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The Elman neural network (ElmanNN) is well-known for its capability of processing
dynamic information, which has led to successful applications in stock forecasting. In this
paper, we introduce direct input-to-output connections (DIOCs) into the EImanNN and
show that the proposed Elman neural network with DIOCs (Elman-DIOCs) significantly
out-performs the original EImanNN without such DIOCs. Four different global stock
indices, i.e., the Shanghai Stock Exchange (SSE) Composite Index, the Korea Stock Price
Index (KOSPI), the Nikkei 225 Index (Nikkei225), and the Standard & Poor’s 500 Index
(SPX), are used to demonstrate the affecacy of the Elman-DIOCs in time-series prediction.
We systematically evaluate 8 models, depending whether or not there are hidden layer
biases, whether or not there are output layer biases, and whether or not there are DIOCs.
The experimental results show that DIOCs lead to much better prediction accuracy, while
requiring fewer than a half of the hidden neurons. Take the SPX index, for example - the
root mean squared error (RMSE) and the mean absolute error (MAE) of the Elman-DIOCs
are improved by 44.2% and 41.1%, respectively, compared to the ElmanNN, and 65.6%
and 60.8%, respectively, compared to the multi-layer perceptron (MLP). We argue that
(1) DIOCs can always help to improve accuracy, while reducing network complexity and
computational burden, as long as the problem at hand (either regression or classification)
has linear components, and (2) most real-world applications contain linear components.
Therefore DIOCs will be almost always beneficial in any types of neural networks for clas-
sification or regression. We also point out that in rare cases where the problem at hand is
entirely nonlinear, DIOCs should not be used.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Artificial neural networks [38,39] are capable of learning from sample data to approximate any nonlinear functions with
arbitrary precision [3,6,28,42,47]. In particular, the Elman recurrent neural network (ElmanNN) [11], with feedback loops in
its hidden layer, has shown great promise in time-series analysis. For example, considering speech signals time-series,
Achanta and Gangashetty [1] studied deep ElmanNNs for statistical parametric speech synthesis. They showed that deep
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ElmanNNs were better suited for acoustic modeling compared to deep belief neural networks and performed competitively
compared to deep long short-term memory (LSTM) neural networks, gated recurrent units (GRU), and simplified LSTMs. Ao
and Palade [2] employed EImanNNs for temporal modeling of microarray continuous time- series data. The prediction results
on simulated non-stationary datasets and real biological datasets outperformed other existing approaches. Jibin Wang [36]
added convolutional layers at the input of an ElImanNN and used this novel network to differentiate various kinds of life-
threatening arrhythmias. Experimental results showed that this approach led to higher accuracy compared to a variety of
other methods, such as the LSTM, the convolutional neural network (CNN), a combination of the CNN and the LSTM, discrete
state Markov models, random forests, and multilayer perceptron (MLP) neural networks. Krishnan et al. [17] collected EEG
signals and processed the signals using the hyper analytic wavelet transform with adaptive noise cancellation. They pre-
sented ElmanNN-based data protection, cryptography and authentication.

To carry out multi-step electricity price prediction, Rani and Victoire [30] proposed an enhanced hybrid framework, inte-
grating the refined variational mode decomposition and the group search optimization algorithm for training the EImanNN.
The variational mode decomposition method was optimized using complement particle swarm optimization, so as to
decompose the non-stationary pricing data into an optimum number of intrinsic mode functions. They showed that the
ElmanNN out-performed other approaches. Kolanowski et al. [16] presented a navigation system based on an ElmanNN
and data fusion from different sensors. The data samples to train the ElmanNN were collected during the test flight of a
Quadrocopter. Hongtao Li et al. [19] used an EImanNN optimized by a cuckoo search algorithm to forecast air cargos. The
air cargo time-series from three different airports in China were adopted to validate the performance of the proposed
approach and the empirical results showed that the proposed method was superior to all other benchmark models in terms
of robustness and accuracy. Jalal et al. [15] used the ElmanNN and the NARX Neural Network for forecasting call volumes in
call centers. The results could help determine the optimal number of agents necessary to reduce waiting time for customers,
maximize profit, and minimize costs. The experimental results indicated that the proposed method was more efficient in
forecasting call volumes compared to other methods.

Jiangyu Zheng [49] applied an EImanNN in forecasting opening prices of the Shanghai Stock Exchange. Binghui Wu and
Tingting Duan used the ElImanNN to predict stock [43] and gold future markets [44]. As discussed above, there are many dif-
ferent types of time-series for which the ElmanNN can enjoy useful applications. In this paper, we shall propose an improved
ElmanNN and select stock market indexes as test examples.

Prediction of stock time-series has always been a hot and yet difficult research topic. Stocks play an important role in the
financial industry. Stock market fluctuations will affect not only the economic system, but also the vital interests of investors.
Therefore, it has become a major exploration direction to predict stock prices with a reasonable accuracy. With the rapid
development in artificial intelligence, several techniques, such as neural networks, expert systems|10,4], and support vector
machines|[25,45,24,22,50], have gradually become mainstream models for stock prediction.

Tai-liang Chen and Feng-yu Chen [9] proposed a traditional pattern recognition model, based on PIP bull-flag pattern
matching and floating-weighted bull-flag templates, to recognize bull-flag stock patterns. A bull-flag pattern is a turning
point of a stock price. Their experimental results indicated that the proposed model outperformed the rough set theory
(RST), genetic algorithms (GAs) and a hybrid model, as well as earlier work on traditional pattern recognition models
[35]. Mu-Yen Chen and Bo-Tsuen Chen [8] proposed a novel fuzzy time-series model to forecast stock market prices. The
proposed model was verified using experimental datasets from various stock indexes, and results were compared against
existing fuzzy time-series models, three different SVM models, and three modern economic models. Compared to other cur-
rent forecasting methods, their proposed models provided improved prediction accuracy and their results were verified by
paired two-tailed t-tests, although no comparisons were made with neural networks.

Xiaoxiang Guo et al. [13] proposed a Delay Parameterized Method (DPM) for low dimensional mid-term chaotic time-
series forecasting. They used particle swarm optimization and genetic algorithms [20,34,41] to obtain optimal parameters
for prediction. They applied their approach to forecasting stock K-line maps, among other time-series, and obtained high
quality predictions. This method would need to assume that stock prices have chaotic properties, which is yet to be rigor-
ously proven.

Shekhar Gupta and Lipo Wang [14] utilized MLP neural networks to forecast future index prices of the NASDAQ 100 and
the Standard & Poor 500. The effects of training the network with the most recent data, together with gradually sub-sampled
past index data, were studied. They were able to obtain significantly higher returns compared to earlier work. Moews et al.
[23] used an MLP neural network that employed step-wise linear regressions with exponential smoothing in the preparatory
feature engineering for stock directional change prediction. During their experiments, the number of hidden layers in the
neural network and the number of neurons in each layer were carefully adjusted to achieve the best accuracy. Laboissiere
et al. [18] forecasted daily maximum and minimum stock prices of three Brazilian power distribution companies using an
MLP neural network, together with attribute selection by correlation analysis. Ramezanian et al. [29] applied an integrated
framework consisting of genetic network programming along with an MLP neural network to forecast the stock return. The
results derived from 9 stocks in the Tehran Stock Exchange Market were better compared to the ARMA-GARCH model.

Yu Fang et al. [12] improved stock market prediction using wavelet neural networks (WNN) [33] and reported signifi-
cantly better accuracies compared to existing approaches to stock market prediction. The prediction system was tested using
Shenzhen Composite Index data. Mahmud and Meesad [21] proposed a novel approach for time-series stock market price
prediction using a recurrent neuro-fuzzy system with momentum. Four top-listed stocks from the Dhaka stock exchange
were applied to demonstrate the model strength.
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Ren et al. [31] systematically evaluated effects of direct input-to-output connections (DIOCs) and neuron biases on the
random vector functional link (RVFL) [26], a single hidden layer neural network in which the hidden neuron parameters
are randomly chosen and the output weights are determined by pseudo-inverse or Moore-Penrose generalized inverse,
for power load forecasting. The experimental results showed that the DIOCs had significant impact on forecasting accuracy
and the results were statistically significant. DIOCs were also been added to the MLP neural networks trained with back-
propagation (BP) and were shown to improve forecasting accuracy for short-term load [27] and other time-series [40].
Inspired by the above work, we introduce direct input-to-output connections (DIOCs) into the Elman neural network
(EImanNN) in this paper. Four stock indices, i.e., the SSE, the KOSPI, the Nikkei225, and the SPX, are used to compare the
prediction performance of both the proposed ElImanNN-DIOCs and the original ElmanNN without DIOCs.

2. The proposed method

The Elman neural network is a recurrent network introduced by Elman in 1990 [11] and is composed of four layers, i.e.,
the input layer, the hidden layer, the undertaking layer, and the output layer, as shown in Fig. 1. The undertaking layer can be
considered as a delay operator, which is used to store the output of the hidden layer. The input of the hidden layer is deter-
mined by both the input layer and the output of the undertaking layer.

X = fwDu, + wx + p"), (1)

X9 = x4, (2)

where x, is the output vector of the hidden layer, w(V) is the weight matrix from the input layer to the hidden layer, w? is the
weight matrix from the hidden layer to the undertaking layer, u; is the network input vector, x' is the output vector of the
undertaking layer, b™ is the hidden neuron bias vector, t represents the sampling time, and

1
T 14ex

f&)

A linear transfer function is selected for the output layer neurons. The corresponding output is as follows

(3)

y, = W(B)Xt + b(O), (4)

where w® is the weight matrix from the hidden layer to the output layer, b is the output neuron bias vector, and y, denotes
the output vector of the network.

We propose an Elman model that has direct connections from the input layer to the output layer, as shown in Fig. 2. Thus
the output vector, corresponding to Fig. 2, is as follows,

Ve = w®x, + pue + b, (5)

where f represents the direct weight matrix from the input layer to the output layer.

Undertaking layer

Fig. 1. The Elman neural network structure.
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Undertaking layer

Fig. 2. Our proposed Elman neural network structure with direct input-to-output connections (DIOCs).

Compared with the standard Elman network shown in Fig.1, the input-to-output mapping of the proposed network
shown in Fig. 2 adds a linear component. The elements of the weight matrix from the input layer to the output layer are first
randomly assigned in the range of [0,1], and the proposed network utilizes the BP algorithm to optimize weights in the net-
work. The network error function is defined as,

N
=5 (0 ; (6)

t=1

N\—‘

where o, is the target (objective) output at time t,y, is the actual (predicted) output at time ¢, and N is the number of data
points. In the following sections, effects of the direct input-to-output connections will be evaluated.

3. Experiment settings
3.1. Eight models

In order to compare the performance of the proposed network and obtain the best configuration, similar to how Ren et al.
[31] discussed the RVFL, we systematically consider the presence and the absence of the hidden layer biases (the biases of
the hidden neurons, termed “input layer biases” in [31]), the presence and the absence of the output layer biases (the biases
of the output neurons, termed “hidden layer biases” in [31]), and the presence and the absence of the direct input-to-output
connections (DIOCs), resulting in 8 models as shown in Table 1. M1, M3, M5, and M7 are networks with DIOCs.

3.2. Data selection and preprocessing

The daily closing index values of the Shanghai Stock Exchange (SSE) Composite Index, the Korea Stock Price Index (KOSPI),
the Nikkei 225 Index (Nikkei225), and the Standard & Poor’s 500 Index (SPX) [46] are selected as experimental datasets. The
total number of data points in every dataset is 2000. The SSE data is selected from 10/12/2005 up to 31/12/2013, KOSPI from

Table 1
The 8 Elman neural network models with different configurations.
Model Hidden layer biases Output layer biases DIOCs

M1 v v v
M2 v v x
M3 i x v
M4 Vv X X
M5 x v v
M6 X 4 X
M7 X x Vv
M8 X X X
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13/12/2005 up to 30/12/2013, Nikkei225 from 09/11/2005 up to 30/12/2013, and SPX from 20/01/2006 to 31/12/2013, as is
shown in Table 2.
We normalize data into [0, 1] using the following equation:
S— smin
= Smin_ 7
Smax - smin ( )

where S is the raw data, and S,;;; and S« represent the minimum and maximum values in each data set, respectively.

S=

3.3. Training and prediction

Each dataset is divided into a training set and a testing set, i.e., the first 75% for training and the rest 25% for testing.
Future closing prices are predicted using past closing prices. The normalized financial time-series is
Y1:Y2s s Vs Yasts - - -»Ye ) i wWhich t represents the current moment. The predicted value y,_, is

yt+h :p(yt7yt—]7"'7yt—n+l)7 (8)

where h is the forecasting step size, p stands for the forecasting model, and n is the time delay that represents a window of
past values used for prediction.

Constructed dataset samples are exhibited in Table 3. The input vector of the forecasting model contains the closing prices
in n consecutive days, and the output is the predicted closing price after h trading days.

3.4. Performance measures

To assess the performance of a given model, we use the normalized root mean squared error (RMSE), the mean absolute
error (MAE), and the mean absolute percentage error (MAPE) given as follows:

-l N
MAE:NZ\ot—ytI, 9)
t=1
-l N
RMSE = NZ(ot—yt)z, (10)
t=1
and
1o, —y,
MAPE = 100 x — § |- 2, 11
N o a1

MAE, RMSE, and MAPE are used to measure the deviation between the predicted values and the target (true) values. The
prediction performance is better when the values of these evaluation criteria are smaller. MAPE is often the recommended
criterion for industrial practitioners.

4. Results and analyses
4.1. Preliminary results for the eight models

In order to compare the predictive performance of the eight models, extensive experiments are carried out with the SSE,
KOSPI, Nikkei225, and SPX indices. The maximum training iterations is 3000 and the training error threshold is 0.0001. The
optimal values for h and n as defined in Table 3 are 1 and 5, respectively. Table 4 shows examples of average RMSE of pre-
diction results in 20 experiments. As shown in Table 4, the networks with DIOCs, i.e., M1, M3, M5, and M7 defined in Table 1,
obtain lower RMSE (higher predictive accuracy) for the four financial indices, compared with other models without DIOCs,
i.e., M2, M4, M6, and M8 defined in Table 1. Hence the DIOCs improve the models’ predictive performance. Fig. 3 depicts the
predicted results by M3 vs. the actual data for the SSE, KOSPI, Nikkei225, and SPX indices. The curves of the actual data and
the predicted data are close.

4.2. The Wilcoxon signed-rank test

From Table 3, it is clearly seen that the DIOCs have favorable effects on network performance. In this sub-section, we use
the Wilcoxon signed-rank test to verify the statistical significance of the performance differences in the 8 models, as Ren
et al. [31] analyzed the RVFL.

In order to investigate whether the hidden layer biases have a significant effect on the network performance, the Wil-
coxon signed-rank test is applied by comparing M1, M2, M3, and M4, with M5, M6, M7, and M8. The p values are recorded
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Table 2
Datasets used in our studies.
Index Duration Data points
SSE 10/12/2005—31/12/2013 2000
KOSPI 13/12/2005—-30/12/2013 2000
Nikkei225 09/11/2005—30/12/2013 2000
SPX 20/01/2006—31/12/2013 2000
Table 3
Constructed input-output data samples.
Output Input
Ynsh Y1, Y2, 2 ¥n-1:¥n
Ynihi1 Y2:¥3:- - Yn: Y1
Ve Ye-h-n>Yt-h-ns1:- - Ye-n-2:Ye-n-1
Ve Ye-h-n+1:Ye-h-n+2s - Ye-h-1:Ye-h

Table 4
Average testing RMSE for the 8 models defined in Table 1.
M1 M2 M3 M4 M5 M6 M7 M8
SSE 30.90 39.93 29.54 39.75 27.89 30.40 27.50 29.01
KOSPI 18.59 21.82 17.52 2039 17.65 18.34 17.56 17.94
Nikkei225 187.99 232.58 183.61 234.47 184.72 199.80 181.20 187.11
SPX 23.58 36.83 19.98 39.78 14.48 31.20 13.10 29.59

in Table 5 with the alternative hypothesis being ‘two-sided’ and p < 0.05, which is highlighted in bold and indicates a sta-
tistically significant difference. Table 5 shows that, with some cases, the hidden layer biases make a difference on the net-
work performance, and therefore, the hidden layer biases should be retained in the network.

The Wilcoxon signed-rank test is also utilized to evaluate the impact of output layer biases by comparing M1, M2, M5,
and M6, with M3, M4, M7, and M8. The p values are tabulated in Table 6 with the alternative hypothesis being ‘two sided’
and p < 0.05, which is highlighted in bold and indicates a statistically significant difference. The results reveal that the pre-
dicting performance differences are insignificant except for M6 vs. M8 on Nikkei225. Therefore, the output layer biases may
be omitted in the network.

The outcomes of M1 vs. M2, M3 vs. M4, M5 vs. M6, and M7 vs. M8 reflect the effects of the DIOCs. From p values presented
in Table 7, it can be seen that the DIOCs affect the performance of network significantly, due to the fact that all the p values
are less than 0.05, as highlighted in bold.

Based on the above-mentioned observations, M3 has the overall best performance and the DIOCs improve the forecasting
performance of the network. In addition, the hidden layer biases are beneficial and should be retained, while it does not mat-
ter whether the output layer biases are kept or not. These optimal network configurations, in terms of DIOCs, the hidden
layer biases, and the output biases, are consistent with previous studies on the RVFL for time-series prediction [31], the RVFL
for classification [48], and the MLP-DIOCs for time-series prediction [27,40] (A neural network equivalent to the RVFL with-
out DIOCs was first proposed by Schmidt et al. [32] in 1992, where the hidden neuron parameters are randomly chosen and
the output weights are determined by pseudo-inverse or Moore-Penrose generalized inverse).

4.3. Comparisons with the MLP

The proposed M3 is compared with the standard EImanNN (also known as M4 in Table 1) and the MLP [37] on the SSE,
KOSPI, Nikkei225, and SPX datasets. The total length of data selected are the same for different methods, the data size of
training set and testing set are also the same, as described in Sections 3.2 and 3.3. The optimal parameters are obtained
by repeated experiments. Table 8 presents the optimal numbers for different methods. Table 8 shows that much more hid-
den layer neurons are required in the original ElmanNN without DIOCs and the MLP [37] to achieve the best performance,
compared with the proposed ElmanNN-DIOCs (M3).

Fig. 4 depicts the results of predicted values of testing sets for the four stock indices and shows that our proposed
ElmanNN-DIOCs (M3) is the best, compared with the MLP [37] and the original ElmanNN without DIOCs.

The forecasting performance of different methods are assessed by RMSE, MAE, and MAPE. In Table 9, each experiment was
run 20 times independently and the average is shown. We can see that for all the financial time-series, the predicted results
of the proposed ElmanNN-DIOCs (M3) are significantly better than the original ElmanNN without DIOCs and the MLP [37].
For example, for the SPX index, the RMSE and MAE of M3 are decreased by 44.2% and 41.1%, respectively, compared with the
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Fig. 3. The training and testing results by model M3 defined in Table 1 vs. the actual data for (a) the Shanghai Stock Exchange (SSE) Composite Index from
10/12/2005 up to 31/12/2013, (b) the Korea Stock Price Index (KOSPI) from 13/12/2005 up to 30/12/2013, (c) the Nikkei 225 Index (Nikkei225) from 09/11/
2005 up to 30/12/2013, and (d) the Standard & Poor’s 500 Index (SPX) from 20/01/2006 to 31/12/2013 [46]. The total number of data points in each index is
2000, 75% for training and the rest 25% for testing. In each sub-figure, the red curve represents the actual stock index data, while the blue curve is the
output of the Elman neural network model, which shows that the EIman neural network is able to accurately model the index. Comparisons with other
models are presented in Fig. 4, Table 8 and Table 9.

Table 5

Wilcoxon signed-rank test results for different Elman models with vs. without hidden layer biases. Boldfaces indicate statistically significant differences,
whereas others represent no statistically significant differences.

SSE KOSPI Nikkei225 SPX
M1 vs. M5 3.36E-07 0.0859 0.1806 0.0021
M2 vs. M6 3.50E-06 4.17E-05 4.60E—-04 0.457
M3 vs. M7 0.0679 0.1199 0.1136 0.004
M4 vs. M8 3.07E-06 3.75E-04 1.23E-07 0.1075
Table 6

Wilcoxon signed-rank test results for different Elman models with vs. without output layer bias. Boldfaces indicate statistically significant differences, whereas
others represent no statistically significant differences.

SSE KOSPI Nikkei225 SPX
M1 vs. M3 0.0565 0.7764 0.072 0.2085
M2 vs. M4 0.6359 0.2616 0.8392 0.5979
M5 vs. M7 0.5792 0.8817 0.1075 0.5428
M6 vs. M8 0.1017 0.2085 8.36E—-04 0.0601

original ElmanNN without DIOCs, and by 65.6% and 60.8%, respectively, compared with the MLP. The improvements are
substantial for the other 3 indices.
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Table 7
Wilcoxon signed-rank test results for different Elman models with vs. without direct input-to-output connections. Boldfaces indicate statistically significant
differences, whereas others represent no statistically significant differences.

SSE KOSPI Nikkei225 SPX
M1 vs. M2 1.10E-05 4.60E-04 5.17E-06 0.0077
M3 vs. M4 3.99E-06 4.16E-04 1.92E-07 7.41E-05
M5 vs. M6 0.004 0.0071 5.63E-04 1.66E—07
M7 vs. M8 0.0223 0.0239 0.0066 6.80E—-08
Table 8

The optimal numbers of hidden neurons for different neural
networks and stock indices.

MLP ElmanNN Elman-DIOCs (M3)

SSE 16 14 6
KOSPI 14 16 6
Nikkei225 12 12 6
SPX 14 12 6

5. Discussions: Why Can Direct Input-Output Connections Help?

As mentioned in the Introduction, DIOCs were shown to help the MLP forecast short-term load [27] and other time-series
[40], as well as benefit the RVFL in power load forecasting [31]. In addition to time-series forecasting, a regression problem,
Zhang and Suganthan [48] also showed that DIOCs had a positive effect on the RVFL in classification through a comprehen-
sive study of 121 UCI datasets [5,7]. These neural networks are all universal approximators without DIOCs and should there-
fore be able to adequately solve regression and classification problems without DIOCs. Why can DIOCs improve accuracy,
sometimes substantially, while reducing network complexity and computational burden? Is this true for any data and
any neural network architecture? Let us attempt to discuss these questions.

DIOCs basically provide a linear mapping from the input to the output if the output neurons have linear activation func-
tions, for example, in most neural networks used for regression, as well as neural networks with random hidden neuron
parameters and closed form solutions for the output layer weights, like the RVFL [26] and the Schmidt network [32].

In cases where the desired input-to-output mapping is entirely linear, although a neural network without DIOCs would be
able to approximate such a linear mapping with arbitrary accuracy if given a sufficient number of hidden neurons, such a
nonlinear neural network may be less accurate and less computationally efficient compared to a linear neural network. Even
when theoretically there are sufficient hidden neurons for the required accuracy, the training outcome may not be ideal and
the network parameters may be stuck in a local optimum, resulting in sub-optimal performance. In contrast, a neural net-
work with DIOCs does not require any hidden neurons to model a linear input-to-output mapping.

On the other hand, if the desired input-to-output mapping is totally nonlinear, i.e., without any linear components, DIOCs
would not help (their weights should vanish if training reaches a global optimum).

The results published so far on neural networks with DIOCs are based on somewhat real-world data. The fact that most of
these results showed that the networks benefitted from DIOCs may mean that most of these real-world data require neither
entirely linear input-to-output mapping, nor entirely nonlinear input-to-output mapping, but possess both 'linear and non-
linear components’. In these cases, we expect DIOCs would help in taking care of the linear components in the input-to-
output mappings.

For the time-series prediction problem, a linear input-to-output mapping may be quite intuitive: it may be interpretted as
naive trend-following. For example, in stock price prediction, an intuitive guess for the stock price for the next time step
would be simply the same as the present stock price. If the output neurons have nonlinear activation functions, for example,
in the multilayer perceptron (MLP), this trend-following interpretation may still hold if the activation functions of the output
neurons are monotonic, like the sigmoid function given in Eq. (3).

Let us illustrate the above arguments using a toy example. The training input data are generated by:

ue = sin (%), (12)

where time step t = 1,2, .... Let us use an ElmanNN with 3 input nodes and 1 linear output neuron (Fig.1. We choose the
target output to be:

01 = U +Asin[10 uy]. (13)
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Fig. 4. Comparisons of test results for the original Elman neural network (ElmanNN), the proposed Elman network with direct input-to-output connections
(M3), and the multilayer perceptron network (BPNN or MLP), for the SSE, KOSPI, Nikkei225 and SPX.
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Table 9
The prediction errors for the MLP, the original ElmanNN, and our Elman-DIOCs (M3).
Index Errors MLP ElmanNN Elman-DIOCs (M3)
RMSE 38.41 35.45 29.54
SSE MAE 30.72 28.11 22.83
MAPE 0.59 0.51 0.40
RMSE 20.09 19.87 17.52
KOSPI MAE 15.63 15.30 13.42
MAPE 0.11 0.19 0.09
RMSE 209.37 208.46 183.61
Nikkei225 MAE 151.57 151.68 130.08
MAPE 0.33 0.27 0.19
RMSE 58.15 35.83 19.98
SPX MAE 36.50 24.25 14.29
MAPE 223 1.34 0.58

The data for the first 60 time steps were used for training and the data for the next 20 time steps were used for testing.

The Levenberg-Marquardt training algorithm was selected. We used an error threshold 10~9, but the training stopped before
this error threshod could be reached because the training process converged. We compare the performance of the ElmanNN
with and without DIOCs for different A values.

We first consider A = 0 (Fig. 5). In this case, we have

01 = Uy, (14)

i.e., the model prediction for output at time t + 1 is the naive choice of input at time t: an entirely linear input-to-output
mapping. The network weights and testing RMSE for 1, 2, and 3 hidden neurons are shown in Table 10 (the weights from
the input layer to the hidden layer w» and the feedback weights w® are unremarkable and omitted). Table 10 shows that
in the presence of DIOCs, the weights from the hidden layer to the output neuron are roughly zero, indicating that the hidden
neurons are not needed. In addition, the DIOCs are such that only the connection from the first input node to the output is
roughly 1, whereas the other DIOCs are roughly zero.

In the absence of DIOCs, the test RMSE decreases as the number of hidden neurons increases, but is not as good as that in
the presence of DIOCs for any number of hidden neurons (Fig. 6). We now consider A = 0.1 and A = 10 in Eq. (13), i.e., the
input-to-output mapping has both linear and nonlinear components. Tables 11 and 12, as well as Figs. 7 and 8, show that
DIOCs help to improve accuracy while reducing the number of hidden neurons needed when there are both linear and non-
linear components.

For a classification problem, a linear input-to-output mapping is less intuitive. The part of the network involving DIOCs is
a (single-layer) Perceptron, which is able to solve linearly separable classification problems. Thus the fact that a classification
network, such as the RVFL, also benefitted from DIOCs may mean that most of these real-world data are at least partially
linearly separable. For an entirely nonlinearly separable problem, DIOCs should not be helpful or may even be harmful.
For example, the XOR problem can be solved by an MLP with 2 input nodes, 2 hidden neurons, and 1 output neuron, without
DIOCs. It seems unlikely to exist simpler networks that are able to solve the XOR problem and adding DIOCs would not be
beneficial in this rather theoretical case.

t

Fig. 5. Training input in the toy problem.

1075



Y. Wang, L. Wang, F. Yang et al. Information Sciences 547 (2021) 1066-1079

Table 10
Comparisons between the ElImanNN with vs. without DIOCs in a totally linear case: A = 0 in Eq. (13).

Number of hidden neurons DIOCs B w® RMSE
1 i —0.014; 0.027; 0.986 6.83e—4 1.96e—-5
1 X 0.502 0.035
2 Vv 0.00; —0.00; 1.00 —0.00; 0.00 5.9e—6
2 x —14.6; 30.3 3.15e-5
3 Vv 0.00; —0.01; 0.996 0.0001; 0.00; 0.00 2.77e-5
3 X 2.07; 5.22; -10.5 3.16e-5

1.2 T T T T T T T T T

= = =Target Output
| = Actual Output - without DIOCs | |
1 o — Actual Output - with DIOCs
08 [
0.6
=
041
021
N P ¢
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02 L . . . . . . A A

0 2 4 6 8 10 12 14 16 18 20

Fig. 6. Testing results for the ElmanNN with and without DIOCs in a totally linear case with 1 hidden neuron: A = 0 in Eq. (13).

Table 11
Comparisons between the ElImanNN with vs. without DIOCs when the input-to-output mapping has both linear and nonlinear components: A = 0.1 in Eq. (13).
Number of hidden neurons DIOCs B w3 RMSE
1 Vv -0.0376; 0.0704; 1.0311 —0.0374 0.0263
1 X 1.095 0.0487
2 Vv 0.597; —2.024; 2.469 —0.149; 0.107 0.0123
2 X -3.47; 2.28 0.0234
3 v —1.35; 2.53; —0.099 —0.077; —0.069 0.065 0.017
3 x 0.14; 1.06; —1.45 0.018
Table 12
Comparisons between the ElImanNN with vs. without DIOCs when the input-to-output mapping has both linear and nonlinear components: A = 10 in Eq. (13).
Number of hidden neurons DIOCs RMSE
5 v 1.13e-5
5 X 0.02
10 v 1.6e—-8
10 X 2.69e—6

6. Conclusions

Financial time-series prediction plays an important role in stock markets. In this study, we proposed a novel improved
ElmanNN by introducing the direct input-to-output connections and showed experimentally that the direct input-to-
output connections markedly improve prediction performance. Through extensive simulations using data from the SSE,
KOSPI, Nikkei225, and SPX indices, we demonstrated that the enhancements are statistically significant. The predictive accu-
racy for all financial indices shows that our proposed EImanNN-DIOCs outperforms the original ElmanNN without DIOCs
and the MLP, while requiring fewer than half of the hidden neurons. We argue that (1) DIOCs can always help to improve
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Fig. 7. Testing results for the ElImanNN with and without DIOCs in a mildly nonlinear case (A = 0.1 in Eq. (13)) with 2 hidden neurons.
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Fig. 8. Testing result for the ElmanNN with and without DIOCs in a strongly nonlinear case (A = 10 in Eq. (13)) with 5 hidden neurons.

accuracy, while reducing network complexity and computational burden, as long as the problem at hand (either regression
or classification) has linear components, and (2) most real-world applications contain linear components, therefore DIOCs
will be almost always beneficial. So far, advantages of direct input-to-output connections have been demonstrated in the
Elman neural network, the RVFL, and the MLP. From our discussions in this paper, this phenomenon should likely exist
for other types of neural networks for classification or regression, which will be subject to future studies.
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