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A B S T R A C T

Within the framework of the advanced human-cybernetic interfaces (HCI), Cross-subject electroencephalogram
(EEG)-based driver fatigue recognition is emerging as a pivotal application in the paradigm of Industry 5.0.
Recognizing the importance of ensuring driver safety through proactive monitoring, it is essential to offer a
general EEG decoding system to improve road safety. This work investigated the use of Transformers for the
challenging cross-subject EEG decoding task due to the great success the Transformers have achieved in various
applications. Previous research focused on using Transformers to capture global temporal information, but less
work targeted global frequency-domain patterns. Furthermore, in order to leverage a standard Transformer
architecture grounded in natural language processing for EEG decoding, it is imperative to account for inherent
characteristics in EEG and make pertinent adjustments accordingly. In this work, we proposed a time–frequency
Transformer (TFormer) that can automatically learn the global time–frequency patterns from raw EEG data.
TFormer consisted of three components: convolutional stems for input embedding, time–frequency multi-head
cross-attention (TF-MCA) for integrating time-domain patterns into frequency points, and self-attention to
further learn global time-frequency patterns. Moreover, we analyzed TFormer’s internal settings and found
batch normalization (BN) more suitable for cross-subject EEG decoding than layer normalization (LN). The
experiment results demonstrated the superiority of the proposed model compared to existing methods. Overall,
our work contributes to the development of Transformer models in EEG decoding and illustrates a different
way to leverage Transformers for decoding raw EEG data.
1. Introduction

As we transition into the paradigm of Industry 5.0, ensuring driver
safety through proactive monitoring becomes paramount. Among dif-
ferent human mental states, driver fatigue is a serious problem that
can result in accidents and fatalities on the road [1]. A study by Byeon
et al. [2] found that driver fatigue was responsible for a significant
proportion (10%–15%) of traffic accidents. Thus, it is crucial to develop
a human-cybernetic interface (HCI) to monitor and further improve
road safety.

Leveraging bio-signals and machine learning algorithms [3,4] repre-
sents a cutting-edge direction in the evolution of advanced HCIs, where
the advantages of objective and real-time responses are beneficial to
significantly improve the operator’s performance in dynamic systems.
In recent years, electroencephalogram (EEG) signals, which can reflect
human brain activities, have been widely adopted to develop driver
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fatigue recognition systems [5,6]. In practice, the EEG-based system
can function as a means of signaling impending fatigue states, or
as an instructional mechanism aimed at augmenting operators’ non-
technical skills. In the evolving landscape of advanced HCI, the subject
variability [7] impedes the transition of the EEG-based system from
the laboratory setting (subject-dependent model) to the practice setting
(subject-independent model). In the context of EEG decoding, a subject-
dependent setting implies that models are exclusively trained and tested
on data from the same subject, which often achieves higher decoding
accuracy but may not be practical for widespread application due to
the necessity for individual-specific data collection and model training.
Conversely, a subject-independent setting, often referred to as a cross-
subject setting, characterizes models designed for broad applicability
across diverse individuals. These models are trained on datasets from
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multiple subjects to ensure robust generalization, enabling their deploy-
ment on unseen subjects without requiring subject-specific calibration.
A calibration-free model capable of direct applications to unseen sub-
jects stands out as one of the pivotal challenges in realizing the full
potential of advanced HCI.

In the domain of EEG-based fatigue detection, a diverse array of
machine and deep learning algorithms have been investigated, en-
compassing traditional classifiers [8,9], Convolutional Neural Networks
(CNNs) [10], and Recurrent Neural Networks (RNNs) [11]. CNNs,
despite their widespread use, are constrained by their inherently lim-
ited receptive fields, which may hinder their capacity to encapsulate
broader contextual information within EEG signals. RNNs, on the other
hand, are tailored for sequential data processing but often encounter
the challenge of capturing long-range dependencies within the data.
Additionally, this sequential processing nature impedes their capacity
for parallelization, adversely affecting training efficiency. With the de-
velopment of deep learning, Transformers have recently gained a lot of
attention. This innovative deep-learning architecture was introduced by
Vaswani et al. [12] and has since shown remarkable success in different
fields such as computer vision [13]. Distinct from previously used mod-
els, the Transformer architecture employs a self-attention mechanism,
enabling the model to process entire data sequences simultaneously.
This attribute is particularly advantageous for EEG decoding, where
discerning global dependencies across temporal, spectral, and spatial
dimensions is crucial. Given these advantages, there has been an in-
creasing interest in applying Transformer models to various EEG-based
applications, such as emotion recognition [14] and motor imagery
classification [15]. However, the exploration of Transformer models
for driver fatigue detection, especially within cross-subject scenarios,
remains an underexplored area of research.

In the usage of Transformers, recent works mostly performed self-
attention over the time axis, aiming to extract the global temporal pat-
terns. However, frequency-domain information was usually neglected
in the previous works. Frequency-domain information is significant in
EEG analysis [16] and previous studies have shown that frequency-
domain features were beneficial for EEG decoding [17]. Consequently,
there is a need to further explore the use of Transformer architec-
ture for learning global frequency-domain patterns and time-frequency
patterns, leveraging its inherent advantages in this context.

Furthermore, although different variants of Transformers have
shown outstanding performance in different EEG decoding tasks, the
design of specific components in the Transformers for the cross-subject
setting remains to be further investigated. The first aspect to consider
is the selection of the position embedding function. While learnable 1D
position embeddings are currently popular in the field [13], it is crucial
to take into account the limited size of EEG datasets when fitting large-
scale Transformers. Secondly, layer Normalization (LN) [18], used in
original Transformers, was developed to address the challenges posed
by the varying sequence lengths in text data, proving to be more
effective than batch normalization (BN) [19] for this purpose [18].
Despite efforts to standardize sequence lengths through padding, the
intrinsic variability in text length can result in BN’s statistical compu-
tations failing to accurately capture the true characteristics of the text
data due to the distortion introduced by the padding. Moreover, initial
attempts to apply BN to NLP tasks encountered significant performance
degradation [20]. In other fields such as computer vision, Transformer-
based architectures have predominantly adopted LN from the original
design. However, the advantages of BN for vision tasks have prompted
some researchers to experiment with integrating BN into Transformer
models in lieu of LN, yielding positive results [21]. Transitioning to
EEG cross-subject decoding, previous works underscored the crucial
role of BN’s statistical parameters in enhancing both the robustness
and accuracy of cross-subject classification tasks [10]. Therefore, the
selection of the normalization layer should also be carefully explored
2

for EEG decoding tasks.
The research questions in this work are articulated as follows: (1)
enhancing the learning and integration of global time-domain and
frequency-domain features by capitalizing on the capabilities of Trans-
formers within the context of cross-subject EEG-based fatigue detection
task, thereby surpassing the efficacy of previous methodologies. (2)
investigating the optimal choices for the components of Transformers to
ensure maximum effectiveness in this specific task. To deal with them,
this work proposed a time-frequency Transformer (TFormer) catered to
the characteristics of EEG decoding and can automatically learn global
time–frequency patterns. Specifically, considering the intrinsic nature
of non-stationary and low signal-to-noise ratio (SNR), the Transformers
that lack inductive biases inherent to CNNs may not generalize well
when trained directly on raw EEG data which are typical of small
sizes. Therefore, the convolutional stems were first designed to con-
vert the raw EEG data into feature maps that were well-suited for
further learning tasks. Following that, this work proposed to integrate
the temporal patterns and frequency-domain patterns by utilizing the
benefits of the cross-attention mechanism, which has demonstrated sig-
nificant potential in the fusion of diverse modalities [22]. Specifically, a
time-frequency multi-head cross-attention (TF-MCA) was introduced to
learn the global time-frequency features by integrating the time-domain
patterns into each frequency point. Then, by passing the obtained
time–frequency patterns through self-attentions, the model can further
learn global dependencies with enhanced representation capabilities. In
addition, we found that batch normalization (BN), which can exploit
the statistics of individual subjects, was more suitable for the TFormer
used in the task of cross-subject EEG decoding.

The contributions of this work are summarized as follows:

• This work proposed a TFormer, which advanced the extraction of
the global time-frequency patterns by introducing a TF-MCA mod-
ule. Experiment results demonstrated the superior performance of
the TFormer over the strong baselines.

• This work designed general convolutional stems for both do-
mains, which were effective in dealing with the intrinsic nature
of EEG data.

• This work investigated the internal settings for EEG decoding,
including the selection of position embedding functions and nor-
malization layer. We found that using BN layers in Transformers
is more suitable for EEG decoding.

The remaining sections of this paper are organized as follows:
Related works are presented in Section 2. Section 3 introduces the
proposed TFormer in detail. Section 4 presents information about the
datasets, comparison results, and ablation study. Then, the advantages
of the proposed model are discussed in Section 5. Finally, conclusions
are drawn in Section 6.

2. Related work

2.1. EEG signal classification

Various machine learning algorithms have been used to decode EEG
signals for fatigue recognition by first identifying hand-engineering fea-
tures and then applying classifiers. Several hand-engineering features
have been investigated for different EEG paradigms, including common
spatial filter patterns (CSP) for MI classification [23], differential en-
tropy (DE) for emotion recognition [24], and sample entropy for mental
stress recognition [25]. For fatigue detection, power spectral density
(PSD) has become a popular feature in recent studies. Ye et al. [26]
identified fatigue state by exploiting PSD features. Furthermore, Gao
et al. [27] exploited the PSD features to characterize the traits related
to driver fatigue states. In their works, CNNs were exploited as the
classifier. In addition, attempts were also made to utilize classical
classifiers such as support vector machines (SVM) [17] as the classifier.

Although widely used, this conventional pipeline can present notable
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drawbacks, including the need for time-consuming feature engineering
and limitations in the information contained within the features.

The success of deep learning in image processing has led to similar
advancements in end-to-end EEG decoding using DNNs. Compared
to conventional hand-engineering feature-based models, DNNs with
stronger feature learning capability from raw EEG data can offer auto-
matic feature extraction from raw data. Among the different architec-
tures of DNNs, deep convolutional neural networks have demonstrated
outstanding performance in automatically learning from EEG signals.
Schirrmeister et al. [28] studied raw EEG data decoding by using CNN
models. They proposed both shallow and deep CNN architectures and
achieved superior performance on motor imagery (MI) classification
tasks. Following that, Lawhern et al. [29] introduced a compact CNN
named EEGNet for raw EEG data decoding, which has been utilized
in different EEG paradigms. Although these two works were proposed
for other EEG paradigms, they are also applicable for fatigue recog-
nition tasks and widely used as the baseline methods [7]. Regarding
recent fatigue recognition works, Cui et al. [30] proposed an Inter-
pretableCNN (ICNN) that performs spatial and temporal convolution
operations and achieved superior performance compared to previous
models such as EEGNet in drowsiness classification based on EEG
signals. Recent literature also showed that ICNN could be applied to
other EEG paradigms [31].

In the application of DNNs for fatigue recognition, frequency-
domain data as inputs has also been investigated, which mainly em-
ployed hand-engineering spectral features such as DE and PSD. For
instance, Shi et al. [32] proposed a convolutional autoencoder to learn
frequency features from extracted spectral features. Gao et al. [33]
transformed the DE of five frequency bands of EEG signals into a 4-
dimensional feature tensor. The attention module and long short-term
memory (LSTM) network were used to combine the spatial-frequency-
temporal features for fatigue recognition. Despite the advancements in
DNNs for time–frequency-domain EEG decoding, the learning of the
global time-frequency patterns from raw EEG data remains to be further
explored.

2.2. Transformers

The Transformer architecture is based on the self-attention mecha-
nism that enables the model to capture long-range dependencies [12].
Motivated by the success of Transformers in other domains [13,34], re-
searchers started to utilize the Transformer model and the self-attention
mechanism in various EEG paradigms. Gong et al. [35] leveraged
the integration of convolutional layers with Transformer architectures
to learn spatial, spectral, and temporal dynamics within DE features,
tailored for emotion recognition. Similarly, Zeynali et al. [36] har-
nessed hand-crafted PSD features to train a Transformer-based model,
which was named ’Spectral Transformer’. In the time domain, the
Transformer model was used to learn the features directly from the raw
EEG data. Ensemble learning was used to combine them to perform
the final classification. The end-to-end training of Transformers has
also been explored in recent works. Siddhad et al. [37] showcased the
Transformers’ utility across diverse tasks, underscoring their efficacy
in learning raw EEG data. Song et al. [15] proposed a convolutional
Transformer (Conformer) to perform end-to-end motor imagery (MI)
recognition. For the MI task, Xie et al. [38] also proposed a series
of Transformer models that can capture temporal or spatial informa-
tion separately. Moreover, the application of Transformers extended to
EEG-based diagnostics, including Alzheimer detection [39] and seizure
prediction [40]. Transformer has also been applied to reduce individ-
ual differences by combining with transfer learning techniques. For
instance, Song et al. [41] proposed a global adaptive Transformer that
used an attention-based adaptor to align source features to the target
domain. The model leveraged both adversarial loss and adaptive center
3

loss for enhanced domain feature alignment. l
A wide range of alternatives have been investigated in related areas
regarding Transformer components, specifically normalization layers
and positional embeddings. Shen et al. [20] critically examined the
inapplicability of BN in NLP tasks and proposed an enhanced BN
variant, PowerNorm, tailored for such applications. Yao et al. [21]
investigated the use of BN within computer vision tasks, affirming its
viability within Transformer architectures for visual tasks. Regarding
position embeddings, fixed sine, and cosine position embeddings [12],
as well as learned position embeddings [13], have proven effective
in previous studies. These previous works highlight the importance of
exploring the most suitable options for these components in EEG-based
classification tasks.

2.3. Research gaps

The recent advances in EEG-based fatigue detection have predom-
inantly been occupied by CNN models. However, their constrained
receptive fields might impede the generalization capability. With their
advantage of capturing extensive dependencies, Transformers present
a promising alternative. Yet, the application of Transformers in fatigue
detection remains underexplored. Additionally, while some studies
have integrated time-domain and frequency-domain features within a
Transformer-based model, the frequency-domain insights often stem
from hand-engineered features, potentially limiting the depth of learned
information. Additionally, the approach of learning time and frequency
features separately before combining them only indirectly represents
time-frequency information. The direct learning of time–frequency
features from data still requires more in-depth exploration. Finally, a
critical examination and optimization of Transformer components for
EEG-based applications warrant further investigation.

3. Methodology

The architecture of the proposed TFormer is shown in Fig. 1. In this
section, the designed convolutional stems and Transformer blocks are
presented. In addition, the selection of the normalization layer in the
TFormer is introduced.

3.1. Input embedding and position embedding

To exploit the Transformer to learn from the raw time- and
frequency-domain data, the input embedding was first performed to
generate the 1D sequence of ‘‘token’’ embedding as the input. In EEG
decoding of this work, ‘‘token’’ represents the time steps in the time
domain and the frequency points in the frequency domain. The fast
Fourier transformation (FFT) was utilized to transform the time-domain
EEG signals 𝒙𝒕 ∈ R𝑁×𝑀×𝑇 into the frequency-domain data 𝒙𝒇 ∈
R𝐾×𝑁×𝐹 , where 𝑁 , 𝑀 , 𝑇 and 𝐹 represents the size of mini-batch, EEG
hannels, time steps and frequency points, respectively.

We designed a convolutional stem for input embedding based on
he typical spatial and temporal filters which have been shown to be
romising for EEG decoding in recent works [42]. Specifically, when
he time-domain EEG data were used as the input, the convolutional
tem stacked a 𝐶 × 1 pointwise convolution (spatial filters) and a
× 𝐾 temporal convolution (temporal filter), where 𝐾 represents the
ernel size. Following that, the Gaussian Error Linear Unit (GELU)
ctivation function and batch normalization (BN) were performed. For
he frequency-domain input, the pointwise convolution was only used
n the convolutional stem, followed by the GELU action layer and BN
ayer. Since the frequency-domain data can potentially separate the
oisy and beneficial frequency points, there was no operation along the
requency axis. The outputs of the temporal and spectral stem are de-
oted as 𝒌𝒕 ∈ R𝑁×𝐶×𝑇𝐶𝑜𝑛𝑣 and 𝒒𝒇 ∈ R𝑁×𝐶×𝐹 , respectively, where 𝑇𝐶𝑜𝑛𝑣
epresents the size along the time axis after the temporal stem. For the

earning of the following Transformer blocks along the time axis and
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Fig. 1. The overview of the TFormer. The terms ‘Q’, ‘K’, and ‘V’ represent queries, keys, and values, respectively. The cross-attention Transformer block used 𝑄𝑓 , 𝐾𝑡, and 𝑉𝑡 as
he inputs. For the self-attention Transformer block, the queries, keys, and values all came from the learned time-frequency patterns. 𝐿 represents the number of self-attention
ransformer blocks. The term ‘FC’ represents a fully-connected layer that was used for classification. The term ‘PE’ represents the petition embeddings.
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requency axis, the outputs were further reshaped to (𝑁, 𝑇𝐶𝑜𝑛𝑣, 𝐶) and
𝑁,𝐹 , 𝐶) in the time domain and the frequency domain, respectively.

Upon the input embeddings obtained by the stems, the Transformer
as used to learn the global time-frequency patterns along the time and

requency axes. Position embeddings were added to the input embed-
ings of both domains to exploit the order information of the learned
atterns in both domains. There are two types of position embeddings,
earned and fixed [43]. Considering the limited EEG data for training
he learnable 1D position embeddings, the fixed position embeddings
alculated by sine and cosine functions were used. Specifically, the
qs. (1) and (2) were followed for calculating position embeddings.

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(
𝑝𝑜𝑠

100002𝑖∕𝐶
), (1)

𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(
𝑝𝑜𝑠

100002𝑖∕𝐶
), (2)

where 𝑝𝑜𝑠 represents the position and 𝑖 represents the index of the
dimension. We also investigated the performance of using learnable 1D
position embeddings. The comparison is performed in Section 4.7.

3.2. Transformer blocks

In the present study, the pre-norm Transformer architecture [44]
was employed. This particular configuration integrates layer normal-
ization within the residual connections and positions it anterior to the
multi-head attention layer. Xiong et al. [45] provided the evidence
that training using the pre-norm Transformer architecture can be more
efficient, attributed to the well-behaved gradients within the pre-norm
Transformer framework. This architectural paradigm has been widely
adopted in recent advancements such as Vision Transformers [13].

Frequency-domain analysis has been shown to be promising for
EEG processing [16] since the useful patterns can appear in specific
frequency points, reducing the impact of inferior information. There-
fore, we proposed integrating the powerful time-domain patterns by
temporal convolution into each frequency point. The obtained overall
time-frequency patterns with global frequency-domain information can
have the merits of both domains and be beneficial to EEG decoding. In
this work, a time-frequency multi-head cross-attention (TF-MCA) was
proposed to establish the connection between each frequency point
and the sequential time-domain patterns. In TF-MCA, the queries were
obtained by 𝑸 = 𝒒 + 𝑃𝐸 and the identical keys and values are
4

𝒇 𝒇 l
obtained by 𝑲 𝒕 = 𝑽 𝒕 = 𝒌𝒕 + 𝑃𝐸 as keys and values. Specifically, the
TF-MCA is described by Eq. (3).

𝑇𝐹 −𝑀𝐶𝐴(𝑸𝒇 ,𝑲 𝒕,𝑽 𝒕) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝐻 )𝑾 𝑶 ,

ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸𝒇𝑾
𝑸𝒇
𝒉 ,𝑲 𝒕𝑾

𝑲𝒕
𝒉 ,𝑽 𝒕𝑾

𝑽 𝒕
𝒉 ),

. (3)

here 𝑾 𝑶 ∈ R𝑇𝐶𝑜𝑛𝑣×𝑇𝐶𝑜𝑛𝑣 , 𝑾
𝑸𝒇
𝒉 ∈ R𝐹×𝐹∕ℎ and 𝑾 𝑲𝒕

𝒉 ,𝑾 𝑽 𝒕
𝒉 ∈

𝑇𝐶𝑜𝑛𝑣×𝑇𝐶𝑜𝑛𝑣∕ℎ represent the weight matrices of linear projections. The
erm ℎ represents the number of attention heads.

To introduce non-linear mapping and encourage feature quality, the
eed-forward network (FFN) was utilized on the learned time–frequency
epresentations. Denoting the outputs of TF-MCA by 𝒀 , the function of
he FFN is described by Eq. (4).

𝐹𝑁(𝒀 ) = 𝜎(𝒀𝑾 𝟏 + 𝒃𝟏)𝑾 2 + 𝒃𝟐, (4)

here 𝑾 𝟏, 𝑾 𝟐 and 𝒃𝟏, 𝒃𝟐 are the weights and the biases of the
ully-connected layers.

Subsequently, multi-head self-attention (MHA) was utilized to fur-
her learn the global dependencies of the time–frequency representa-
ions, followed by the FFN. It is worth noting that the number of blocks
MHA+FFN) is a hyper-parameter of this work.

.3. Batch normalization (BN) instead of layer normalization (LN)

Normalization technique is essential in Transformers to stabilize
he training process and improve the model performance. This work
xplored the suitable normalization technique for the Transformers
sed for EEG decoding. The commonly used BN in CNN models for
EG-based classification and popular LN in standard Transformers were
ompared.

The main difference between BN and LN lies in the dimension
ver which the normalization is performed. Taking a Tensor input
o the standard Transformers with the shape of (𝑁,𝐿,𝐶), where 𝐿
epresents the sequence length, BN computes the mean and variance of
he activations across (𝑁,𝐿) in each training batch, while LN performs
he computing across (𝐶) in each training sample. Although LN has
ecome the most popular technique used in Transformers, it mainly
onsiders the normalization for individual samples and neglects the
tatistics among the training samples which are important for cross-
ubject EEG decoding [10]. Based on the analysis, this work employed
he BN in the TFormer introduced above. Furthermore, in the BN
ayer, rather than relying on the moving average and moving variance
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obtained during training, this work automatically used the mean and
variance of the testing set to normalize the activations of each layer
during testing, which was advantageous in cross-subject EEG decoding
where the distribution of the input data during testing differs from that
of the training data. This setting is denoted as subject-specific BN. The
comparison between the use of BN and LN in the proposed TFormer is
presented in Section 4.6.

4. Experiments

4.1. Introduction of sustained-attention driving (SAD) dataset

The sustained-attention driving (SAD) dataset [46] was utilized in
this work. In the experiment, lane-departure events were randomly
induced to make the car drift from the original cruising lane towards
the left or right side (deviation onset). Each participant was instructed
to quickly compensate for this perturbation by steering the wheel (re-
sponse onset) to cause the car to move back to the original cruising lane
(response offset). Deviation onset, response onset, and response offset
events were all included in a complete trial. During the experiment,
the EEG activity of each subject was recorded using a 32-channel Quik-
Cap following the International 10–20 system of electrode placement.
Processed data provided by Cao et al. [46] were used in this work.
Specifically, the pre-processing steps included bandpass filtering and
artifact rejection. The bandpass finite impulse response filters of 1-
50 Hz were applied to remove the low-frequency direct current drifts
and power line noise. For artifact rejection, the apparent eye blink
contamination in the EEG signals was manually removed by visual
inspection. Following that, the artifacts were removed by the Auto-
matic Artifact Removal plug-in for EEGLAB, which provided automatic
correction of ocular and muscular artifacts in the EEG signals.

In this study, we utilized three-second EEG data preceding the
deviation onset, as commonly employed in previous research [17,30],
to classify upcoming lane-departure events. Following the approach of
Wei et al. [17], we labeled data using local reaction time (RT) and
global RT. The RT was defined as the duration between the deviation
onset and the response onset. For each participant, the RT for each lane-
departure event was considered the local RT, while the global RT was
determined by averaging the RTs from all trials within a 90-s window
preceding the upcoming deviation onset.

The data labeling process was conducted in accordance with the
process described by Wei et al. [17]. Specifically, we calculated the
’alert-RT’ as the 5th percentile of local RTs for each driving session. If
both the local and global RTs were shorter than 1.5 times the alert-RT,
the corresponding EEG data was labeled as ‘alert’. Conversely, if both
RTs were longer than 2.5 times the alert-RT, the data was labeled as
‘fatigue’. We excluded transitional states with moderate performance
and did not consider the neutral state in this study. When multiple
datasets were available for a subject, we selected the most balanced
one for filtering. Subsequently, we down-sampled the data to 128 Hz.
Ultimately, we obtained a balanced driver fatigue dataset comprising
2022 samples from 11 participants. The data size for a single sample
was 30 (channels) × 384 (time steps).

4.2. Introduction of SEED-VIG dataset

In this study, we also utilized the publicly available SEED-VIG
dataset, which was obtained from a monotonous driving task using
a virtual reality-based simulated driving system [47]. The EEG data
were recorded using the Neuroscan system, and electrode placement
followed the International 10–20 electrode system. Alongside the EEG
recording, the percentage of eye closure (PERCLOS) [48] was mea-
sured using Senso-Motoric Instrument eye-tracking glasses, employing
a window size of 60 s and a moving step of 10 s.

We further down-sampled the EEG signals to 128 Hz and applied
a low-pass filter of 1 Hz. We extracted 3-s EEG samples prior to
5

each PERCLOS evaluation event, adhering to the procedure outlined
by Zheng et al. [47]. Following [47], samples were labeled as ‘alert’
when PERCLOS was below 0.35, and as ‘fatigue’ when PERCLOS ex-
ceeded 0.7. We discarded samples with PERCLOS values within the
intermediate range. Moreover, sessions with fewer than 50 samples
for either class were discarded, and we balanced the classes in each
session by selecting the most representative ‘alert’ and ‘fatigue’ samples.
Finally, we compiled a balanced driver fatigue dataset containing 3536
samples from 12 participants. The data size for a single sample was 17
(channels) x 384 (time steps).

4.3. Experiment settings and hyper-parameter optimization

The codes were implemented and tested on Python 3.8.16 with a
GeForce RTX 2080 Ti. Pytorch framework was employed in this work.

To evaluate the performance of the proposed TFormer on the chal-
lenging cross-subject driver fatigue recognition task, the leave-one-
subject-out (LOSO) cross-validation (CV) was conducted. The models
were run ten times with different random seeds. The final average
results were reported. We employed a stratified sampling approach
based on individuals and classes to divide the dataset, except for the
testing data, into training and validation sets. Specifically, we randomly
extracted 20% of the data from each individual and each class as the
validation set, while the remaining 80% of data was used as the training
set. During training, the model was trained on the training set for 100
epochs and the validation set was evaluated in each epoch. The model
was then re-trained on the combination of the training set and the
validation set for a fixed number of epochs where the highest validation
accuracy was achieved. The rest hyper-parameter settings for back-
prop-based models were the same. Specifically, Adam optimizer was
set as momentum 𝛽1 = 0.9 and 𝛽2 = 0.99.

In the evaluation of the TFormer, the kernel size 𝐶 for the pointwise
onvolution layer was set at 30 for the SAD dataset and 17 for the
EED-VIG dataset. All other parameters remain the same across both
atasets. The kernel size 𝐾 in the temporal convolution layer was set
s 64. In both MHA and MCA, the number of the heads ℎ was set as

4. The number of self-attention Transformer block 𝐿 was set to 1. The
expansion rate of FFN was set as 4. The GELU activation function was
used in the Transformer blocks.

The proposed model was compared with six baselines for the cross-
subject driver fatigue recognition: (1) SVM [17] with the extracted
PSD features as the input; (2) EEGNet [29]; (3) ShallowCNN [28]; (4)
Subject machine (SM) model [7]; (5) ICNN [30]; (6) Conformer [15].
For the parameter setting of the Conformer, the validation set was
exploited to optimize the model parameters including the number of
heads and the number of Transformer blocks. It is worth noting that
ICNN was the state-of-the-art (SOTA) CNN model in cross-subject driver
fatigue recognition, while the Conformer was the SOTA Transformer
model in EEG decoding.

To ensure a fair comparison, subject-specific batch normalization
(BN) was employed in all back-propagation-based models. In the case
of the Conformer model, we replaced the LN layers with BN layers.
For clarity, we denoted the original version as Conformer_O, while
the modified version was labeled as Conformer w BN in the following
comparisons.

For SVM, the regularization parameter was optimized by using
grid search. The search space was [2−5, 25]. The PSD features used for
training SVM were computed via Fast Fourier Transform on each EEG
epoch from these four spectral bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), and beta (12–30 Hz). The final feature vector was a
concatenation of the spectral powers extracted from the four bands and
all available channels. In this study, the final feature vector was of 4
(frequency bands) × 30 (channels) = 120 dimensions.
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Table 1
Comparison results (%) of LOSO driver fatigue recognition on SAD dataset. ‘Avg. Acc.’ represents average accuracy. ‘Std.’ represents standard deviation. The ‘Avg. Rank’ column
does not have a unit.

Methods Subjects Avg. Acc. Std. Avg. Rank

1 2 3 4 5 6 7 8 9 10 11

SVM [17] 77.66 75.76 66.67 66.22 83.04 75.90 59.80 67.80 88.54 70.37 59.73 71.95 9.16 6.41
EEGNet [29] 77.66 61.97 79.47 79.46 90.71 84.46 62.35 75.15 84.39 76.30 76.90 77.17 8.69 3.41
ShallowCNN [28] 78.72 44.39 78.13 68.24 83.30 76.39 64.71 70.08 83.12 75.37 75.93 72.58 11.00 5.23
SM model [7] 78.72 68.18 79.33 68.24 85.27 83.73 64.71 57.20 78.03 82.41 71.68 74.32 8.94 4.5
Conformer_O [15] 75.43 61.06 73.60 68.78 85.80 83.61 60.20 69.70 77.64 73.89 74.34 73.10 8.01 6.09
Conformer w BN [15] 75.85 56.21 78.53 79.19 84.91 84.82 60.78 72.73 85.03 73.70 67.52 74.48 9.70 5.00
ICNN [30] 81.60 65.61 77.60 80.00 90.54 84.46 63.14 77.88 86.75 66.85 79.03 77.59 8.89 3.14
TFormer 80.21 79.85 76.40 80.27 89.29 85.90 65.49 76.14 84.39 78.89 79.65 79.68 6.16 2.23
Table 2
Comparison results (%) of LOSO driver fatigue recognition on SEED-VIG dataset.

Methods Subjects Avg. Acc. Std. Avg. Rank

1 2 3 4 5 6 7 8 9 10 11 12

SVM [17] 92.11 74.07 78.76 60.42 94.85 68.70 77.57 94.37 84.41 87.96 59.35 88.80 80.11 12.48 6.17
EEGNet [29] 92.11 89.14 87.21 86.46 63.81 95.56 80.15 91.69 73.56 89.49 87.27 88.16 85.38 8.88 5.04
ShallowCNN [28] 88.77 92.72 78.76 81.25 72.47 88.59 81.54 90.99 90.54 92.70 72.45 88.16 84.91 7.40 5.21
SM model [7] 92.98 91.98 87.39 85.42 92.78 95.37 71.69 97.18 91.09 92.34 91.01 89.81 89.92 6.55 3.5
Conformer_O [15] 86.14 85.80 75.00 79.43 92.89 85.85 79.49 82.39 79.11 84.67 67.34 82.33 81.70 6.44 7.00
Conformer w BN [15] 95.96 89.01 84.25 86.51 98.25 94.19 78.97 93.66 91.73 92.19 68.13 88.16 88.42 8.32 4.13
ICNN [30] 93.68 92.84 88.10 87.60 92.37 95.19 83.97 95.21 92.82 90.36 87.12 90.19 90.79 3.52 2.75
TFormer 95.88 93.70 88.54 86.88 96.49 96.00 84.04 95.35 91.58 92.19 85.11 88.54 91.19 4.46 2.21
4.4. Cross-subject driver fatigue recognition results

The accuracy of the proposed TFormer and the baselines on two
datasets are compared in Tables 1 and 2. Additionally, the average
ranks based on the accuracy of all subjects are also presented in tables.
The comparison results on average accuracy are further highlighted in
Fig. 2. The results could be analyzed from two aspects.

• The comparison with CNN models. Compared with CNN mod-
els, the superior performance of the proposed TFormer could be
observed. With the same setting of subject-specific BN, the neglect
of the frequency patterns and the global dependencies compared
to the TFormer might lead to the suboptimal performance of the
CNN models.

• The comparison with Conformer. As the SOTA Transformer
model proposed for EEG decoding, Conformer_O was primar-
ily designed to extract global temporal information for subject-
dependent classification. Even though subject-specific batch nor-
malization was also applied to Conformer w BN, the other main
contributing factor, the learned global time-frequency patterns,
could allow the proposed TFormer to achieve superior perfor-
mance. It was observed that BN layers could also be beneficial
in improving the performance of the Conformer in cross-subject
EEG decoding.

Overall, the proposed TFormer outperformed the strong baseline
ethods, achieving the highest average accuracy and ranking first in

he comparisons. The enhanced performance of TFormer is primarily
ue to the innovative TF-MCA component. This cross-attention layer
s adept at comprehensively understanding global frequency-domain
haracteristics and integrating them with temporal features. By explic-
tly capturing a holistic view of time–frequency features, it surpasses
he capabilities of other methods that are limited to analyzing patterns
ithin a single time domain. This broader perspective contributes

ignificantly to TFormer’s superior performance. For an in-depth com-
arison of the time–frequency features against the single-domain fea-
ures, please refer to the detailed analysis provided in Section 4.5.
he exceptional performance of the proposed TFormer highlights its
fficacy in cross-subject driver fatigue recognition. The incorporation of
N layers into the Conformer underscores the significance of employing
6

N in cross-subject EEG decoding tasks.
Table 3
Precision, Sensitivity, Specificity and F1-score (%) of the TFormer and the baseline
methods on SAD dataset.

Precision Sensitivity Specificity F1-Score

SVM [17] 73.76 73.39 73.89 73.57
EEGNet [29] 78.23 79.53 77.86 78.86
ShallowCNN [28] 73.81 75.47 73.21 74.62
SM model [7] 70.66 82.89 65.58 76.28
Conformer_O [15] 78.18 67.46 81.17 72.40
Conformer w BN [15] 76.57 74.80 77.13 75.67
ICNN [30] 79.12 80.65 78.69 79.87
TFormer 81.02 79.98 81.27 80.49

Table 4
Precision, Sensitivity, Specificity and F1-score (%) of the TFormer and the baseline
methods on SEED-VIG dataset.

Precision Sensitivity Specificity F1-Score

SVM [17] 74.00 85.46 69.97 79.32
EEGNet [29] 83.51 89.43 82.24 86.33
ShallowCNN [28] 84.60 84.72 84.59 84.66
SM model [7] 88.57 91.12 88.24 89.82
Conformer_O [15] 83.84 77.30 84.74 80.20
Conformer w BN [15] 87.09 89.60 86.71 88.32
ICNN [30] 89.65 91.61 89.42 90.61
TFormer 90.15 91.91 89.95 91.02

To better understand the classification capabilities of the proposed
TFormer for driver fatigue recognition, we compared its performance
with the baseline methods in terms of Precision, Sensitivity, Specificity,
and F1-score on two datasets. The class ‘alert’ was set as positive,
while the class ‘fatigue’ was set as negative in the calculation of these
metrics. The comparison results are shown in Tables 3 and 4. Notably,
the TFormer model outperformed the baseline methods in terms of
Precision and F1-score, achieving the highest F1-scores of 80.49%
and 91.02% on two datasets, respectively. Additionally, the proposed
model exhibited higher Specificity than the baseline methods. This
demonstrated that the model with the capabilities of capturing global
patterns could ensure a higher probability of correctly identifying
‘fatigue’ subjects. This is especially valuable in practical applications.
Finally, the TFormer also presented higher Sensitivity than most of the
baseline methods.
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Fig. 2. Average accuracy comparison on SAD dataset and SEED-VIG dataset.
Table 5
𝑝-values of the Wilcoxon results on SAD dataset.

SVM EEGNet ShallowCNN SM model Conformer Conformer w BN ICNN

TFormer <0.001 0.015 <0.001 <0.001 <0.001 <0.001 0.030
Table 6
𝑝-values of the Wilcoxon results on SEED-VIG dataset.

SVM EEGNet ShallowCNN SM model Conformer Conformer w BN ICNN

TFormer <0.001 0.015 <0.001 0.009 <0.001 <0.001 0.260
To perform a statistical analysis of the comparison results in terms of
average accuracy, we conducted a one-tailed Wilcoxon paired signed-
rank test. The 𝑝-values obtained from the Wilcoxon test on both datasets
are presented in Tables 5 and 6. The analysis revealed that the average
accuracy of the proposed TFormer model was significantly better than
that of the baseline methods, with a 𝑝-value less than 0.05. For the
comparison on the SEED-VIG dataset, we concluded that TFormer was
slightly better than ICNN.

Based on the above results, we could confidently conclude that the
proposed TFormer performed exceptionally well in recognizing driver
fatigue under the cross-subject setting, outperforming SOTA methods
such as ICNN, SM model, and the Conformer. A higher rank was also
observed for the proposed TFormer. Furthermore, comparing the four
classification performance metrics demonstrated the superiority of the
TFormer. Therefore, the proposed TFormer is a highly competitive
classifier for EEG-based cross-subject driver fatigue recognition tasks.

4.5. Ablation study

To validate the proposed TF-MCA in TFormer, it was compared
to the time-domain and frequency-domain variants; that is, the cross-
attention Transformer block was replaced with the self-attention Trans-
former blocks. At the same time, only the time-domain or frequency-
domain outputs from the convolutional stem were used as the inputs
for both variants. Furthermore, the performance of the time-domain
convolutional stem and the frequency-domain convolutional stem was
also used for comparison, investigating whether the Transformer blocks
were beneficial for the classification. The comparison results regarding
average accuracy and F1-scores are shown in Fig. 3 It was observed
that the proposed TFormer with TF-MCA showed better performance
than the Transformer variants, which had two layers of self-attention
blocks. This demonstrated the effectiveness of the proposed TF-MCA.
The time-frequency patterns learned proved instrumental in achieving
superior performance. Furthermore, compared with the basic convolu-
tional stems solely used for classification, the better average accuracy
achieved by Transformer models demonstrated the effectiveness of the
Transformer blocks.
7

Fig. 3. Analysis of the proposed TF-MCA in the TFormer. The terms ‘T-Conv Stem’ and
‘F-Conv Stem’ represents time-domain Convolutional stem and frequency-domain stem,
respectively. The terms ‘T-Trans’ and ‘F-Trans’ represents the time-domain Transformer
and frequency-domain Transformer, respectively.

4.6. Investigation of the normalization layer in the TFormer

The selection of the normalization layer is discussed in this part. The
comparison between the BN layer and the LN layer used in Transformer
blocks was conducted. The comparison results were shown in Table 7. It
was observed that TFormer with BN layers showed substantial improve-
ment over that of the LN layers in terms of all comparison metrics. The
possible reason is analyzed as follows. The variation in data statistics
across different subjects poses a challenge to the generalization abilities
of a well-trained model when applied to new subjects [7]. While LN
is a common technique in Transformers to ensure stable training, it
normalizes data on a per-token basis - -where a token corresponds
to an individual time or frequency point in this context – without
aggregating statistics across samples from subjects. In contrast, subject-
specific BN offers a more tailored approach by normalizing data across
the samples of both training and test subjects within mini-batches. This
method is particularly effective in mitigating individual differences in
data statistics, thereby enhancing model performance. Therefore, we
concluded that the BN layers that could exploit the subject-specific
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Table 7
Comparison results (%) of using different normalization layer.

Avg. Acc. Precision Sensitivity Specificity F1-Score

TFormer w LN 75.25 77.65 76.80 77.82 77.20
TFormer w BN 79.68 81.02 79.98 81.27 80.49
Table 8
Comparison results (%) of using different position embedding methods. The term ‘PE’
stands for position embedding.

Avg. Acc. Precision Sensitivity Specificity F1-Score

No PE 78.53 79.15 79.82 78.97 79.48
Learnable PE 79.01 80.73 78.83 81.17 79.75
Fixed PE 79.68 81.02 79.98 81.27 80.49

Fig. 4. The box and whisker plot of the accuracy attained by using different numbers
of heads in the TFormer on the SAD dataset. The red dotted line and corresponding
red dot signify the mean value, while the orange line indicates the median value.

feature statistics to reduce the impact of subject variability were more
suitable for the Transformer model used for cross-subject EEG decoding.

4.7. Investigation of using different position embedding methods

Different position embedding methods were analyzed. Specifically,
the performance of no position embeddings as well as using fixed posi-
tion embeddings (i.e., sine and cosine functions) and learnable 1D posi-
tion embedding was compared as shown in Table 8. Results presented
that position embeddings were essential for TFormer and used for
cross-subject EEG decoding. Furthermore, slightly better performance
was achieved by using fixed-position embeddings. Introducing more
trainable parameters through learnable position embeddings can in-
crease the risk of overfitting, which may negatively impact the model’s
overall performance. Our analysis indicates that, while both embedding
methods perform similarly, using fixed-position embeddings could be a
better choice, as it may help reduce the risk of overfitting and improve
model performance.

4.8. Investigation of using different numbers of heads

To better understand the TFormer, Fig. 4 compares the perfor-
mance of using various numbers of heads within the TFormer. As the
output dimension of the convolutional stems was 16, the experiment
assessed TFormer performance with 1, 2, 4, 8, and 16 heads. The results
demonstrated similar performance across different head counts, with
8

the 4-head TFormer exhibiting the optimal median and mean accuracy.
5. Discussion

Compared with the SOTA Transformer model used in EEG decod-
ing [15,38], the proposed model focused more on the time-frequency
patterns learned by the Transformer blocks. EEG data was commonly
analyzed in the frequency domain because they were often found
to be associated with behavioral patterns [49]. Hence, incorporating
frequency information could enhance the classification performance of
the model as demonstrated by the comparison results in Section 4.5.
Although previous studies also exploited the time–frequency-domain
images as the input of the Transformer to promote the time-frequency
feature learning [50], the frequency points were considered as the
embeddings of each time step such that the global dependencies along
the frequency axis could be neglected. Furthermore, for the task of
using multiple EEG channels, solely using time-frequency images may
lead to neglect of the spatial information. In contrast, the TFormer
exploited the spatial features as the embedding of each frequency point
and each time step, and the global frequency information could also be
contained in the final time-frequency patterns, which was beneficial in
achieving better performance.

The convolutional stem is indispensable in the design of TFormer.
The Transformer has a much less inductive bias than CNNs [13].
Therefore, learning beneficial patterns directly from raw EEG data may
require a larger data size. However, because of the time-consuming data
collection process, the limited EEG dataset may lead to the sub-optimal
performance of Transformers directly input with raw EEG data. There-
fore, the convolutional stem could be beneficial in reducing the size
requirement of the training dataset. The benefits of the convolutional
stem have also been demonstrated by a previous study [51]. Early con-
volutions could help Transformers converge faster and achieve better
model accuracy. In addition, the convolutional stem helps to exploit
the spatial information, which is also essential for EEG decoding.

Leveraging BN in Transformers has been investigated in different
fields [20,21]. Although the standard BN was found not to be a suitable
choice for the Transformer model and may lead to frequent crashes in
model training, our experiment illustrated that the replacement did not
have a negative impact on model learning. Compared with LN, BN has
the advantage of considering the batch statistics of different subjects,
which has been shown promising for cross-subject EEG decoding [10].
In the TFormer, BN layers also contributed to improving the model
performance.

6. Conclusion

In this work, we proposed a Transformer-based model named
TFormer that effectively integrates global information from both the
time and frequency domains of raw EEG data. Specifically, a con-
volutional stem was designed for input embedding that operated in
both domains. Following that, a TF-MCA was implemented to combine
local frequency-domain patterns with global temporal patterns. The
resulting time–frequency patterns were then fed into self-attention
Transformer blocks to learn the global dependencies further. More-
over, considering the effectiveness of the subject-specific BN for cross-
subject EEG decoding, the LN layers were replaced with BN layers
in the TFormer. Experiment results demonstrated the effectiveness of
the proposed TFormer. Furthermore, the selection of position embed-
ding methods was investigated, which could serve as a reference for
future studies. Overall, this work provides insights into developing
an EEG-based driver fatigue detection system, further enhancing the

human–computer interaction capabilities within driving systems.
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6.1. Limitations and future works

While the proposed TFormer can effectively extract time-frequency
features from EEG data, it only implicitly captures spatial dimensions
through its convolutional stems. Given the significance of spatial in-
formation in EEG analysis, future work should explicitly integrate
this aspect into our framework. Additionally, the Transformer’s larger
model size, compared to traditional CNN models, could constrain its
generalization ability due to the limited size of our training dataset.
To address this, data augmentation techniques to enhance the model’s
robustness and performance must be further explored. Moreover, this
study relied solely on a well-established dataset for evaluation. The
impact of using datasets with varying pre-processing and labeling
methods on the proposed model and other machine-learning models
warrants further exploration.
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