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Abstract—Successive layers in convolutional neural networks 

(CNN) extract different features from input images. Applications of 
CNNs to detect abnormalities in the 2D images or 3D volumes of 
body organs have recently become popular. However, computer-
aided detection of diseases using deep CNN is challenging due to 
the absence of a large set of training medical images/scans and 
the relatively small and hard to detect abnormalities. In this paper, 
we propose a method for normalizing 3D volumetric scans using 
the intensity profile of the training samples. This aids the CNN by 
creating a higher contrast around the abnormal region of interest in the scan. We use the CQ500 head CT dataset to 
demonstrate the validity of our method for detecting different acute brain hemorrhages such as subarachnoid 
hemorrhage (SAH), intraparenchymal hemorrhage (IPH), subdural hematoma (SDH), and intraventricular hemorrhage 
(IVH). We compare the proposed method with a baseline, two variants of the 3D VGGNet architectures, Resnet, and 
show that the proposed method achieves significant improvement in classification performance. For binary 
classification, we achieved the best F1 score of 0.96 (normal vs SAH), 0.93 (normal vs IPH), 0.98 (normal vs SDH), and 
0.99 (normal vs IVH), and for four-class classification, we obtained an average F1 score of 0.77. Finally, we show a 
limitation of the proposed method while detecting varied abnormalities. The proposed method has applications for 
abnormality detection for different organs. 
 

Index Terms—3D CNN, medical image sensors, deconvolution visualization, computational complexity. 
 

 

I.  Introduction 

ONVOLUTIONAL  neural networks (CNN) have shown 
remarkable performance for applications in scene 

recognition [1], object detection [2], medical image sensors [3], 
[4], face recognition sensors [5] and wearable sensors [6], [7]. 
CNNs can automatically extract features from input images 
using convolution operations without explicit feature 
handcrafting [8]. Successive convolutional layers in the CNN 
learn precise features before the spatial scrambling performed 
by the fully connected layers. The initial convolutional layers 
learn low-level information. These generally include object 
edges, boundaries, curves, et cetera. As we move deeper into 
the CNN, the network learns more abstract features (or higher-
level information). The deeper layers in the CNN use the low-
level features learned by the initial layers to extract object 
shapes and specific object parts in the image [9]–[11].  With the 
advent of CNN models, initial efforts were made to perform 
classification in the 2D domain, by decomposing the 3D 
volume into 2D slices in the sagittal, coronal and axial planes 
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[12]–[14]. However, the conversion of 3D volumetric scans to 
2D images leads to the loss of information on the spatial 
context, organ appearance, and texture that are important in 
medical images. This prompted the adoption of 3D CNN based 
approaches that were earlier limited by their associated 
computational costs. The advances in graphical processing 
hardware capabilities have led to 3D CNN based approaches for 
segmentation [4], [15], [16] and detection of abnormalities on 
volumetric scans [17]–[20]. While most of the previous studies 
analyzing volumetric magnetic resonance imaging (MRI) or CT 
data have used varied machine learning approaches (including 
2D CNNs), multiple recent studies using 3D CNNs have been 
published. Traditional methods have involved selecting slices 
manually, manually locating the abnormalities, and extensive 
feature handcrafting before the samples are fed to the model 
[21]–[23], which introduces significant cost in terms of 
computation and manual effort. Traditional methods used to 
detect hemorrhage from volumetric CT and MRI data used 
support vector machines [24], Hopfield networks [25], and
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logistic classifiers [26]. These were usually applied to manually 
selected single image slices with known pathology. Therefore, 
although these classifiers often gave a satisfactory performance, 
they had little practical application in deployment. 
 Over the years, CNN variants have been used to detect and 
classify types of bleeding and CT heads. Standvoss et al. [27] 
use 3D CNN to detect cerebral microbleed in traumatic brain 
injury. In this work, the authors achieved 87% accuracy with 8 
layers VggNet like CNN architecture. Jnawali et al. [20] use 3D 
variants of GoogleNet and VggNet for the classification of CT 
brain hemorrhage. The study was carried out using a large 
40,000 3D CT heads.  By ensemble of three different 3D CNN 
architectures, the authors show the area under the curve (AUC) 
of 0.87.  In [28], a masked R-CNN architecture with 3D-
contracting and 2D expanding fully convolutional feature 
pyramid network was used to evaluate brain CT heads. Patel et 
al. [29] combined CNN and long short-term memory (LSTM) 
for intracranial hemorrhage (ICH) detection and obtained an 
AUC of 0.96 for the binary classification task. Cho et al. [30] 
constructed a cascaded CNN network. One network was used 
to detect if there is any bleeding and if there is any bleeding 
then the second network was used to the classification of 
hemorrhage for their types. Sato et al. [31] use a 3D 
autoencoder for detecting anomalies in CT heads in an 
unsupervised manner. 11 and 6 layers were used for 
convolutional and deconvolutional blocks respectively.  3D 
patches were extracted from the CT data for training and testing 
the network. Ker et al. [17] present a 3 layer 3D CNN network 
for brain hemorrhage detection. Authors use a thresholding 
technique for creating sharp edges and curves around the region 
of interest (ROI). They use a single thresholding point for all 
the images present in the dataset. Since there are large 
variations in the intensity profile of CT scans, using a single 
threshold point for all CT scans can result in the loss of 
important information.  Our current work is the extension of this 
work. We select different thresholding points for each CT 
scans. The detail about the procedure will be discussed in the 
materials and methods section. 
 Recently CNN based architectures have been proposed for 
detecting abnormalities in medical images derived from 
multiple imaging sensors [4], [12], [13], [18]–[20], [25], [32]–
[34]. Computed tomography (CT) is one of these medical 
imaging modalities to be the most commonly used device in 
emergencies for patients with a traumatic head injury, stroke, or 
increased intracranial pressure. This is due to their affordability 
which makes them widely available and their low acquisition 
time that is crucial for immediate diagnosis and neurosurgical 
intervention. Since timely diagnosis is detrimental to patient 
treatment outcomes, it becomes beneficial to deploy deep 
learning solutions for detecting and locating anomalous ROI in 
these settings. However, unlike the usual images that CNNs are 
applied on, the detection of anomalous ROI in head CT scans is 
not simply based on sharp edges or curves but texture and small 
intensity variations [35]. In fact, in most cases, the anomalous 
ROI and the background are almost indistinguishable because 
of the small variation in their intensities [36], [37]. Fig. 1 shows 
axial views of CT scan examples used in the experiments. The 
uniform white outer rim is the bone of the skull surrounded by 
dark grey tissue. The hemorrhage is depicted with grey patches 

that are irregular in shape and of varying sizes. This contrasts 
with the wide range of pixel intensities in even the head CT of 
a normal subject, whereby the skull bone represents the highest 
and the ventricles represent the lowest intensities, respectively. 
As a result, the application of successive convolutional layers 
leads to the dispersion of the small intensity variations around 
the ROI in the image and CNN starts focusing on the edges and 
the curves instead. Therefore, the CNN extracts features from 
areas where there are sharp intensity variations such as occipital 
bone, fornix, ventricle, et cetera that do not help in detecting the 
anomalous ROI. While this behavior is desirable in cat-dog 
images, but the same behavior is detrimental for head CT scans, 
since the anomalous ROI start disappearing during the 
convolution process [17].  
 In this paper, we develop a method to create sharp edges and 
curves around the anomalous ROI to facilitate the extraction of 
features by CNN.  Using this method, we classify the head CT 
scans in their appropriate classes such as Subarachnoid 
hemorrhage (SAH), Intraparenchymal hemorrhage (IPH), 
subdural hematoma (SDH), and intraventricular (IVH) 
hemorrhage. We made the following contributions in this paper: 
 1) We propose a feature enhancing method to create edges, 
curves, and shapes around abnormalities in CT head. We then 
present a shallow 3D CNN for the classification of Brain 
Haemorrhages. 
 2) Using a backtracking algorithm to visualize feature maps, 
we optimize the architecture of 3D VGGNet for the 
classification of head CT images using visual information 
through filters.   
 3) We compared the proposed shallow 3D CNN with 
traditional optimized 3D VGGNet and 3D ResNet for the 
classification of Brain Haemorrhages. The proposed shallow 
3D CNN requires fewer training epochs, fewer trainable 
parameters, and higher accuracy compared to 3D VGGNet and 
3D ResNet. 
 The rest of the paper is organized as follows: In Section II, 
we discuss the data collection and pre-processing, the proposed 
framework with a mathematical background, parameter 
settings, and the filter visualization method used in 
experiments. Experimental results, discussion, and comparative 
analysis are given in Section III. Finally, the paper concludes in 
section IV. 

II. MATERIALS AND METHODS 

A. Data Collection and preprocessing 

The dataset contains non-contrast CT brain images, 
downloaded from the CQ500 dataset [18]. The CQ500 dataset

Fig. 1. Axial slice view of the exemplary CT scan used in 
experiments. From left, Normal, subarachnoid hemorrhage 
(SAH), intraparenchymal hemorrhage (IPH), subdural hematoma 
(SDH), and intraventricular hemorrhage (IVH). 
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is a publicly available dataset collected from various imaging 
centers in India. There was no overlap between these centers, 
therefore, there was no chance for a duplicate dataset. We have 
taken all care to avoid any multiple visits of the same patient in 
the training, validation, and test dataset. Each scan carries a 
clinical report (provided by three radiologists) with them and 
we use this report as the gold standard. The dataset contains 491 
patient CT brain scans representing approximately 193,317 
slices. Each scan consists of 16–128 slices, depending on the 
CT scanner. Each scan was anonymized and manually checked 
by three radiologists to ensure ground truth. We downloaded 
222 normal, 134 IPH, 28 IVH, 53 SDH, and 60 SAH. The 
decision to label the abnormal samples was taken on a majority 
basis i.e. if two radiologists give the same label then the 
abnormal sample with the respective label was included. 
However, for a sample to be included as normal, all the 
radiologists had to label it as normal. These scans have a 
different number of image slices and slice thicknesses due to 
the variability in CT scan models and sensors scanning 
protocols. The dataset is in DICOM format and contains a lot 
of metadata. Since scans are usually collected from different 
scanners, these scans differ in terms of pixel size/thickness (i.e. 
slice spacing difference between different CT scans collected 
from different scanners). We use isomorphic resampling to 
make the slice spacing uniform. The pixel intensity outside the 
House field Unit (HU) bounds are set to be equal to zero. We 
use OpenCV [38] for image resizing in the XY direction using 
linear interpolation. Before feeding the scan to the 3D CNN, we 
make 28 slices per CT scan for the entire dataset. For 
resampling in the Z direction (to make 28 slices in each scan), 
we use a Scipy interpolation function with order 2 and ‘nearest’ 
mode. We use a nested cross-validation scheme with five-fold 
cross-validation. In each fold, the entire dataset is divided into 
training, validation, and test sets in the ratio of 70:15:15. Since 
the dataset is highly imbalanced, we balanced the dataset by 
augmentation. After splitting the data, the entire dataset is 
augmented by flipping the data around the vertical axis and 
rotating through angles , , , and  degrees. We 
took care that the augmented samples from the same subject 
were either in the train, validation or the test set and that there 
was no overlap.

B. Intensity Normalization and the Shallow 3D CNN
We hypothesized that by creating sharp edges, curves, and 

shapes around the anomalous ROI, the 3D CNN can start 
extracting features related to ROI instead of other regions of 
sharp intensity variations. Therefore, we propose a method to 
create some sharp edges and shape around the anomalous 
region of CT scans before feeding to the 3D CNN.  

Assuming that we plot the intensity profile for normal and 
SAH scans [39] in Fig. 2. Given a slice, x, in the SAH scan, the 
pixel  can have  number of the grey levels such as 

 and the SAH image contains total  number 
of pixels such as each  grey level contains  number of 
pixels. Let’s assume that the intensity profile of the SAH slice 
is divided into only two classes  and . We decide these 
classes such that class  C1 contains the grey levels related to 
abnormality and all other higher intensity grey levels while  
contains all those grey levels which are also common in the 

normal images. Let the allocated grey levels for these two 
classes be  and 

. Now the corresponding probabilities of these classes 
separated by a parameter  will be given by: 

. Here,  is the 
probability of the appearance of grey level  in the image. The 
envelope of normal image histogram is almost equal or greater 
than the envelope of SAH histogram till a point . After this 
point, both histograms start crossing each other. The class 
discussed above, we assume that it belongs to all grey levels 
below this   point. Now if we observe the histograms of both 
normal and SAH images, we can observe that the class  is a 
subset of the histogram of normal images till some value of . 
That means there is a strong relationship between the lower 
bounds of the normal image and the SAH image. We start 
increasing the lower bound in both normal and SAH images and 
set a point   where these bounds start crossing each other as 
shown in Fig. 2. We repeat this process for all the normal and 
SAH images and select a minimum value of  for all images. 
To get rid of unnecessary edges and information, we set another 
point called  for upper level. Finally, we processed both 
normal and SAH images as follows: 

 

 

 
We use a 3D convolutional visualization technique for 

searching optimal CNN architecture [40]. After an exhaustive 
search for the number of convolutional layers, number of filters 
in each layer (Detailed procedure will be discussed in the next 
section), we define a  3D CNN architecture as shown in Fig. 3 
and Table I. The definition of the 3D CNN architecture and 
procedure is summarized as follows:  

Step 1) We manually search  and  for entire train data 
and we use these values as a threshold and set all pixel 
intensities below   and above  equal to some constant value.  

Step 2) In Fig. 3, we define two 3D CNN model such as 1) 
We called baseline 3D CNN (B3DCNN) if the input data is 
without threshold (model within a red rectangular box in Fig. 
3), and 2)  We called shallow 3D CNN (S3DCNN) if the input  
data is with threshold by  and   (entire model within a blue 
rectangular box in Fig. 3.  

Step 3) We also use  and  to train a YOLO like network 

Fig. 2 Histogram plot of normal and abnormal CT scans. The 
intensity profile is plotted by gray and blue shade for normal 
and abnormal CT scan respectively. 
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(same architecture as B3DCNN). We use  and  as targeted 
output and originally processed (without thresholding) as the 
input data. 

Step 4) For the testing phase, the values of  and  was 
predicted using a pre-trained YOLO like network from step 3.  
We use these predicted   and  for intensity normalization of 
testing data. 

C. Optimizing 3D CNN architectures by visualizing 
layerwise filters  

We start with a simple 3  layer CNN network with 32, 64, 
and 128 filters at each layer followed by pooling layers and two 
fully connected layers. We look at the visual representation of 
the filters obtained using deconvolution visualization [40] in 
different layers of the VGGNet architecture (Fig. 4).  As 
expected, the filters in the first convolutional layer extract edges 
from the scan, the second layer extracts some curves and the 
third layer extracts some background information and edges. 
Keeping the VGGNet architecture in mind, we deepen the 
network by adding more layers to the architecture. We start 
increasing the number of layers from 2 layers with 32 filters 
each (with pooling) by adding 2 layers of 64 filters each with 
pooling and 2 layers of 128 filters with pooling and 2 layers of 
256 filters with pooling. By visual inspection of the last 
convolutional layer (with 256 filters), we observed that the 
filters can capture the features of the ROI. Therefore, we add 
more filters to this layer and increased the number of filters 
from 256 to 512. Upon adding further layers, we see that the 

ROI was not visible. We, therefore, obtained the two variants 
of 3D VGGNet CNN (VggNet1 and VGGNet2 architecture 
shown in Fig. 4 and Table I. The depth of VggNet1 and 
VggNet2 is same. The only difference is the number of filters 
in layer 1,2, and 3 (As shown in Table I). We also prepared a 
3D version of 18 layer ResNet (ResNet18) as shown in Table I. 
We use the 18 layer architecture from [41] with slight 
modification in kernel size at the first layer.  

D. Parameter Settings 

It has been observed that the performance of 3D CNN highly 
depends on the weight initialization methods, kernel size, 
pooling layer type, learning rate optimization, etc. The weights 
and biases for each layer are initialized using the normal 
distribution with mean 0.0 and standard deviation 1.0. In 3D-
CNN, the Maxpooling layer is added after each individual (for 
B3DCNN and S3DCNN) or after two convolution layers (two 
3D variants of VGGNet). Max-pooling reduces the 
dimensionality of the image by reducing the number of pixels 
in the output of the previous convolution layer. We use the max-
pooling layer with a 2x2 filter, and strides of 2 with no padding. 
Details are given in Table I. The loss function attempts to 
minimize by continuously updating the weights and the model 
during the training. We use SoftMax cross-entropy for 
calculating loss function and then the loss was optimized using 
Adam optimizer for VggNet1, VggNet2, B3DCNN, S3DCNN. 
We use learning rate 0.001, 0.002, 0.0001, and 0.0001 for  
training Resnet18, we use stochastic gradient descent (SGD)

Fig. 3. Proposed 3D CNN architecture for hemorrhage classification.  The network inside the red box is baseline 3DCNN (B3DCNN) while 
the entire framework inside the blue box is shallow 3DCNN (S3DCNN). 
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and we set the learning rate 0.001. 

E. Metrics 
Due to an imbalance in the number of normal and abnormal 

data samples, we use both accuracy and F1 score to evaluate 
and test the models [42]. We also use three other indices such 
as sensitivity, specificity, and recall given by [43]: 
 

 

 

 

 
 

Where, , ,  and  represent the true positive, true 
negative, false positive, and false negative respectively. 

Table I Network architectures details used in this study. 
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Fig. 5. A, B, C are the visual samples of Relu1, Relu2, and Relu3 of B3DCNN. Similarly, D, E, and F are the visual samples of Relu1, 
Relu2, and Relu3 of S3DCNN as described in Fig. 3. G is the middle slice of CT scan example (SAH in this case) without thresholding 
as input to B3DCNN and H is the middle slice of CT scan example with thresholding as input to S3DCNN used in visualization. 

Authorized licensed use limited to: Nanyang Technological University. Downloaded on December 30,2020 at 06:55:10 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3023471, IEEE Sensors
Journal

8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

III. RESULTS AND DISCUSSION 

 In this section, we present experimental results for the 
validation of the proposed approach.  The proposed S3DCNN 
is validated with binary classification and four class 
classification. We also tested S3DCNN for normal vs all 
abnormal. For each experiment, we compare the results with the 
baseline method B3DCNN. For better understanding and 
comparative analysis, we have also designed two 3D variants 
of VGGNet.  

In the first set of experiments, we test and validate the 
proposed S3DCNN for binary class classifications i.e. normal 
vs SAH, IPH, SDH, and IVH. The results for both S3DCNN 
and B3DCNN are shown in Table II. We conduct all the 
experiments on 50x50x28 image sizes. For the proposed 
S3DCNN, we achieve the best F1 score of 0.96 (p-value = 10-
2), 0.93 (p-value = 10-4), 0.98(p-value = 10-4), and 0.99(p-value 
10-3) for Normal vs SAH, IPH, SDH, and IVH respectively. In 
all cases, the proposed S3DCNN outperforms the B3DCNN. 
Let’s take a closer look at Fig. 5 to understand the reason behind 
the high performance of the proposed architecture. In Fig. 5, for 
a middle slice ‘G’ of the sample CT scan. ‘A’, ‘B’, and ‘C’, are 
the samples of the visualized filter (ReLU activation) for layer 
1, layer 2, and layer 3 respectively of the B3DCNN. ‘D’, ‘E’, 
and ‘F’, are the samples of the visualized filter (ReLU 
activation) for layer 1, layer 2, and layer 3 respectively of the 
S3DCNN. We use 3D deconvolution method for visualization 
of the different filters in the S3DCNN and B3DCNN. Using the 
proposed intensity normalization approach as discussed in 
Section II.B, S3DCNN generates edges, curves, and shapes 
around our ROI. We can observe that S3DCNN starts extracting 
features that are mostly associated with our ROI. On the other 
hand, in the baseline architecture, B3DCNN extracts feature 
from areas where there are sharp intensity variations such as 
occipital bone, fornix, ventricle, et cetera that do not help in 
detecting the ROI. Therefore, the proposed method S3DCNN 
facilitates the convolutional filters in extracting features from 
anomalous ROI. Since the proposed approach avoids extracting 
features from non-anomalous regions, it takes fewer epochs 
compared to the baseline approach. Therefore, the proposed 3D 
CNN not only outperforms the baseline in terms of 
classification but also converges in fewer epochs. 

Since direct performance comparison with the related work 
is not possible due to differences in datasets, pre-processing, 
and augmentation techniques, we compared our proposed 
approach with two variants of 3D VGGNet and 18 layer ResNet 
(Resnet18) using our processed data. The architectural details 
of the proposed 3D variants of VGGNet (3D VGGNet1 and 3D 
VGGNet2) and Resnet18 are as shown in Table I. We didn’t 
add more convolutional layers to the VGGNet variants, because 
further addition of layers in the 3D VGGNet led to a decline in 
the classification performance. We varied the number of filters 
in each layer and obtained the final architecture of 3D VGGNet 
by using accuracy and visual inspection of convolutional filters 
as discussed in Section II.  We trained the 3D VGGNet1, 3D 
VGGNet2, and Resnet18 for normal vs SAH, normal vs ICH, 
normal vs SDH, and normal vs IVH. The results are shown in 
Table II. For SAH and IVH cases, the proposed 3D VGGNet2 
outperforms the 3D VGGNet1. For IPH, 3D VGGNet1 shows 

very low sensitivity but high specificity in comparison to 3D 
VGGNet2 and also a low F1 score. For SDH, 3D VGGNet2 
gives a lower F1 score (by 17%,) and other indices (e.g. 
accuracy by 8%). The depth of both VGGNet and proposed 3D 
VGGNet2 is almost half. If we compare the results of 3D 
VGGNet1 and VGGNet2 with our proposed approach (Table 
I), we conclude that the proposed shallow 3D CNN giving a 
much higher performance in all cases. In terms of AUC, 
Rsnet18 performs better than B3DCNN, VggNet1, and 
VggNet2 for all cases. We also plotted the ROC curve for 
binary class classification for all four approaches i.e. B3DCNN, 
S3DCNN, VGGNet1, and VGGNet2 as shown in Fig. 6.  

We also test the performance of S3DCNN for the multi-class 
environment. We experimented for five class classifications i.e. 

Table II Binary classification results for 1) baseline method 
B3DCNN, proposed method S3DCN 2), 3D VGGNet, 3D VGGNet2 
and Resnet18. The third decimal point is rounded up that (1.00 is 
rounded value). 
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 SAH 

B3DCNN 0.91 0.93 0.94 0.92 0.92 0.96 
S3DCNN 0.95 1.00 1.00 0.96 0.96 0.98 
VggNet1 0.93 0.94 0.95 0.94 0.93 0.92 
VggNet2 0.93 0.92 0.93 0.94 0.94 0.96 
Resnet18 0.93 0.97 0.98 0.95 0.95 0.97 

IPH 

B3DCNN 0.82 0.95 0.88 0.85 0.90 0.94 
S3DCNN 0.97 0.94 0.89 0.93 0.95 0.97 
VggNet1 0.42 0.99 0.94 0.58 0.80 0.94 

VggNet2 0.89 0.95 0.90 0.90 0.93 0.96 
Resnet18 0.86 0.98 0.95 0.91 0.95 0.96 

SDH 

B3DCNN 0.77 0.94 0.68 0.72 0.91 0.95 

S3DCNN 0.98 1.00 0.98 0.98 1.00 0.99 
VggNet1 0.97 0.93 0.74 0.84 0.94 0.87 
VggNet2 0.91 0.93 0.73 0.81 0.92 0.96 

Resnet18 0.94 0.99 0.93 0.93 0.98 0.98 

IVH 

B3DCNN 0.97 0.87 0.96 0.96 0.95 0.98 

S3DCNN 1.00 0.85 0.97 0.99 0.97 0.99 
VggNet1 0.68 0.93 0.73 0.70 0.88 0.91 
VggNet2 0.89 0.96 0.79 0.84 0.95 0.98 

Resnet18 0.96 0.83 0.95 0.96 0.94 0.97 

Table III Five class classification results for baseline method 
B3DCNN and proposed method S3DCN 
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Overall B3DCNN 0.75 0.90 0.75 0.75 0.75 
S3DCNN 0.76 0.90 0.78 0.77 0.77 

 SAH B3DCNN 0.73 0.81 0.71 0.72 0.78 
S3DCNN 0.74 0.82 0.72 0.73 0.79 

IPH B3DCNN 0.42 0.95 0.68 0.52 0.86 
S3DCNN 0.53 0.98 0.81 0.64 0.90 

SDH B3DCNN 0.97 0.98 0.81 0.88 0.98 
S3DCNN 0.97 0.99 0.86 0.92 0.99 

IVH B3DCNN      
S3DCNN      
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normal vs. SAH vs. IPH vs. SDH.  The results are shown in 
Table III. In this experiment, the proposed approach is showing 
better performance for all cases compared to B3DCNN. The 
overall 0.77 (p-value = 10-2) F1 score is achieved for both using 
B3DCNN and S3DCNN. Both networks show poor results for 
individual IPH.  

In the final experiment, we combine all abnormal scans (i.e. 
SAH+SDH+ICH+IVH) as abnormal scans and perform 
experiments for normal vs abnormal classification. The results 
are shown in Table IV. Both B3DCNN and S3DCNN give 
promising results with accuracies around 0.96 (p-value = 10-4) 
and 0.97 (p-value = 10-5), whereas the accuracies for 3D 
VGGNet2 and 3D VGGNet1 are close to 0.91 (p-value = 10-3). 
In this case, Resnet18 was showing 0.97 acc. (p-value = 10-5). 
A similar trend is seen for other performance indices whereby 
both the B3DCNN and S3DCNN give similar performances 
that are much higher than their VGGNet counterparts. One 
interesting result is the similar performance of S3DCNN with 
the baseline B3DCNN which shows that the proposed 
technique does not improve the classification performance 
significantly when heterogeneous abnormalities are considered. 
We attribute this to the different intensities and volumes of the 
ROI in different types of brain hemorrhages that leads to a high 
variation in the values of  and  across the scans. Thus, the 
image normalization in the case of S3DCNN does not work as 

expected and there is no gain in classification performance. 
This is a limitation of the proposed method, whereby it needs to 
be trained on scans where the type of abnormality is similar 
across scans.   

A limitation of the present work is the small and imbalanced 
dataset that can cause overfitting in the model. This is a 
common problem with medical imaging datasets, and we 
prevented overfitting by introducing dropouts in the 
convolutional and early stopping during model training. We 
also use data augmentation techniques and the obtained 
performances are close to much bigger datasets. A second 
limitation of our work is that useful information may also be 
lost during the threshold if the threshold points are not selected 
properly. Therefore, great care needs to be taken when choosing 
the threshing point. Furthermore, for a large dataset, manual 

Fig. 6. ROC curve for binary class classifications (a)  S3DCNN and S3DCNN. (b) 3D VggNet 1 and VggNet2. 

Table IV Normal vs All Abnormal (SAH+IPH+SDH+IVH) 

Fig. 7. Some erroneous predictions from the proposed 
approach.  "A" was SAH and was predicted as Normal, "B" was 
Normal and was predicted as SAH, "C" was SDH but was 
predicted as Normal, and "D" was IVH and was predicted as 
IPH. 
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selection of threshold points can be a tedious and time-
consuming process.   Fig. 7 is showing some examples of 
failures using our proposed approach. In Fig. 7, "A" was SAH 
and was predicted as Normal, "B" was Normal and was 
predicted as SAH, "C" was SDH but was predicted as Normal, 
and "D" was IVH and was predicted as IPH. While our dataset 
of around 490 scans is comparable to some previous studies 
[17], [19], [44], it is much smaller than the ones used in [18], 
[20]. Jnawali et al. [20] used ensemble learning to detect brain 
hemorrhage by training three 3D CNNs on more than 40,000 
head CT scans. To reduce the class imbalance, the author used 
rotation, flipping and mirroring, etc. For binary classification, 
the author achieved an overall 0.78 F1 score. Chilamkurthy et 
al. [18] obtained more than 313,000 head CT scans for training 
and validating multiple deep learning algorithms for the 
detection of brain hemorrhages, skull fractures, midline shifts, 
and mass effects. On CQ 500 dataset, their algorithm achieved 
AUC of 0.942, 0.931, 0.973, and 0.957 for ICH, IVH, SDH, and 
SAH.   

IV. CONCLUSION 

In this paper, we presented a shallow 3D CNN for the 
classification of abnormal medical images. The proposed 
approach is validated by classifying head CT scans of normal 
and patients suffering from different types of brain hemorrhage 
obtained from the CQ500 dataset.  We use the proposed shallow 
B3DCNN network with our intensity normalization technique 
and variants of the deep 3D VGGNet. We show that the network 
with the proposed normalizing method S3DCNN outperforms 
the baseline shallow B3DCNN, and both the B3DCNN and the 
S3DCNN outperform the deeper 3D VGGNet variants. Our 
experiments validate our hypothesis that successive 
convolutional layers lead to the dispersion of the small intensity 
variations caused by the abnormalities in medical images and 
thus shallow 3D CNNs can outperform their deeper variants for 
medical image classification tasks. In the future, we will extend 
the current work for a deeper model and high-resolution 
images.  Our proposed method fails for very minor 
hemorrhages.  
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