clas-
sifiers, in Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery
and data mining. AcM, 2003, pp. 226-235.

R. Polikar, L. Upda, S. S. Upda, and V. Honavar,
Learn++: An incremental learning algorithm for
supervised neural networks, IEEE transactions on
systems, man, and cybernetics, part C (applications
and reviews), vol. 31, no. 4, pp. 497-508, 2001.

R. Elwell and R. Polikar, Incremental learning of
concept drift in nonstationary environments, IEEE
Transactions on Neural Networks, vol. 22, no. 10,
pp- 1517-1531, 2011.

A. Beygelzimer, S. Kale, and H. Luo, Optimal and
adaptive algorithms for online boosting, in Pro-
ceedings of the 32nd International Conference on
Machine Learning (ICML-15), 2015, pp. 2323-
2331.

H. M. Gomes, J. P. Barddal, F. Enembreck, and
A. Bifet, A survey on ensemble learning for data
stream classification, ACM Computing Surveys
(CSUR), vol. 50, no. 2, p. 23, 2017.

B. Krawczyk, L. L. Minku, J. Gama, J. Ste-
fanowski, and M. Wozniak, Ensemble learning for
data stream analysis: A survey, Information Fu-
sion, vol. 37, pp. 132-156, 2017.

L. Breiman, Random forests, Machine learning,
vol. 45, no. 1, pp. 5-32, 2001.

H. Abdulsalam, D. B. Skillicorn, and P. Martin,
Classifying evolving data streams using dynamic
streaming random forests, in International Confer-
ence on Database and Expert Systems Applica-
tions. Springer, 2008, pp. 643-651.

H. Abdulsalam, P. Martin, and D. Skillicorn,
Streaming random forests, 2008.

H. M. Gomes, A. Bifet, J. Read, J. P. Bard-
dal, F. Enembreck, B. Ptharinger, G. Holmes, and
T. Abdessalem, Adaptive random forests for evolv-
ing data stream classification, Machine Learning,
vol. 106, no. 9-10, pp. 1469-1495, 2017.

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

P. Domingos and G. Hulten, Mining high-speed
data streams, in Proc. 6th ACM SIGKDD Internat.
Conf. on Knowledge Discovery and Data Mining,
2000, pp. 71-80.

A. Bifet and R. Gavalda, Adaptive learning from
evolving data streams, in International Symposium
on Intelligent Data Analysis. Springer, 2009, pp.
249-260.

E. S. Page, Continuous inspection schemes,
Biometrika, vol. 41, no. 1/2, pp. 100-115, 1954.

J. P. Barddal, H. M. Gomes, F. Enembreck, and
B. Pfahringer, A survey on feature drift adapta-
tion: Definition, benchmark, challenges and future
directions, Journal of Systems and Software, 07
2016.

H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, and L. Wan,
Heterogeneous ensemble for feature drifts in data
streams, in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2012, pp. 1-
12.

A. P. Cassidy and F. A. Deviney, Calculating fea-
ture importance in data streams with concept drift
using online random forest, in 2014 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE,
2014, pp. 23-28.

R. Zhu, D. Zeng, and M. R. Kosorok, Reinforce-
ment learning trees, Journal of the American Sta-
tistical Association, vol. 110, no. 512, pp. 1770-
1784, 2015.

L. Yuan, B. Pfahringer, and J. P. Barddal, Iterative
subset selection for feature drifting data streams, in
Proceedings of the 33rd Annual ACM Symposium
on Applied Computing. ACM, 2018, pp. 510-517.

L. C. Molina, L. Belanche, and A. Nebot, Feature
selection algorithms: A survey and experimental
evaluation, in 2002 IEEE International Conference
on Data Mining, 2002. Proceedings. IEEE, 2002,
pp- 306-313.

G. Ditzler, J. LaBarck, J. Ritchie, G. Rosen, and
R. Polikar, Extensions to online feature selection
using bagging and boosting, IEEE Transactions on
Neural Networks and Learning Systems, vol. 29,
no. 9, pp. 4504-4509, 2018.

J. P. Barddal, H. M. Gomes, F. Enembreck, and
B. Pfahringer, A survey on feature drift adapta-
tion: Definition, benchmark, challenges and future
directions, Journal of Systems and Software, 07
2016.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues,
Learning with drift detection, in Brazilian sympo-
sium on artificial intelligence. Springer, 2004, pp.
286-295.

298

Piotr Duda, Krzysztof Przybyszewski, Lipo Wang

Piotr Duda received the M.Sc. degree
in mathematics from the Department
of Mathematics, Physics, and Chem-
istry, University of Silesia, Katowice,
Poland, in 2009. He obtained the Ph.D.
degree and Sc.D. in computer science
from Czgstochowa University of Tech-
nology, Czestochowa, Poland in 2015
and 2019, respectively. His current re-
search interests include deep learning and data stream mining.

Krzysztof Przybyszewski is a profes-
sor at the University of Social Sciences
in £6dz. His adventure with applied
computer science began in the 1980s
with a simulation of non-quantum col-
lective processes (the subject of a Ph.D.
dissertation). At present, he is involved
in research and applications of various
artificial intelligence technologies and
soft computing methods in selected IT problems (in particu-
lar, in expert systems supporting the management of educa-
tion quality in universities - the use of fuzzy numbers and
sets). As a deputy dean at the University of Social Sciences,
he is the designer and organizer of the on-Computer Science
Faculty education program. He is the author of over 80 pub-
lications in the field of computer science and IT applications.

Dr. Lipo Wang received the Bach-
elor degree from National University
of Defense Technology (China) and
Ph.D. from Louisiana State University
(USA). His research interest is arti-
ficial intelligence/machine learning
with applications to communications,
image/video processing, biomedical
engineering, and data mining. He has
authored 320 papers, of which 110 are in journals. He has au-
thored 2 monographs and edited 20 books. His work has been
cited 7,800 times in Google Scholar. He was/will be keynote
speaker for 40 international conferences. He was President
of the Asia-Pacific Neural Network Assembly (APNNA) and
received the APNNA Excellent Service Award.

