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Abstract—Deep learning for electroencephalogram-
based classification is confronted with data scarcity, due
to the time-consuming and expensive data collection
procedure. Data augmentation has been shown as an
effective way to improve data efficiency. In addition,
contrastive learning has recently been shown to hold
great promise in learning effective representations without
human supervision, which has the potential to improve the
electroencephalogram-based recognition performance with
limited labeled data. However, heavy data augmentation
is a key ingredient of contrastive learning. In view of
the limited number of sample-based data augmentation
in electroencephalogram processing, three methods,
performance-measure-based time warp, frequency noise
addition and frequency masking, are proposed based on
the characteristics of electroencephalogram signal. These
methods are parameter learning free, easy to implement,
and can be applied to individual samples. In the experiment,
the proposed data augmentation methods are evaluated
on three electroencephalogram-based classification tasks,
including situation awareness recognition, motor imagery
classification and brain-computer interface steady-state
visually evoked potentials speller system. Results
demonstrated that the convolutional models trained
with the proposed data augmentation methods yielded
significantly improved performance over baselines. In
overall, this work provides more potential methods to cope
with the problem of limited data and boost the classification
performance in electroencephalogram processing.

Index Terms—Data augmentation, electroencephalo-
gram, situation awareness, motor imagery, SSVEP.
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I. INTRODUCTION

E LECTROENCEPHALOGRAM (EEG) signals are related
to human brain activities and have been used to recognize

different human states [1]. Various machine learning models
have been applied for EEG processing such as universum support
vector machine [2]. Furthermore, convolutional neural network
(CNN) has been shown as a promising method to enhance and
simplify EEG-based classification pipelines [3]. Due to the diffi-
culty to get rich EEG data, improving the classification accuracy
of CNN is a research focus in EEG processing. Specifically,
when a limited number of data is used to train an exceedingly
complex model, such as having too many parameters compared
to the number of training samples, over-fitting might happen and
weaken the classification ability of models. Other fields such
as image processing have shown that using data augmentation
to improve data efficiency can help obtain better classification
accuracy of the model [4]. Therefore, well-designed data aug-
mentation methods are required for EEG processing.

Previous works mainly employed two modes of data augmen-
tation in EEG processing. One was to generate synthetic samples
typically by combining different samples. The swaps between
segments in frequency domain [5] and time domain [6] were
typical methods to combine samples. Furthermore, attempts
have been made to mix the decomposed components such as
performing crossover of independent components obtained by
independent components analysis (ICA) [7], and intermixing
the intrinsic mode function obtained by empirical mode decom-
position [8]. Apart from the mentioned combination methods,
using generative adversarial networks (GANs) [9] to design
data augmentation can be regarded as an interpolation among
training samples. For instance, Fan et al. [10] exploited GAN
to perform data augmentation in EEG processing, leading to
the significantly improved classification performance. Similarly,
Xu et al. [11] proposed a balanced Wasserstein GAN with
gradient penalty to generate minority class data in the rapid serial
visual presentation classification task. Luo et al. [12] proposed a
selective Wasserstein GAN to augment differential entropy (DE)
features and improve the performance of emotion recognition.
Fu et al. [13] exploited GAN to generate samples and proposed a
hybrid model of broad-deep networks to increase the similarity
between generated features and real features.

Alternatively, sample-based data augmentation was another
direction, which was to generate synthetic samples by perform-
ing a transformation on each sample. A classical method, noise
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addition was an example of sample-based data augmentation,
which has shown its effectiveness for machine learning [14].
Other examples of sample-based data augmentation include
scaling [15] and flipping [16]. In addition, the over-sampling
methods were also exploited to perform data augmentation in
EEG processing such as using the synthetic minority over-
sampling technique (SMOTE) [17] for class imbalance prob-
lem [18]. In EEG processing, besides improving classification
performance, the sample-based methods can also be used for
learning invariant features from real samples and synthetic sam-
ples, e.g., contrastive learning [19]. However, the number of
validated sample-based data augmentation methods is limited
in EEG processing.

Furthermore, previous works mainly performed data augmen-
tation on extracted hand-engineering features for EEG-based
classification tasks. For example, Wang et al. [20] added Gaus-
sian noise to the training data which was extracted DE features
for emotion recognition. The recognition performance showed
significant improvements. Yin et al. [21] applied Gaussian noise
on the feature vector to increase the recognition accuracy. With
the development of end-to-end deep learning for EEG-based
classification tasks, data augmentation methods on raw EEG
signals are also required. However, less attention has been paid
to that.

To design the sample-based data augmentation methods that
can be applied to raw EEG signals, the intrinsic properties of
EEG signals should be considered. Firstly, subjects may have
different “mind speeds” (i.e., EEG signals with similar envelopes
may have a different period). However, limited number of sub-
jects and data restricts the variance of the periods. Therefore,
time warp is a potential data augmentation method to solve this
problem. Um et al. [22] proposed a time warp method to be used
on the data augmentation of wearable sensor data for Parkinson’s
disease monitoring, which stretched and compressed the signals
to the different extents in different regions. To apply time warp to
EEG processing, the intrinsic properties should be considered.
One example of such application was that Bassi et al. [23] used
time warp on the spectrograms of steady-state visually evoked
potentials (SSVEP) signals. However, the transformation was
only studied in the time-frequency domain. The design of time
warp in the time domain and the use of the method for different
types of EEG signals remain to be further investigated.

Secondly, the frequency domain information also plays an
important role in classification. Previous works mainly explored
data augmentation methods in the time domain. For example,
Kang et al. [7] proposed an ICA - evolution method to gen-
erate synthetic samples in the time domain. Moreover, spatial
characteristics were exploited to design data augmentation.
Krell et al. [24] proposed to rotate electrodes along three main
axes of the head and then perform interpolation to generate
synthetic data. However, limited studies investigated the data
augmentation methods in the frequency domain. One related ex-
ample was that Li et al. [25] tried noise addition on the magnitude
after short-time Fourier transformation (STFT). Since frequency
information can represent different human brain activities [26],
more data augmentation methods in the frequency domain such
as noise addition and occlusion methods require to be further
investigated.

To address the aforementioned problems, three data augmen-
tation methods are proposed based on the intrinsic properties of
EEG signals. Specifically, a performance-measure-based (PMB)
time warp is proposed to simulate similar signals but with
period change, aiming to reduce the non-stationary problem in
EEG datasets. Moreover, phase information is considered in the
design of frequency noise addition. The performance of using
noise addition on the magnitude, phase and their combination
are compared in this work. To the author’s best knowledge, this
is the first time to compare the use of noise addition on different
components in the frequency domain in EEG processing. In
addition, this work proposes to investigate frequency masking in
different EEG-based classification tasks. The proposed methods
are evaluated in three different EEG-based classification tasks,
including situation awareness (SA) recognition, motor imagery
(MI) classification and brain-computer interface (BCI) SSVEP
speller system. Results demonstrated that the proposed methods
could help to boost classification performance. In overall, this
work provides more potential methods to cope with the problem
of limited data in EEG processing.

II. METHODOLOGY

This section presents three proposed data augmentation meth-
ods for EEG processing, namely PMB time warp, frequency
noise addition, and frequency masking.

A. Performance-Measure-Based Time Warp

Time warp stretches or compresses the signal along time axes.
Previous time warp method [22] performed the combination of
stretching and compressing with varying extent on different parts
of the signals in a single data extraction window. However, in the
experiment of inducing different human states, it is highly likely
that the condition of the brain’s functional state stays consistent
within the short data extraction window. Hence, time wrap in one
mode, i.e., either stretching or compressing the extracted signals
is more suitable for EEG signals. Furthermore, the beginning
part of the extracted signals is usually less related to the induced
states. For instance, SA for drivers can be labeled based on the
reaction time [27]. The signal that is close to the performance
measure point can better reflect the induced state. Similarly, in
MI tasks, the beginning part of the extracted signals contains the
cue-response action which is not related to the desired states.
Therefore, this work proposes a PMB time warp to stretch or
compress the signals by fixing the start point and pulling/pushing
the end point of the data extraction window. The difference
between the previous time warp method [22] and the proposed
PMB time warp is shown in Supplementary Fig. S1.

A m× n EEG signal is denoted as x = [x1,x2, . . . ,
xl, . . . ,xm]T , wherexl = [xl(1), xl(2), . . . , xl(q), . . . , xl(n)].
The process of time warp can be divided into two steps. Firstly,
the time axis is warped. For instance, the original time
points {0, 1, 2, . . . , n} are warped as {0, 1.1, 2.3, . . . , n+ 30}.
Denoting the warping function on time axis as τ(·), the channel
l of the transformed signal xtw with warped time axis is given
by

x̃l = [xl(τ(1)), xl(τ(2)), . . . , xl(τ(q)), . . . , xl(τ(n))]. (1)
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A uniformly distributed random number w generated from
[−W,W ] is exploited to define the extent of warping. When
w < 0, the signal is compressed. When w > 0, the signal is
stretched. The last time point of the extracted signal is warped
as n+ w, while the start point remains unchanged after the time
warp. Then, a thin-plate spline is applied to compute the rest
of the warped time points. Subsequently, warped signal xtw is
generated by applying interpolation to compute the signal value
on warped time points.

B. Frequency Noise Addition

Although noise addition has been widely used as a data
augmentation method for EEG processing [28], there are lim-
ited studies on noise addition in the frequency domain. Some
attempts have been made to add noise to the magnitude of the
transformed time-frequency domain images [25]. However, the
noises in EEG signals may not only affect the magnitude but
also the phase. Therefore, this work proposes to investigate the
effect of adding noise on the phase, as well as the effect of adding
noise on the combination of the magnitude and the phase in EEG
processing. The example of frequency noise addition is shown
in Supplementary Fig. S1.

The transformation that noises are added on the combination
of magnitude and phase components can be written in the form:

xFnoise = F−1{X(jω)ejωt + ζ(ω)}, (2)

where X(jω)ejωt = F{x(t)} and ζ ∼ N (0, η2). F and F−1

represent the Fourier transform and the inverse Fourier trans-
form, respectively.

The frequency Gaussian noise addition on magnitude and
phase can be separately expressed as (3) and (4):

xFnoise_m = F−1{[X(jω) + ζ(ω)]ejωt}, (3)

xFnoise_ph = F−1{X(jω)ej[ωt+ζ(ω)]}, (4)

C. Frequency Masking

Data augmentation methods of masking have been used in
other fields [4]. However, frequency masking has not been
comprehensively studied in different EEG paradigms. This work
proposes investigating frequency masking in EEG-based clas-
sification tasks. The impact of different masking values and
different ranges that the masking is operated on is further studied.
The specific method is described as follows.

Based on the Fast Fourier Transform (FFT) algorithm, (n+
1)/2 frequency points are obtained for each channel of the EEG
signal. There are two hyper-parameters, namely the number of
masking points Ifm, and the number of masking area a. The
start point of the selected frequency band is randomly initialized
between 0 and n− Ifm. Then, each frequency point in Ifm
is assigned to a random value. The magnitude and the phase
of the same frequency band are masked simultaneously for all
channels. Finally, an inverse FFT is performed to transform
the obtained frequency domain data to the time domain and
these synthetic data are then used for training. The example of
frequency masking is shown in Supplementary Fig. S1.

III. EXPERIMENTS

In this section, the proposed data augmentation methods are
evaluated on three EEG-based classification tasks, including SA
recognition, MI classification and target identification in the
BCI SSVEP speller system. The specific experiment setting
and the results are described as follows. For convenience, in
the following tables and figures, frequency masking, frequency
noise addition and PMB time warp are denoted as FreqMasking,
FreqNoise and PMB TW, respectively. The subject-dependent
setting and the subject-independent setting are denoted as S-
dependent and S-independent, respectively.

A. Datasets Introduction and Preprocessing

Three datasets were employed in the experiments. For each
dataset, raw data were exploited without further feature extrac-
tion. The specific dataset splits are described as follows:

1) Taiwan Driving Dataset: The pre-processed dataset was
used in this study [29]. In the experiment, lane-departure events
were randomly induced to make the car drift from the original
cruising lane towards the left or right sides (deviation onset).
Each participant was instructed to quickly compensate for this
perturbation by steering the wheel (response onset) to cause the
car to move back to the original cruising lane (response offset).
A complete trial included events with deviation onset, response
onset, and response offset.

In this study, fatigue-related SA was analyzed. Three seconds
of the EEG data prior to the deviation onset were extracted.
By following [27], the local reaction time (RT) and the global
RT were used to label data. An alert-RT was set. When both
the local and global RT were shorter than 1.5 times the alert-
RT, the extracted data were labeled as “high SA”. When both
the local and global RT were longer than 2.5 times the alert-
RT, the data were labeled as “low SA”. Transitional states with
moderate performance were not considered in this work. Then,
the EEG data were down-sampled to 128 Hz. Finally, a balanced
SA dataset was obtained which included 2022 samples of 11
subjects.

2) Brain-Computer Interface Competition IV 2b Dataset:
There were two classes of EEG data, the MI of the left hand and
right hand, from nine subjects (B01–B09) in the BCI Competi-
tion IV 2b dataset [31]. There were 5 sessions in the MI tasks, in
which the subject received feedback only in the last 3 sessions.
Each subject conducted 120 trials in the first 2 sessions, and
160 trials in the remaining sessions. The subjects were required
to imagine the corresponding hand movement over a period of
4 seconds after a visual cue was shown. The 3-channel EEG
signals were sampled at 250 Hz. In this work, the data from the
4th second to the 7th second of each trial were intercepted as a
sample. Finally, 750 time steps were obtained in each sample.

3) The Benchmark Dataset: The benchmark dataset [32]
was recorded in a BCI SSVEP speller experiment with 35
subjects. There were 6 blocks in the experiment. During each
block, the subjects were required to watch the screen where a
matrix (5 × 8) of 40 target characters was flickering at various
frequencies (in the range 8–15.8 Hz with 0.2 Hz increments) with
at least 0.5π phase difference between adjacent frequencies. The
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TABLE I
CLASSIFICATION PERFORMANCE (%) OF USING DATA AUGMENTATION METHODS ON TAIWAN DRIVING DATASET

EEG data were recorded through 64 channels. Each trial started
with a visual cue that was displayed for 0.5 seconds on the
screen to guide the subject’s gaze to the desired target and then
conducted the stimulation for 5 seconds that was followed by an
offset of 0.5 seconds. The EEG was down-sampled to 250 Hz.
The average visual latency of the subjects was approximately
estimated as 140 ms in this dataset. In this work, the target
identification in BCI SSVEP speller systems was regarded as
a multi-class classification problem.

B. Situation Awareness Recognition

The Taiwan driving dataset was used for the SA recognition
task. The performance of the model trained in the subject-
dependent and subject-independent settings was evaluated. The
subject-dependent setting involved training and test sets from the
same subjects. In the subject-independent setting, the training set
and the test set were from different subjects. The dataset split of
both settings is introduced here. In the subject-dependent setting,
the data of each subject were divided into training, validation
and test sets in the ratio of 6 : 2 : 2. In the subject-independent
setting, the data of 11 subjects were randomly divided into
the training set from 7 subjects’ data, the validation set from
2 subjects’ data, and the test set from 2 subjects’ data. Data
augmentation was only performed on the training set.

The InterpretableCNN model [30] which achieved the state-
of-the-art (SOTA) cross-subject SA recognition performance
was adopted in the experiment. Adam optimizer with momentum
β1 = 0.9 and β2 = 0.99 was used. The mini-batch was 32 and
the learning rate was 0.001. The model was trained for 50 epochs.
Cross-entropy was employed as the cost function for training.
The statistical significance of the improvement was evaluated
by the McNemar test [33]. The hyper-parameters of the models
and the data augmentation methods were optimized by using grid
search. The specific search space can be found in Supplementary
Section I. This hyper-parameter optimization was also employed
in all of the following EEG-based classification tasks.

1) Recognition Evaluation: The recognition results were
shown in Table I. In the subject-dependent setting, the hyper-
parameters adopted for PMB time warp, frequency noise ad-
dition and frequency masking were W = 20, η = 1, Ifm =
10 and a = 1, respectively. The frequency noise addition on
the combination of the magnitude and the phase was used in
this experiment. In the subject-independent setting, the hyper-
parameters wereW = 10, η = 0.5, Ifm = 5 and a = 2. Results

indicated that the average accuracy of the model trained with
the proposed data augmentation methods showed significant
improvement as compared to the baseline, demonstrating the
effectiveness of the proposed data augmentation methods for SA
recognition.

The effect of hyper-parameters of three proposed data aug-
mentation methods was evaluated. Results were shown in Sup-
plementary Fig. S2. Consistent improvement was observed un-
der all parameter settings, which demonstrated that three meth-
ods were robust to the corresponding hyper-parameters.

Then, the proposed methods were compared with three com-
monly used data augmentation methods, which were jitter-
ing [20], scaling [15] and permutation [7]. Specifically, jittering
added Gaussian noise in the time domain. Scaling scaled the
signal of channels with different factors. Permutation divided the
signal into several parts, then randomly permuted the segments,
and finally concatenated these segments. From Table I, the model
trained with the proposed data augmentation methods all showed
consistent improvement compared with the three commonly
used methods.

Subsequently, the effect of using the combination of the
proposed data augmentation methods, which means applying
more than one method to each sample to generate synthetic
samples, was investigated. Also, the performance of using a
mixture of the augmented training sets was investigated. The
results were shown in Supplementary Table S5 and Table S6. It
was observed in Supplementary Table S5 that the performance
of using the combination of different transformations slightly
outperformed the performance of using a single method. From
Supplementary Table S6, the use of the mixture of augmented
training sets consistently improved the performance over the
baseline in both settings.

2) Comparison Between Time Warp Methods: The classifi-
cation performance of using Time warp 1 [22] and the proposed
PMB time warp was compared in Supplementary Table S7.
It was observed that the average accuracy of PMB time warp
was better than that of Time warp 1 in the subject-independent
setting. The possible reason was that the PMB time warp which
only stretched or compressed the signal rather than using a
combination of warping modes like in Time warp 1 helped the
model to recognize the similar signals but with different periods
from different subjects. In contrast, the period difference of a
individual subject may not vary much during one experiment.
Thus, the two warping methods showed similar results in the
subject-dependent setting.
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3) Frequency Noise Addition on Different Components: To
analyze the contribution of noise addition on the phase, the
classification performance of using noise addition on differ-
ent frequency components was then evaluated. Denoting the
noise addition on the combination of the magnitude and the
phase as FreqNoise_Combine, noise addition on the magni-
tude as FreqNoise_Mag, and noise addition on the phase as
FreqNoise_Phase, the comparison results were shown in Sup-
plementary Table S8. It was observed that the phase-included
frequency noise addition showed better average accuracy in both
settings. This may have attributed to the improved classification
ability of the model by training with noise addition on phase.

4) Analysis of Frequency Masking: The frequency masking
was further analyzed in two aspects, namely the range that the
masking is operated on and the masking value. Firstly, four
types of masking value were evaluated, which were 1) zero
values, 2) random values generated from a Gaussian distribution
with the mean and standard deviation of the masked frequency
band, 3) the maximum magnitude of the masked band with
unchanged phases, and 4) random Gaussian noise with the mean
of 0 and standard deviation of 0.5. Moreover, the performance
of using the range of 0–30 Hz and using the full range of
0–64 Hz was compared. The comparison results were presented
in Supplementary Table S9.

It is observed that frequency masking with different types
of masking values and different ranges consistently improved
the recognition accuracy compared with the baseline of Inter-
pretable CNN (as shown in Table I). However, masking in the
range from 0 to 30 Hz did not show as good performance as
the counterpart of 0–64 Hz. The possible reason was that the
higher frequency band may still contain useful information to
some extent. The masking across the full range (0–64 Hz) could
generate samples that consider more general partial information
loss cases. Regarding the four types of masking value, in the
subject-independent setting, the masking value of noise obtained
the best result. In the subject-dependent setting, the zero masking
value showed the best performance.

5) Metrics Analysis for Proposed Methods: For further anal-
ysis, average precision, recall, specificity, and F1-score were
computed and shown in Supplementary Table S10. Better met-
rics results were obtained for the model trained with the three
proposed transformations in the subject-dependent setting. Gen-
erally, the proposed methods showed better performance in
comparison with the baseline and the commonly used data
augmentation methods. Higher specificity was also obtained
by using frequency masking, which is desired when measuring
the operators’ SA states in dynamic systems to avoid the false
detection of the low SA state. Therefore, frequency masking can
be the better choice.

C. Motor Imagery Classification

The proposed data augmentation methods were further eval-
uated on different CNN models on BCI Competition IV 2b
dataset in the subject-dependent setting. Specifically, Determin-
isticCNN [35] which achieved SOTA on this dataset, as well
as the EEGNet-8, 2 [34] and InterpretableCNN [30] which

succeeded on EEG classification tasks were employed. For train-
ing, Adam optimizer with momentum β1 = 0.9 and β2 = 0.99
was used. The mini-batch was 32 and the learning rate was
0.001. The model was trained for 50 epochs and cross-entropy
was employed as the cost function. For the dataset split of
subject-dependent setting, the first 3 sessions were utilized
as the training set, and the remaining 2 sessions were taken
as the test set. The hyper-parameters of the proposed data
augmentation methods were optimized by using 5-fold cross-
validation. The selected hyper-parameters used for EEGNet
were W = 30, η = 0.01, Ifm = 30 and a = 1. The selected
hyper-parameters used for DeterministicCNN were W = 30,
η = 0.05, Ifm = 20 and a = 1. The selected hyper-parameters
used for InterpretableCNN were W = 20, η = 0.01, Ifm = 30
and a = 2. The statistical significance of the improvement was
evaluated by the paired-sample t-test. The comparison results
were shown in Table II. Results demonstrated that the proposed
data augmentation methods significantly improved the classifi-
cation performance of different baseline models.

An experiment on a large-scale dataset [36] that included
109 subjects was conducted as well. ShallowCNN [37] and
InterpretableCNN [30] were adopted as the baseline models. The
results demonstrated the effectiveness of the proposed methods
on large-scale dataset. The specific results were presented in
Supplementary Section II.

For MI classification, the noises from the measuring device
or from other brain activities may affect the phase information
of the signal. Therefore, the proposed phase-included noise
addition can help to increase the classification capability of the
models. Furthermore, frequency masking allows a lower reliance
of CNN models on specific frequency band information for
classification. As such, the model can learn from the frequency
bands with partial information loss, which can help the model
to be more general for recognizing different types of signal
patterns. In addition, PMB time warp was applicable for EEG
signals of MI as well. In MI tasks, the beginning part of the
collected signals in each trial corresponded to the response to the
cue and was not much related to the label. Moreover, the period
of MI signals could be different across samples. Therefore, PMB
time warp that fixes the start point of the data extraction window
and warps the signal in one mode by pulling or pushing the end
point of the data extraction window could be used to increase the
diversity of the MI datasets and further improve the classification
accuracy.

D. Target Identification in Brain-Computer Interface
Steady-State Visually Evoked Potentials Speller System

In this section, the effect of data augmentation on BCI SSVEP
signals is investigated. The SOTA deep CNN [38] was em-
ployed as the baseline method. In this experiment, the hyper-
parameters of the three proposed data augmentation methods
were optimized to W = 10, η = 0.5, Ifm = 10 and a = 1. The
hyper-parameters of the SOTA deep CNN model and the training
process were the same as that of the original work. To perform a
fair comparison, this work adopted the same EEG data extraction
as [38], including filtering the EEG signals into 3 sub-bands
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TABLE II
CLASSIFICATION PERFORMANCE (%) OF USING THE PROPOSED DATA AUGMENTATION METHODS ON BCI COMPETITION IV 2B DATASET

1DA: data augmentation.
∗Significantly different from baselines with p < 0.05.

TABLE III
AVERAGE ACCURACY (%) AND AVERAGE ITR (BITS/MIN) OF USING THE

PROPOSED DATA AUGMENTATION METHODS ON THE BENCHMARK DATASET

*Significantly different from baselines with p <

0.05.

by the band-pass filter, and using the stimulation time of 0.4
seconds and 9 channels (Pz, PO3, PO5, PO4, PO6, POz, O1,
Oz, O2) signals. The subject-dependent setting was employed
in this experiment. The dataset split was performed as follows.
One block data were randomly selected from 6 blocks data as
the test set. Another block data were then randomly selected as
the validation set. The remaining 4 blocks data were used as the
training set.

The comparison results were shown in Table III. It was
observed that the deep CNN with three data augmentation
methods all presented better average accuracy than the base-
line. Moreover, the paired-sample t-test was then conducted
which showed that frequency noise addition and PMB time
warp achieved significant improvement in average accuracy and
ITRs compared with the baseline, while frequency masking only
showed slight improvement. The possible reason was that the
number of masked points spanned a large frequency band (10
masking points corresponded to around 25 Hz), resulting in a
large information loss. Therefore, the number of masking points
for signals with fewer time steps and higher sampling frequency
requires to be carefully designed.

IV. DISCUSSION

Based on the results of comparative studies, the three proposed
data augmentation methods can increase the classification ability
of the CNN models. Furthermore, the proposed data augmenta-
tion methods can be used to cope with the limited training data
problem and increase the diversity of the datasets such that the

classification performance can be increased. Specifically, time
warp can be used to stretch or compress the signal, simulating
different period changes of similar signals. Frequency noise ad-
dition can help the model to better learn the samples with phase
noises. Frequency masking can force the model to learn more
general features and have a lower reliance on specific frequency
band information. In overall, the proposed data augmentation
methods can be applied in various EEG-based tasks to boost the
classification performance.

The practical application is discussed here. Due to the time-
consuming data collection procedure, the amount of data col-
lected for training is usually limited. One example is the limited
size of MI EEG datasets that could be collected for rehabilita-
tion engineering. Furthermore, while experiencing higher time
cost, the issue of limited data collected may be even more
prominent in human mental states recognition tasks because the
desired mental states (e.g. fatigue) of some subjects may not be
successfully induced in experiments, leading to fewer datasets
obtained for training. In practice, taking monitoring SA for air
traffic controllers as an example, to reduce the impact of the
abovementioned limitations, the proposed data augmentation
methods can be applied to increase data efficiency and thus,
allowing significantly higher classification accuracy.

To gain a deeper understanding on the effect of the proposed
data augmentation methods, three aspects of the proposed three
methods in the SA recognition task were further discussed in
this section.

1) Chirality of Proposed Methods: Data augmentation has
a cost of approximation error wherever the same distribution
as the original data does not hold. Lin et al. [39] investigated
the visual chirality in image processing where the augmented
image might have different distribution compared with the orig-
inal image. They proposed to use self-supervised learning to
evaluate the approximation error and analyze the chirality of
the augmented images. In EEG processing, the measure of this
approximation error has not been investigated. In this work, this
self-supervised learning method was adopted to evaluate the
approximation error of the proposed data augmentation methods
in EEG processing. Specifically, the original data was labeled
as class “0,” while the augmented data was labeled as class “1”.
The InterpretableCNN [30] was trained to recognize the original
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and transformed data. Interesting results were obtained. For
PMB time warp and frequency masking, the model can achieve
around 90% accuracy to classify the test set. The model trained
with frequency noise addition presented random guess results
on the test set with 50% accuracy. The results illustrated that
chirality also exists in the proposed data augmentation methods.
Similar characteristics have also been found in some well-known
data augmentation methods such as flipping and random crop-
ping [39]. In EEG processing, such properties should be taken
into account when exploiting augmented data for analysis, e.g.,
developing the models for learning invariant features from real
samples and synthetic samples such as contrastive learning. The
chiral features of EEG datasets will be investigated in future
works.

2) Improved Recognized Regions: To visualize the useful
regions for classification after using the proposed data aug-
mentation methods, a class activation mapping (CAM) based
visualization technique [30] was employed. The visualization
results were shown in Supplementary Figs. S4–S6. The rec-
ognized regions of the model trained with data augmentation
were discussed. Specifically, the regions of the occipital lobe and
frontal lobe can be recognized after applying the proposed data
augmentation methods for the hard samples that were wrongly
classified as low SA state previously (as shown in Fig. S4 and
Fig. S6). Previous study [40] has shown that the artifacts in the
frontal lobe can be an indicator of wakeful EEG signals which
is related to the high SA state. Cui et al. [30] have also found
that the Electromyography (EMG) activities in the frontal lobe
could be a common factor that affects the classification of alert
state across different subjects. Alert state can be regarded as the
low-level part of SA [41]. Moreover, Catherwood et al. [42] have
shown that during the perception of SA, the occipital lobe plays
an important role. In addition, the regions of the centroparietal
EEG channels can be recognized for those hard samples that
were wrongly classified as high SA state previously (as shown
in Fig. S5). The recognition results were compatible with the
previous study [30].

3) Spectrogram Visualization: To better understand the ef-
fect of data augmentations, the EEG signals were visualized
using a power spectrogram-based topology map. Since the
delta [30], theta, and alpha [43] band are correlated with fatigue
and sustained attention which are the low-level part of SA [41],
the spectrograms on these frequency bands were mainly pre-
sented. Specifically, for each sample, STFT was applied to pro-
duce the spectrogram. Each sample was divided into segments
of 1 s length with an overlap of 875 ms. The final topology
map was normalized to [0, 1]. The topology maps of Subject
1 data were presented in Supplementary Fig. S3. For jittering
and frequency noise addition, fewer changes in spectrograms
were observed compared with the original data. Furthermore,
for time warp methods and frequency masking, spectrogram
enhancement was observed in theta and alpha frequency bands.

V. CONCLUSION

In this work, three data augmentation approaches are pro-
posed, namely PMB time warp, frequency noise addition, and

frequency masking, for EEG-based classification tasks. The
intrinsic properties are considered in the design of the pro-
posed methods. Specifically, 1) PMB time warp is designed
to reduce the non-stationary problem in EEG processing; 2)
Phase-included frequency noise addition is investigated in three
different EEG-based paradigms; and 3) A comprehensive study
on using frequency masking in EEG processing is conducted.
The proposed methods are evaluated in three EEG-based clas-
sification tasks, including SA recognition, MI classification and
SSVEP speller system. Results demonstrated that the proposed
data augmentation methods can consistently improve the per-
formance of the SOTA models in these tasks. In practice, the
proposed methods can be applied to reduce the impact of the
limited data problem and boost the classification performance
in different EEG-based paradigms. More investigations of the
proposed methods on the different types of EEG data will be
conducted in the future.
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