
Citation: Wastupranata, L.M.; Kong,

S.G.; Wang, L. Deep Learning for

Abnormal Human Behavior Detection

in Surveillance Videos—A Survey.

Electronics 2024, 13, 2579. https://

doi.org/10.3390/electronics13132579

Academic Editor: Yue Wu

Received: 4 June 2024

Revised: 25 June 2024

Accepted: 28 June 2024

Published: 30 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

Deep Learning for Abnormal Human Behavior Detection in
Surveillance Videos—A Survey
Leonard Matheus Wastupranata 1 , Seong G. Kong 1,* and Lipo Wang 2,*

1 Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea;
leo.matt.547@sju.ac.kr

2 School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, Singapore

* Correspondence: skong@sejong.edu (S.G.K.); elpwang@ntu.edu.sg (L.W.)

Abstract: Detecting abnormal human behaviors in surveillance videos is crucial for various domains,
including security and public safety. Many successful detection techniques based on deep learn-
ing models have been introduced. However, the scarcity of labeled abnormal behavior data poses
significant challenges for developing effective detection systems. This paper presents a comprehen-
sive survey of deep learning techniques for detecting abnormal human behaviors in surveillance
video streams. We categorize the existing techniques into three approaches: unsupervised, partially
supervised, and fully supervised. Each approach is examined in terms of its underlying concep-
tual framework, strengths, and drawbacks. Additionally, we provide an extensive comparison of
these approaches using popular datasets frequently used in the prior research, highlighting their
performance across different scenarios. We summarize the advantages and disadvantages of each
approach for abnormal human behavior detection. We also discuss open research issues identified
through our survey, including enhancing robustness to environmental variations through diverse
datasets, formulating strategies for contextual abnormal behavior detection. Finally, we outline
potential directions for future development to pave the way for more effective abnormal behavior
detection systems.

Keywords: abnormal human behavior detection; video surveillance; deep learning; data scarcity; security

1. Introduction

Abnormal human behavior detection involves identifying unusual behavior or state
transitions in a targeted subject. Behavior deviating from the norm is deemed abnormal [1].
In surveillance video monitoring, video footage from static cameras is analyzed for such
behaviors [2–6]. The field of abnormal behavior detection primarily focuses on security
and public safety, promoting the well-being of society [7,8]. Surveillance video provides
valuable visual information within a defined field of view for detecting abnormal human
behaviors [9–11].

Abnormal behavior detection can be categorized into short-term and long-term de-
tection based on the period. Short-term abnormal behavior detection entails identifying
abnormal actions from video frames of a relatively short time duration, facilitating in-
stantaneous decision-making. This category covers various abnormal behavior detection
scenarios such as fire detection [12], running [13–17], falling [18–22], crowding [23–28],
throwing objects [29–31], fighting [32–35], trespassing [36–41], and moving in opposite
directions [42]. On the other hand, long-term abnormal behavior detection requires longer
video durations to reach a decision. Examples include suspicious loitering [43–48], leaving
bags unattended [49–53], prolonged absence of movement in specific areas [54–56], or
extended instances of erratic behavior.

Several survey papers have compared abnormal behavior detection techniques us-
ing various evaluation metrics, such as accuracy, equal error rate (EER), and area under
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the curve (AUC), meaning the area under the receiver operating characteristic (ROC)
curve [57–63]. These metrics are crucial for assessing the effectiveness of different ap-
proaches in identifying abnormal behaviors. In recent years, abnormal behavior prediction
analysis utilizes a variety of deep learning algorithms [64]. Deep learning techniques for
abnormal human behavior detection can be classified into three approaches: unsupervised,
partially supervised, and fully unsupervised learning [65]. Specifically, the weakly su-
pervised and semi-supervised learning paradigms are referred to as partially supervised
learning [66]. The scarcity of abnormal human behavior data poses a significant chal-
lenge [67]. Hence, unsupervised and partially supervised detection approaches serve as
alternatives to address the data scarcity issue [68–70]. In these approaches, the model learns
normal behavior patterns from input layers during the training phase [59]. This model
then detects abnormal behaviors by identifying deviations from the learned patterns or by
comparing the new data against the identified normal behavior clusters. However, not all
unsupervised learning schemes are equally effective in detecting abnormalities in images
or videos. Two commonly used unsupervised learning approaches for abnormal human
behavior detection are reconstruction-based [71] and generative detection [72] methods.

In summary, this study provides a comprehensive examination of methods across
the three deep-learning-based detection approaches, addressing evident gaps such as the
limited coverage of research in the past five years, the scarcity of abnormal human behavior
data, and limited performance comparisons using popular datasets from the prior research.

1.1. Literature Review Methodology

The survey was conducted on the literature published in major journals. Their online
platforms were explored to locate the latest articles regarding deep learning techniques for
abnormal human behavior detection in surveillance videos. To ensure comprehensiveness,
several reputable academic websites were consulted, including Web of Science, IEEE Xplore,
Google Scholar, Science Direct, Scopus, ACM, and MDPI. Figure 1 illustrates the trend in the
number of papers focusing on deep learning for abnormal human behavior detection over
the past five years, from 2019 to 2023. With this upward trend, the topic of abnormal human
behavior detection research using deep learning is becoming increasingly prominent, as
evidenced by the substantial number of research publications in this field, particularly
in 2023.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 37 
 

 

Several survey papers have compared abnormal behavior detection techniques using 
various evaluation metrics, such as accuracy, equal error rate (EER), and area under the 
curve (AUC), meaning the area under the receiver operating characteristic (ROC) curve 
[57–63]. These metrics are crucial for assessing the effectiveness of different approaches in 
identifying abnormal behaviors. In recent years, abnormal behavior prediction analysis 
utilizes a variety of deep learning algorithms [64]. Deep learning techniques for abnormal 
human behavior detection can be classified into three approaches: unsupervised, partially 
supervised, and fully unsupervised learning [65]. Specifically, the weakly supervised and 
semi-supervised learning paradigms are referred to as partially supervised learning [66]. 
The scarcity of abnormal human behavior data poses a significant challenge [67]. Hence, 
unsupervised and partially supervised detection approaches serve as alternatives to ad-
dress the data scarcity issue [68–70]. In these approaches, the model learns normal behav-
ior patterns from input layers during the training phase [59]. This model then detects ab-
normal behaviors by identifying deviations from the learned patterns or by comparing 
the new data against the identified normal behavior clusters. However, not all unsuper-
vised learning schemes are equally effective in detecting abnormalities in images or vid-
eos. Two commonly used unsupervised learning approaches for abnormal human behav-
ior detection are reconstruction-based [71] and generative detection [72] methods. 

In summary, this study provides a comprehensive examination of methods across 
the three deep-learning-based detection approaches, addressing evident gaps such as the 
limited coverage of research in the past five years, the scarcity of abnormal human behav-
ior data, and limited performance comparisons using popular datasets from the prior re-
search. 

1.1. Literature Review Methodology 
The survey was conducted on the literature published in major journals. Their online 

platforms were explored to locate the latest articles regarding deep learning techniques 
for abnormal human behavior detection in surveillance videos. To ensure comprehensive-
ness, several reputable academic websites were consulted, including Web of Science, IEEE 
Xplore, Google Scholar, Science Direct, Scopus, ACM, and MDPI. Figure 1 illustrates the 
trend in the number of papers focusing on deep learning for abnormal human behavior 
detection over the past five years, from 2019 to 2023. With this upward trend, the topic of 
abnormal human behavior detection research using deep learning is becoming increas-
ingly prominent, as evidenced by the substantial number of research publications in this 
field, particularly in 2023. 

 
Figure 1. Trend in the number of publications on deep learning for abnormal human behavior de-
tection over the past five years (2019–2023). 

145 152

233

299

420

0
50

100
150
200
250
300
350
400
450

2019 2020 2021 2022 2023

N
um

be
r o

f P
ap

er
s

Year

Figure 1. Trend in the number of publications on deep learning for abnormal human behavior
detection over the past five years (2019–2023).

Several combinations of keywords were used, including “deep learning”, “unsuper-
vised learning”, “weakly-supervised learning”, “semi-supervised learning”, “anomaly
detection”, and “video surveillance”, to search for relevant articles. In total, 1284 results
were obtained from several academic journal search engines. Among these, 416 results
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were from Science Direct, 388 from Google Scholar, 93 from IEEE Xplore, and 63 from
Scopus. The remaining results were obtained from the Web of Science, ACM, and MDPI
search engines. Figure 2 illustrates the distribution of related published papers on abnormal
human behavior detection by search engines. From the collected set of articles, all those
published before 2019 were removed. Additionally, priority was given to journal articles.
The remaining articles were screened to exclude those not related to abnormal behavior
detection, particularly those that do not focus on video surveillance and static cameras.
Then, the remaining papers were categorized into unsupervised, partially supervised, and
fully supervised detection approaches. Finally, the screening process was completed with
97 papers, including 13 survey papers from related works. Approximately 90% of the
selected papers are from the past four years, since 2020. Only 9% of the selected papers
were published in 2019.
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Figure 2. Distribution of related published papers on abnormal human behavior detection by
search engines.

1.2. Contributions of the Paper

The objective of this paper is to assess the strengths and weaknesses of various
abnormal behavior detection techniques within the domain of deep learning. Additionally,
it provides an overview of recent breakthroughs from studies conducted over the past five
years. Each piece of research is meticulously analyzed, including the abnormal behavior
datasets utilized, performance evaluation results of the models in terms of AUC or accuracy,
and an examination of the pros and cons associated with each prior research endeavor.
This paper places particular emphasis on deep learning techniques, thereby narrowing
down the focus compared to earlier review papers. The key contributions of this paper are
as follows:

1. Categorizing deep learning techniques for abnormal human behavior detection into three
main detection approaches: unsupervised, partially supervised, and fully supervised.

2. Discussing the strengths and drawbacks of each learning scheme for training a deep
learning model for abnormal human behavior detection.

3. Conducting a comprehensive comparison of the performances of deep-learning-based
abnormal human behavior detection techniques on popular benchmarking datasets.

4. Exploring open research issues in the field of abnormal human behavior detection in
surveillance videos.

1.3. Organization of the Paper

This paper is organized as follows: Section 2 explains the types of abnormal human
behavior detection and the prior research. Section 3 presents popular abnormal behavior
datasets utilized in the prior research works. Section 4 surveys the deep learning techniques
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for abnormal human behavior detection in surveillance videos, categorizing them into
unsupervised, partially supervised, and fully supervised approaches. Section 5 discusses
the open research issues of the current deep learning techniques. Finally, Section 6 presents
the conclusion of this survey paper. Figure 3 illustrates the organizational structure of this
survey to facilitate navigation through the paper.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 37 
 

 

4. Exploring open research issues in the field of abnormal human behavior detection in 
surveillance videos. 

1.3. Organization of the Paper 
This paper is organized as follows: Section 2 explains the types of abnormal human 

behavior detection and the prior research. Section 3 presents popular abnormal behavior 
datasets utilized in the prior research works. Section 4 surveys the deep learning tech-
niques for abnormal human behavior detection in surveillance videos, categorizing them 
into unsupervised, partially supervised, and fully supervised approaches. Section 5 dis-
cusses the open research issues of the current deep learning techniques. Finally, Section 6 
presents the conclusion of this survey paper. Figure 3 illustrates the organizational struc-
ture of this survey to facilitate navigation through the paper. 

 
Figure 3. The organizational structure of the survey. 

2. Abnormal Human Behavior Detection 
Abnormal human behaviors (AHB) involve observing actions of human-like entities 

and identifying unusual patterns in behavior that deviate from the norm. These behaviors 
are labeled as ‘abnormal’ because they diverge from typical environmental contexts [73]. 
The rapid detection of abnormal behavior is crucial in real-time settings, particularly in 
environments where public safety is paramount [74]. AHB detection poses challenges due 
to the dynamic visual characteristics influenced by environmental conditions and the na-
ture of abnormal actions [75]. 

2.1. Types of Abnormal Behaviors 
In the process of abnormal human behavior detection, certain strategies prioritize 

detection time. Abnormal human behaviors are generally classified into two types: short-
term and long-term abnormal behaviors. Further elaboration on these classifications is 
provided in the subsequent subsections. 

Deep Learning for 

Abnormal Human Behavior

Detection in Surveillance Videos 

– A Survey

1. Introduction

1.1 Literature Review 
Methodology

1.2. Contributions of the Paper

1.3. Organization of the Paper

2. Abnormal Human 
Behavior Detection

2.1. Types of Abnormal Behaviors

2.1.1. Short-term Abnormal 
Behaviors

2.1.2. Long-term Abnormal 
Behaviors2.2. Prior Research on Abnormal 

Behavior Recognition
3. Datasets

4. Deep Learning Techniques 
for AHB Detection

4.1. Unsupervised Approach

4.1.1. Reconstruction-based 
Detection

4.1.2. Generative Detection

4.2. Partially Supervised 
Approach

4.2.1. Semi-supervised 
Detection

4.2.2. Weakly-supervised 
Detection

4.3. Fully Supervised Approach

4.4. Summary: Advantages and 
Disadvantages

5. Open Research Issues

6. Conclusions

Figure 3. The organizational structure of the survey.

2. Abnormal Human Behavior Detection

Abnormal human behaviors (AHB) involve observing actions of human-like entities
and identifying unusual patterns in behavior that deviate from the norm. These behaviors
are labeled as ‘abnormal’ because they diverge from typical environmental contexts [73].
The rapid detection of abnormal behavior is crucial in real-time settings, particularly in
environments where public safety is paramount [74]. AHB detection poses challenges
due to the dynamic visual characteristics influenced by environmental conditions and the
nature of abnormal actions [75].

2.1. Types of Abnormal Behaviors

In the process of abnormal human behavior detection, certain strategies prioritize
detection time. Abnormal human behaviors are generally classified into two types: short-
term and long-term abnormal behaviors. Further elaboration on these classifications is
provided in the subsequent subsections.

2.1.1. Short-Term Abnormal Behaviors

Short-term abnormal human behavior refers to behaviors that deviate from the norm
and can be identified by analyzing a relatively short duration of video frames. Decisions
regarding such behaviors can be made immediately as their consequences become apparent
in real-time [76]. Examples of short-term abnormal behaviors include fires, running, falling,
crowding, throwing objects, fighting, trespassing, and moving in opposite directions.
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Researchers have explored the early detection of burning fires in real-time
scenarios [12,77,78]. Fires, whether resulting from accidents or intentional human acts, are
classified as short-term abnormal behavior as they can be detected from a single-frame
view of fire. The act of human running can be considered abnormal behavior in environ-
ments where most individuals typically walk. [17]. Numerous studies have explored the
detection of running behavior as a significant aspect [13–16]. Visual differentiation between
walking and running can be achieved using a single image [79]. Hence, running can be
classified as short-term abnormal behavior. A fall condition occurs when a person loses
body balance and ends up in an unstable position [80]. Research has been conducted on
fall detection, establishing it as one of the classifications for short-term abnormal behavior
detection [18–22]. A crowd is defined as a condition where two or more people are closely
grouped within a single frame [23]. Detecting crowds is crucial as it often signifies an
abnormal event [24–28]. Throwing objects involves the act of hurling potentially dangerous
or harmful items [31]. Numerous studies on detecting this behavior emphasize the risk
posed by the throwing of prohibited items [29,30]. Identifying suspicious objects in the
air from a single frame classifies this behavior as short-term abnormal. Physical alter-
cations involving two or more individuals with the potential for injury are categorized
as fights [32]. Detection of these fights has been undertaken by several researchers to
mitigate potential impacts [33–35]. Similar to the preceding category, fighting behavior
falls under short-term abnormal behavior due to its detectability within a few frames. The
high occurrence of accidents resulting from trespassing in restricted areas, such as railway
lines, necessitates proactive measures [37]. Detecting human presence in restricted areas
from a single frame allows for the identification of breaches in designated zones [36,38–41].
Thus, trespassing is classified as short-term abnormal behavior. Moving in the opposite
direction, typically observed when an individual walks against the flow within a crowd,
can be identified with only a small number of frames [42]. Therefore, this behavior is
categorized as short-term abnormal.

2.1.2. Long-Term Abnormal Behaviors

Long-term abnormal human behavior refers to persistent patterns of unusual behavior
observed over an extended period. Unlike short-term abnormal behavior, it requires
prolonged observation to discern significant deviations from expected behavioral patterns.
These behaviors may unfold gradually over time, necessitating continuous monitoring and
analysis to understand their full impact. Examples of long-term abnormal behaviors include
loitering, leaving bags unattended, and prolonged absence of movement in specific areas.

Loitering, where individuals aimlessly linger in crowded areas, can pose threats to
public safety [48]. Detection of such behavior occurs when an individual follows others
without any apparent purpose for an extended period [43–47]. Therefore, loitering is
classified as long-term abnormal behavior. An unattended bag refers to a situation where
the owner intentionally leaves it behind for a certain period [49]. If the bag contains
potentially dangerous items, swift action must be taken [50–53]. The time required to
detect the unattended bag places it in the category of long-term abnormal behavior. The
lack of human movement detected by the camera can signal abnormal behavior. This
phenomenon is also referred to as unusual inactivity or stationary movement detection.
The absence of human movement in a specific area raises concerns, whether it involves
a group of individuals [55,56] or an elderly person [54]. Detecting inactivity requires a
longer time to reach a conclusive decision. Therefore, this category is classified as long-term
abnormal behavior.

2.2. Prior Research on Abnormal Behavior Recognition

Deep learning offers advantages as it requires minimal hand engineering, especially
with the increasing availability of computing power and data [81]. Techniques utilizing
fully supervised learning frameworks in deep learning can achieve high accuracy but
demand substantial amounts of data and computational resources [82,83]. Several studies
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employ convolutional neural networks (CNN), long–short-term memory (LSTM), and
gated recurrent unit (GRU) architectures to analyze abnormal human behavior spatially
and temporally [84–94]. However, a significant obstacle in deep learning is the limited
availability of data, often referred to as data scarcity [95].

The advancement of abnormal human behavior detection is hindered by issues related
to data scarcity [96]. Detecting abnormal human behavior that has not been previously
defined in the training data, especially given the wide variety of behaviors, poses sig-
nificant challenges [97]. Furthermore, many instances of abnormal human behavior are
context-dependent, with behaviors considered abnormal in one setting being normal in
another [98]. This phenomenon arises from the model’s incapacity to capture intrinsic un-
certainty and often leads to decreased efficiency in the event recognition phase, particularly
due to data scarcity [99,100]. To address these challenges, an important research question
emerges: How can models be effectively trained to detect abnormal human behavior with
limited labeled data, considering the diversity and context-dependency of behaviors? To
mitigate the impact of data scarcity, the model is expected to learn from unlabeled data
by identifying relationships and patterns through unsupervised and partially supervised
learning paradigms [101,102].

In unsupervised learning, the primary focus lies on collecting unlabeled data including
both normal and abnormal behaviors [60]. Within the unsupervised learning framework, a
reconstruction-based approach is employed, where the model analyzes only normal event
data and detects abnormalities by examining low reconstruction errors [58]. Initially, this
approach utilized a basic auto-encoder to differentiate abnormal behavior from normal
human behavior data exclusively [9,103–111]. Additionally, there is the use of variational
auto-encoders, which incorporate a probability function during reconstruction through
a neural network [112–120]. However, both auto-encoders and variational auto-encoders
are not inherently designed for abnormal human behavior detection in two-dimensional
data. To address this limitation, convolutional auto-encoders are employed, preserving the
spatial locality of input data throughout the reconstruction stage [121–130].

Within the unsupervised learning framework, there exists an approach for detecting
abnormal human behavior using generative detection [62]. In this approach, artificial
images are generated from trained distribution patterns. Subsequently, the model dis-
criminates whether the image is real or fake, effectively addressing the challenge of data
scarcity [131–148]. However, both the reconstruction-based and the generative approaches
pose difficulties in identifying specific abnormal behaviors and are highly sensitive to
environmental changes [102].

There exists a scheme known as partially supervised learning that utilizes both labeled
and unlabeled data [149]. Some research emphasizes maximizing the use of unlabeled
data with labeled data serving as an anchor, a methodology termed semi-supervised
learning [137,150–153]. Conversely, in contrast to semi-supervised learning, there are
several studies that prioritize maximum model output with minimal reference label data,
referred to as weakly supervised learning [145,154–169]. Consequently, partially supervised
learning demonstrates capability in addressing data scarcity and alleviating the time-
consuming nature inherent in deep-learning-based abnormal human behavior detection in
surveillance videos [59,170].

There have been several previous works surveying abnormal human behavior detec-
tion systems. Patrikar and Parate [60] provide a survey on image-based detection systems
for abnormal behaviors in video surveillance. They also survey edge-computing-based ab-
normal detection and divide the explanations into two main parts: learning and modeling
algorithms. However, their focus is mainly on the application of edge computing, lacking a
thorough exploration in the context of machine learning. Myagmar-Ochir and Kim [101]
survey video surveillance systems (VSS) for smart city applications, but their explanation
of the methods used in unsupervised learning methods is incomplete. Duong, Le, and
Hoang [98] survey vision-based human activity recognition and describe popular databases
commonly used. They also present data processing and feature engineering. However,
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their survey does not include quantitative comparisons using metrics between research
results for each prior study. Choudhry et al. [59] comprehensively explain the challenges of
machine learning techniques for VSS and divide them into three categories: supervised,
semi-supervised, and unsupervised. However, their scope does not focus on image-based
detection. The previous surveys rarely cover research published in 2023. Moreover, there
is a need for surveys to discuss the scarcity of abnormal human behavior data, as well as
challenges and future applications. Table 1 summarizes the previous surveys.

Table 1. Summary of abnormal human behavior surveys in video surveillance.

Survey (Year)
Scope

Merits Limitations
Datasets Deep Learning Application Metrics

Comparison

Patrikar and
Parate [60]
(2022)

✓ P ✓ ✓

• Provides a survey on
image-based detection systems

• Divides explanations into
learning and modeling
algorithms

• Emphasizes edge computing
applications

Lacks thorough
exploration of
machine learning in
the context of
abnormal behavior
detection

Myagmar-
Ochir and
Kim [101]
(2023)

P P ✓ P Surveys VSS for smart city
applications

The explanation of
methods used in
unsupervised
learning methods is
incomplete

Duong, Le,
and Hoang
[98] (2023)

✓ ✓ - -

• Describes popular databases
used

• Presents data processing and
feature engineering

Does not include
quantitative
comparisons using
metrics among
research results

Choudhry
et al. [59]
(2023)

✓ ✓ ✓ P

• Comprehensively explains
challenges of machine learning
techniques for VSS

• Divides techniques into
supervised, semi-supervised,
and unsupervised categories

The scope does not
focus on image-based
detection

Ours (2024) ✓ ✓ ✓ ✓

• Categorizes existing AHB
detection into unsupervised,
partially supervised, and fully
supervised approaches

• Examines each approach’s
conceptual framework,
strengths, and drawbacks

• Provides extensive comparison
using popular datasets

(✓)—fully explained; (P)—partially explained; (-)—not explained.

3. Datasets

Several datasets have been widely used by researchers to benchmark related research.
This section addresses the question, “What are the datasets used by prior research in
abnormal human behavior detection?” The University of California, San Diego (UCSD)
anomaly dataset consists of 70 pieces of video footage captured from an elevated perspective
to monitor pedestrian walkways [171]. Abnormal events captured in this dataset include
the presence of non-pedestrian entities in the walkways and anomalous pedestrian motion
patterns. The UCSD anomaly dataset comprises two sets of videos, Ped1 and Ped2. Ped1
contains footage of people walking towards and away from the camera, with various
perspective distortions, along with humans identified as abnormalities. Ped2 includes
scenes with pedestrian movement parallel to the camera plane from a top angle, where
non-human objects are considered abnormal.
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The ShanghaiTech (ST) Campus dataset comprises 13 scenes with complex lighting
conditions and camera angles from all sides [172]. It contains 130 abnormal events and over
270,000 training frames across a total of 437 videos for training and testing. The University
of Central Florida (UCF)-Crime dataset consists of 1900 videos totaling 128 h, covering
13 anomalies in real-world environments, including fighting, vandalism, and robbery [173].
The Avenue dataset includes 37 videos, with 16 training video clips and 21 testing video
clips. Filmed on the Chinese University of Hong Kong (CUHK) campus, it comprises
30,652 frames, evenly split between training and testing, and features 14 unusual incidents
such as people running, loitering, and throwing objects [174]. The University of Minnesota
(UMN) dataset encompasses 11 different abnormal scenarios with 3 scenes indoors and
outdoors, totaling 22 videos for training and testing [175]. The Performance Evaluation
of Tracking and Surveillance (PETS) dataset, recorded at the Whiteknights Campus, Uni-
versity of Reading, UK, captures abnormal behaviors including people counting, density
estimation, person tracking, flow analysis, and event recognition [176]. The Subway dataset
features two videos totaling two hours, containing 209 and 150 frames, comprising exit gate
and entry gate videos. It includes 19 types of unusual events such as walking in the wrong
direction, loitering, and wandering near exits [177]. The UBI-Fights dataset, generated by
Universidade da Beira Interior in 2020, focuses specifically on fighting events. It consists of
an 80-h video dataset labeled at the frame level, including 216 videos of fighting events
and others depicting daily life [178].

The Live Videos (LV) dataset consists of 30 videos featuring various abnormal scenes,
including 14 different abnormal events, with a total duration of 3.93 h [179]. The Surveil-
lance Fight dataset consists of 300 videos, divided into fight and non-fight sequences taken
from movies [180]. The Hockey Fight dataset consists of 1000 video clips from hockey
games, manually labeled as fight or non-fight [181]. The Violent Flows dataset consists of
246 videos taken from YouTube and de-interlaced as audio video interleave (AVI) files [182].
The Traffic Anomaly Dataset (TAD) consists of 500 videos totaling 25 h, featuring abnormal
actions such as vehicle accidents, illegal turns, illegal occupations, retrograde motion, pedes-
trian on road, road spills, and more [169]. The Universidad Panamericana Fall (UP-Fall)
dataset includes 11 activities, as well as five different types of human falls, such as falling
forward, backward, and sideways using hands or knees [183]. The Atomic Visual Actions
(AVA) dataset annotates 80 atomic visuals for 437 video clips of human actions [184]. The
Multiple Camera Fall (MCF) dataset was taken from eight cameras with different angles,
capturing normal daily activities and simulated falls [185]. The University of Rzeszow-Fall
(UR-Fall) dataset contains 70 videos, categorized into 30 fall videos and 40 daily living
videos [186]. The VOC2007 dataset includes 9963 images, consisting of 24,640 annotated ob-
jects such as humans, animals, vehicles, and more [187]. The Penn-Fudan dataset contains
170 images with 345 labeled pedestrians, with 96 images from the University of Pennsylva-
nia and 74 from Fudan University [188]. The UCF-50 dataset consists of 50 actions with a
minimum of 100 videos for each category, taken from YouTube [189]. Extending from the
UCF-50 dataset, the UCF-101 dataset contains 101 classes with a total of 13,320 clips [190].

The OpenImages dataset includes 600 object classes with a total of 3.68 million bound-
ing boxes attached [191]. The Carnegie Mellon University (CMU) graphics lab dataset
consists of 11 videos with a total of 2477 frames, 1268 of which depict abnormal actions [192].
The University of Texas (UT)-Interaction dataset contains videos of continuous human
interactions, divided into six classes: shake-hands, point, hug, push, kick, and punch [193].
The Peliculas Movies (PEL) dataset includes 368 frames, of which 268 are fight frames taken
from the movies [194]. The Web Dataset (WED) consists of 1280 frames comprising 12 se-
quences of normal crowd scenes such as walking and running and 8 scenes of abnormal
scenes including escape panics, protesters clashing, and crowd fighting [195]. The Human
Motion DataBase-51 (HMDB51) includes 51 action categories, which, in total, contains
around 7000 manually annotated clips from YouTube [196]. The Kinetics-600 is a large
human action dataset with 480,000 video clips and categorized into 600 action classes [197].
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The YouTube Action dataset includes 1640 videos, categorized into 11 classes collected from
YouTube [198].

The unsupervised methods, utilizing reconstruction-based techniques like AE, VAE,
and CAE, demonstrate robustness in learning from unlabeled data, achieving notable
AUC scores such as 0.984 on Ped2 by Wang et al. in 2023 [108] and 0.988 on Ped1 by
Ganokratanaa et al. in 2022 [140]. These approaches capitalize on identifying patterns
and anomalies without extensive labeled data, effectively addressing the challenge of data
scarcity. Partially supervised methods, including semi-supervised and weakly supervised
approaches, also show promising results with AUC scores like 0.945 on Ped1 by Sikdar and
Chowdhury in 2020 [150], leveraging a combination of labeled and unlabeled data. Among
these, state-of-the-art models continue to advance, exemplified by recent studies achieving
high AUC scores through innovative techniques in abnormal behavior detection tasks.
Table 2 shows the composition and features of some popular abnormal human behavior
datasets. Figure 4 visually illustrates sample abnormal behavior images from each dataset.

Table 2. A summary of popular abnormal human behavior datasets.

Dataset Characteristics Merits Challenges Composition

Ped1 [171] Anomalies include bikers,
skaters, small carts, and
people crossing

Ground truth annotations
provided with binary flags per
frame. Some clips include
pixel-level masks for anomaly
localization assessment

Perspectives include
distortion, which might
limit generalization

34 training videos,
36 test videos

Ped2 [171] Pedestrian movement parallel
to the camera plane from a
top angle

Focuses on abnormal pedestrian
motion patterns. Ground truth
annotations provided with binary
flags per frame. Some clips include
pixel-level masks for anomaly
localization assessment

Smaller dataset compared
to Ped1

16 training videos,
12 testing videos

ST [172] Includes abnormal behaviors
caused by sudden motion,
such as chasing and brawling

Pixel-level ground truth
annotations of abnormal events

Complex lighting
conditions and camera
angles from all sides

270,000 training
frames, 13 anomaly
scenes

UCF-Crime [173] Anomalies in real-world
environments include abuse,
arrest, arson, assault, accident,
burglary, explosion, fighting,
robbery, shooting, stealing,
shoplifting, and vandalism

Extensive and diverse anomaly
types relevant to public safety,
with high-quality annotations by
trained annotators, video-level
labels for training, temporal
annotations for testing, and a
balanced set of 950 anomalous and
950 normal videos

Limited to surveillance
footage, excluding other
potential sources of
anomalies

1900 videos with
13 classes

CUHK [174] Contains unusual events such
as running, throwing objects,
and loitering

High frame rate detection
(141.34 fps)

Unusual incidents with
slight camera shake

30,652 frames,
14 abnormal classes

UMN [175] Crowd behavior scenarios,
where each video consists of a
normal starting section and an
abnormal ending section

Focuses on crowd behavior under
panic conditions

Abnormal behavior
typically appears at the
end of the videos, which
can lead to model
overfitting

22 videos,
11 abnormal scenarios

UBI-Fights [178] Various fighting scenarios in
indoor and outdoor
environments, with videos
resized to 640 × 360 pixels and
set to 30 fps

Provides a wide diversity of
fighting scenarios with detailed
frame-level annotations

Imbalance between fight
and normal videos

1000 videos, where
216 videos contain a
fight event, and
784 depict normal
daily life situations
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4. Deep Learning Techniques for Abnormal Human Behavior Detection
4.1. Unsupervised Approach

Unsupervised detection refers to techniques that identify patterns, anomalies, or
structures in data without the need for labeled examples. In the context of abnormal human
behavior detection, this approach is particularly valuable because obtaining labels for
various abnormal behaviors is often challenging and inefficient [199]. Two popular methods
within this category are reconstruction-based and generative techniques. Reconstruction-
based detection models learn patterns from input images, while generative detection
models attempt to generate an artificial image that they have learned.

4.1.1. Reconstruction-Based Detection

Reconstruction-based methods model normal data distribution with the principle
that the model is trained using only normal data. Anomalous data are then assigned high
reconstruction errors by the model [200]. During the inference phase, if a test image is
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abnormal, the model struggles to reconstruct the image. Reconstruction-based detection
methods include auto-encoders (AE), variational auto-encoders (VAE), and convolutional
auto-encoders (CAE). Auto-encoders are neural networks that learn input data and attempt
to reconstruct new images based on previously learned patterns. Generally, AE consist of
two structures: encoders and decoders. The objective is to minimize the reconstruction
error, enabling the model to more accurately reconstruct images based on learned data.
Table 3 summarizes the strengths and drawbacks of reconstruction-based methods for AHB
detection with AUC scores on the Ped1, Ped2, and CUHK datasets.

Table 3. Strengths and Drawbacks of Reconstruction-based Methods.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 CUHK

A
ut

o-
en

co
de

rs
(A

E)

Wang et al.
[103] (2019)

Ped1, Ped2,
UMN

0.897 0.913 N/A Proposed a network for
detecting abnormal events,
which integrates a PCA
network with kernel PCA

Reliance on hyperparameters and
foreground detection may lead to
false negatives by erroneously
removing valid objects

Hu et al. [104]
(2019)

Ped1, Ped2,
CUHK

0.809 0.959 0.842 Developed a three-stage
framework for fast
unsupervised anomaly
detection in videos

May fail to detect instances such
as a person walking with a bike

Liu and Zhou
[105] (2022)

Ped1, Ped2,
CUHK

N/A 0.968 0.875 Proposed a memory-based
connected network for
video anomaly detection,
utilizing an auto-encoder
for reconstruction

The scoring threshold must be
tuned for each environment

Chang et al.
[106] (2022)

Ped2, ST,
CUHK

N/A 0.967 0.871 Proposed an auto-encoder
for learning spatial and
temporal regularity

Only detected abnormal events
without classifying the object

Wang et al.
[107] (2022)

Ped1, Ped2, ST,
CUHK

0.849 0.964 0.883 Proposed unsupervised
video anomaly detection
with frame prediction and
noise tolerance loss

Require strategies for
hyperparameter selection and
model inference to ensure
efficiency and accuracy

Wang et al.
[108] (2023)

Ped2, ST,
CUHK

N/A 0.984 0.861 Proposed a pluggable
spatio-temporal
relationship attention
module for indicating
object relationships

Unable to fully utilize and
understand the implicit video
information

Liu et al. [109]
(2023)

Ped2, ST,
CUHK

N/A 0.983 0.917 Proposed object-centric
scene inference network for
unsupervised video
anomaly detection

Unable to identify the
relationship between moving
objects and background scenes

Li et al. [110]
(2023)

ST, CUHK N/A N/A 0.883 Proposed unsupervised
algorithm based on
skeleton features,
eliminating manual
specification of normal
training data

May miss detecting some
instances of abnormal pedestrian
brawling but accurately identifies
normal walking

Yan et al. [9]
(2023)

ST, UCF-Crime N/A N/A N/A Utilized auto-encoders and
memory clustering to detect
abnormal human actions

Challenges in crowd human pose
prediction and conflicts in
auto-encoders and clustering
training

Sampath and
Kumar [111]
(2023)

Ped1, Ped2,
UMN

0.902 0.997 N/A Proposed a spatiotemporal
inter-fused auto-encoder
for abnormal behavior
detection

Reliant on a single modality,
using only cameras for abnormal
behavior detection
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Table 3. Cont.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 CUHK

V
ar

ia
ti

on
al

A
ut

o-
en

co
de

rs
(V

A
E)

Wang et al.
[112] (2019)

Ped1, CUHK,
UMN, PETS

0.943 N/A 0.876 Used two VAEs for
anomaly detection in
crowded scenes

Very challenging due to the frame
complexity

Xu et al. [113]
(2019)

Ped1, Ped2, ST 0.957 0.923 N/A Introduced novel
unsupervised VAE-based
video anomaly detection
approach

Dataset failure cases can hinder
abnormal behavior detection
performance

Yan et al. [114]
(2020)

Ped1, Ped2,
CUHK,
Subway

0.750 0.910 0.796 Proposed two-stream VAE
structure: appearance and
motion streams

Require additional resources for
optical flow computation

Wang et al.
[115] (2021)

Ped2, ST N/A 0.962 N/A Proposed a cognitive
memory-augmented
network for
decision-making based on
past memory

Challenging to obtain normal
sample distribution due to the
dataset size

Cho et al. [116]
(2022)

Ped2, ST,
UCF-Crime,
CUHK, LV,
UBI-Fights

N/A 0.992 0.880 Proposed implicit two-path
auto-encoder with normal
feature distribution
modeling using
normalizing flow

AE and normalizing flow model
struggle to distinguish abnormal
scenes due to visual similarity

Huang et al.
[117] (2022)

Ped2, CUHK,
ST

N/A 0.981 0.888 Proposed temporal-aware
contrastive network for
unsupervised AHB
detection

Require hyperparameter tuning
to balance contrastive loss and
task loss

Wang et al.
[118] (2022)

Ped1, Ped2,
CUHK

0.884 0.888 0.872 Proposed double-flow
convolutional LSTM with
VAE probability calculation
results

Challenging to detect small
foreground target objects

Slavic et al.
[119] (2022)

Subway,
CUHK

N/A N/A 0.862 Proposed self-aware
embodied agents for
abnormal behavior
detection, leveraging VAE
regularization features

Challenging to detect
camouflaged human objects in the
background.

Liu et al. [120]
(2023)

Ped2, ST,
CUHK

N/A 0.984 0.907 Proposed stochastic video
normality network for
unsupervised anomaly
detection

Highly sensitive to
hyperparameter settings

C
on

vo
lu

ti
on

al
A

ut
o-

en
co

de
rs

(C
A

E)

Chu et al. [121]
(2019)

Ped1, Ped2,
CUHK,
Subway

0.909 0.902 0.937 Presented novel
unsupervised
spatiotemporal feature
learning for video anomaly
detection

Performance still unsatisfactory
compared to fully supervised
learning, which has made great
progress

Duman and
Erdem [122]
(2019)

Ped1, Ped2,
CUHK

0.924 0.929 0.895 Detected AHB by
generating reconstructed
dense optical flow maps

Struggle to model distant
activities

Yan et al. [123]
(2020)

Ped2, CUHK N/A 0.892 N/A Developed a 3D CAE for
spatiotemporal irregularity
detection in videos

Deeper layers in 3D convolutional
auto-encoder may be unhelpful
due to limited data

Bahrami et al.
[124] (2021)

Ped2, ST,
CUHK,

N/A 0.975 0.801 Propose single-frame
analysis and consideration
of consecutive frames

Increased training time due to
larger spatiotemporal architecture
parameters

Asad et al.
[125] (2021)

Ped1, Ped2,
CUHK, ST,
Subway

0.898 0.958 0.892 Proposed two-staged CAE
Framework for AHB
detection

Takes a long time to train due to a
large number of backpropagation
iterations

Li et al. [126]
(2021)

Ped1, Ped2,
CUHK, ST

0.850 0.951 0.888 Proposed CAE with
extractor and latent code
prediction for future frames

As training anomalies increase,
the AUC score decreases
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Table 3. Cont.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 CUHK

C
on

vo
lu

ti
on

al
A

ut
o-

en
co

de
rs

(C
A

E) Wang et al.
[127] (2022)

Ped2, CUHK N/A 0.953 0.840 Combined criss-cross
attention and bi-directional
ConvLSTM in auto-encoder
for AHB detection

AUC score improvement possible
with added spatial and temporal
features

Kommanduri
and Ghorai
[128] (2023)

Ped1, Ped2,
CUHK

0.847 0.977 0.867 Designed an end-to-end
trainable bi-residual
convolutional auto-encoder
with long–short projection
skip connections

Suffers from visual similarity and
occlusions

Taghinezhad
and Yazdi
[129] (2023)

Ped1, Ped2,
CUHK

0.838 0.976 0.890 Introduced unsupervised
video anomaly detection
framework based on frame
prediction

Significant improvements were
not achieved in refined
abnormality scores due to noise

Several of the recent studies have utilized auto-encoders for AHB detection. Wang
et al. [108] and Sampath and Kumar [111] proposed a spatio-temporal AE, achieving an
AUC value of over 0.98 for detecting abnormal behavior on the UCSD Ped1 and Ped2
datasets. However, the spatio-temporal AE is unable to fully utilize and understand the
implicit video information, especially when using a single modality camera. To overcome
these drawbacks, as illustrated in Figure 5, Liu et al. [109] developed AHB detection using
an object-centric scene inference network (AUC 0.917 on CUHK), while Li et al. [110]
utilized skeleton features to avoid the manual specification of normal data, achieving an
AUC of 0.883 on the CUHK dataset. Both methods present better results compared with
Wang et al. [108], who reported an AUC score of 0.861 on the CUHK dataset. Unfortunately,
while the skeleton features accurately identify normal walking, they may miss detecting
some instances of abnormal pedestrian brawling. Therefore, Yan et al. [9] introduced
clustering and scoring system approaches using AE to better distinguish abnormal human
behaviors. Wang et al. [103] also introduced a self-supervised framework known as the
abnormal event detection network, comprising a principal component analysis (PCA)
network and kernel principal component analysis. The framework achieved an outstanding
AUC score of 0.997 using the UMN dataset. However, the method still depends on certain
hyperparameters.
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Figure 5. Reconstruction-based AHB detection results using AE on the CUHK dataset.

Additionally, foreground detection may inadvertently remove incorrect objects, re-
sulting in false negative issues. VAEs are often conflated with traditional auto-encoders,
despite being distinct entities. These models diverge in their mathematical formulations
and objectives. VAE operates as a probabilistic generative model, requiring a neural net-
work comprising an encoder and decoder. The encoder initially adjusts the parameters
of the variational distribution, while the decoder maps from the latent space to the input
space. VAEs are integral components of probabilistic graphical models and variational
Bayesian methods [199,200].
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Works on AHB detection using VAE were conducted by Wang et al. [112] to detect
crowd scenes, which proved to be very challenging due to the complexity of frames. To
address this issue, Yan et al. [114] and Wang et al. [118] generated a probability score using
a double-flow VAE to differentiate abnormal behavior. However, the AUC score was not so
high as when using two separate VAEs, as illustrated in Figure 6. Hence, several studies
also employ temporal schemes to predict AHB scenes [115,117], resulting in significant
improvements in AUC scores up to 0.961 on the Ped2 dataset. This indicates that the use of
temporal schemes can substantially enhance the performance of AHB detection compared
to methods relying solely on static features. The most recent research on AHB detection
using the VAE method was conducted by Liu et al. [120]. They proposed stochastic video
normality networks to learn various patterns of normal events in temporal, spatial, and
spatiotemporal dimensions. The concept involves encoding past frames into a posterior
distribution, from which latent variables are sampled using a VAE to predict future frames.
The AUC results of this network reach 0.984 using the Ped2 dataset and 0.907 using the
CUHK dataset. However, the performance of this network relies on hyperparameter
settings for optimal AHB detection. Therefore, Cho et al. [116] introduced an implicit two-
path auto-encoder and distribution modeling of normal features based on a normalizing
flow model in an unsupervised manner for AHB detection. The achieved AUC score
is impressive, reaching 0.992 using the Ped2 dataset and 0.880 using the CUHK dataset,
indicating high performance. However, distinguishing between normal and abnormal
scenes becomes challenging due to the similarity in appearance and motion between
pedestrians and walking patterns. Consequently, the VAE and normalizing flow model
struggle to differentiate between normal and abnormal behaviors.
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Figure 6. Reconstruction-based AHB detection results using VAE on the CUHK dataset.

Basic auto-encoders (AE), including VAE, do not consider the two-dimensional struc-
ture of an image. Therefore, a solution is required from an unsupervised learning paradigm
that can evenly distribute weights for each area in the image. The convolutional auto-
encoder is designed to preserve the spatial locality of the input image, which is then passed
on to the reconstruction stage. Subsequently, reconstruction is carried out based on a
linear combination of image patches using latent code [201]. Max-pooling is performed
to ensure filter selectivity as an activation function across overlapping subregions. This
prevents reliance on any single weight generated by multiple areas in the image. During the
reconstruction phase, the sparse latent code further reduces the average filter contributing
to the decoding phase of each pixel, resulting in filters with high generalization [202].

Bahrami et al. [124] achieved an AUC score of 0.975 on the Ped2 dataset for frame-level
detection using a spatiotemporal approach. However, the training time increases due
to complex larger spatiotemporal parameters. To overcome the challenge of preserving
spatial information in the deep layers, Kommanduri and Ghorai [128] designed a bi-
residual convolutional auto-encoder that is end-to-end trainable and introduces long–short
projection skip connections. Additionally, Taghinezhad and Yazdi [129] proposed a novel
multi-scale multi-path network architecture for AHB detection based on frame prediction.
These two recent studies successfully achieved an AUC value above 0.976 using the Ped2
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dataset, as illustrated in Figure 7. However, further research is needed on visual similarity,
occlusions, and noise to achieve significant improvements in refined abnormality scores.
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Figure 7. Reconstruction-based AHB detection using CAE on the Ped2 and CUHK datasets.

In summary, while AE-based methods, such as those by Wang et al. [103] and Hu
et al. [104], demonstrate solid performance on Ped1 and Ped2 datasets, they often rely heavily
on hyperparameters and struggle with false negatives and object removal. VAEs, such as
those proposed by Cho et al. [116] and Huang et al. [117], show excellent results on Ped2 but
are highly sensitive to hyperparameter settings and face challenges in distinguishing visually
similar abnormal scenes. CAE models, exemplified by Chu et al. [121] and Duman and
Erdem [122], effectively detect anomalies using spatiotemporal features but still fall short
compared to fully supervised methods, especially in handling distant activities and complex
scenes. Additionally, models across all types suffer from issues such as high computational
costs, the need for extensive hyperparameter tuning, and difficulties in generalizing to
different datasets. These findings underscore the necessity for further optimization to
enhance model robustness, efficiency, and applicability to real-world scenarios.

4.1.2. Generative Detection

The artificial image is generated from a learned distribution pattern, and its similarity
to the original image is assessed [203]. The difference between the original and fake images
is used to detect whether abnormal human behavior is present in the captured frame. Since
no labels are created, this approach remains within the unsupervised learning category.
In generative adversarial networks (GANs), a random seed introduces some noise to
the initial random image. Subsequently, the generator layers attempt to produce fake
examples. The objective in this scenario is to generate the best normal image possible.
Then, the real normal image serves as the second input to the discriminator layers. These
layers aim to distinguish between the normal image and the fake image generated by the
generator. The weights of both the discriminator and generator models are updated using
the backpropagation method. This process iterates until the maximum number of training
epochs, as previously specified.

The recent research on AHB detection using GANs was conducted by Li et al. [148]
and Huang et al. [147,204], achieving AUC scores above 0.968 using the Ped2 dataset.
However, the recent research requires computation of a large number of parameters. As
the number of input frames increases, detection speed decreases, and there is difficulty
in determining skip intervals for large foreground motion amplitudes in video anomaly
detection. Ganokratanaa et al. [132,140] proposed a novel unsupervised spatiotemporal
anomaly detection and localization for surveillance videos using GANs. The AUC scores
reached 0.996 on the UMN dataset, demonstrating near-perfect performance. Additionally,
the model may face difficulties in distinguishing similar abnormal events from normal
patterns. Table 4 shows other works utilizing the generative detection approach with AUC
scores on Ped1, Ped2, CUHK, and ST datasets.
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Table 4. Strengths and Drawbacks of Generative Methods using GANs.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 CUHK ST

Li and Chang
[131] (2019)

Ped1, Ped2,
CUHK, UMN 0.850 0.916 0.842 N/A

Built on a two-stream
framework for
simultaneous appearance
and motion anomaly
detection

The lower AUC value
is due to the noise
removal of abnormal
frames

Li et al. [133]
(2019)

Ped1, Ped2,
CUHK 0.838 0.966 0.845 N/A

Proposed novel
spatiotemporal
framework for video
anomaly detection

Often fails to capture
spatial characteristics
due to camera angles

Ganokratanaa
et al. [132]

(2020)

Ped1, Ped2,
UMN, CUHK 0.985 0.955 0.879 N/A

Proposed a
spatiotemporal AHB
detection and localization

Fails to detect
abnormal events with
similar object speeds

Wu et al.
[137] (2021)

Ped1, Ped2,
CUHK, ST 0.885 0.989 0.847 0.728

Used two independent
GANs to predict optical
flows or color frames

The model needs
updates.

Yang et al.
[138] (2021)

CUHK, Ped1,
Ped2, ST 0.847 0.976 0.886 0.745

Proposed bidirectional
prediction generator:
forward and backward

The model struggles
with small human
objects in the presence
of perspective
distortion

Ganokratanaa
et al. [140]

(2022)

Ped1, Ped2,
CUHK, UMN 0.988 0.976 0.908 N/A

Introduced unsupervised
deep residual
spatiotemporal translation
network for video
anomaly detection and
localization

May struggle to
distinguish similar
abnormal events from
normal patterns

Yu et al. [141]
(2022)

Ped1, Ped2,
CUHK,
Subway,
UCF-Crime

0.979 0.979 0.949 N/A

Proposed adversarial
event prediction to detect
rare pattern events in
abnormal human
behaviors

Absence of
background detection
preprocessing leads to
slightly lower
performance metrics
in various scenarios

Zhong et al.
[142] (2022)

Ped1, Ped2,
CUHK, ST 0.826 0.977 0.889 0.707

Proposed cascade model:
frame reconstruction and
optical flow network with
GAN

The average optical
flow prediction error
of normal frames
increases due to
perspective
phenomena in datasets

Aslam et al.
[143] (2022)

Ped1, Ped2,
CUHK, ST 0.907 0.977 0.894 0.869

Proposed end-to-end
trainable two-stream
attention-based
adversarial auto-encoder
network

Struggles to learn
typical features with
small datasets

Hao et al.
[144] (2022)

Ped1, Ped2,
CUHK, ST 0.825 0.969 0.866 0.738

Proposed spatiotemporal
consistency-enhanced
network

Based on 3D CNN,
struggles to converge
if object size varies
significantly

Yu et al. [205]
(2022)

Ped1, Ped2,
CUHK,
UCF-Crime

0.975 0.971 0.947 N/A

Proposed adversarial
predictive coding for
abnormal event detection
and localization

Requires large-scale
dataset and motion
data but increases the
computational cost
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Table 4. Cont.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 CUHK ST

Huang et al.
[147] (2023)

Ped2, ST,
CUHK N/A 0.977 0.897 0.758

Predicted future frames
using previous video
frames and optical flow

Requires computing a
large number of
parameters

Huang et al.
[206] (2023)

Ped1, Ped2,
ST, CUHK 0.921 0.976 0.888 0.743

Proposed self-supervised
attentive GAN for video
anomaly detection

Detection speed
decreases with
increasing input frame
numbers

Li et al. [148]
(2023)

Ped2, CUHK,
ST N/A 0.968 0.887 0.767

Explored adversarial
composite prediction for
normal video dynamics
learning feasibility

Difficulty in
determining skip
intervals for large
foreground motion
amplitudes in video
anomaly detection

When conducting comparisons, it is essential to ensure fairness by comparing the prior
research using the same dataset. As illustrated in Figure 8, results using the ST dataset tend
to be lower than those from other datasets. Interestingly, Aslam et al. [143] proposed an end-
to-end trainable two-stream attention-based approach that achieved an AUC score of 0.869
on the ST dataset and 0.894 on the CUHK dataset, which are the best results using these
datasets compared to other studies. This is because during the inference stage, only the
reconstruction branch is considered for computing the regularity score, while the prediction
branch is utilized for better feature learning through GAN. These results highlight the need
for further research to combine generative detection and reconstruction-based detection to
achieve more optimal outcomes.
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Figure 8. Generative AHB detection results on the Ped1, Ped2, CUHK, and ST datasets.

4.2. Partially Supervised Approach

Most reconstructive or generative approaches solely utilize normal samples, poten-
tially resulting in a high false positive rate, particularly in real-world scenarios [154]. Many
individuals commonly associate model training using labeled data with supervised learn-
ing, while training with unlabeled data is often termed unsupervised learning. However,
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real-world situations often lack sufficient data for comprehensive training due to the high
cost and time-consuming nature of full labeling [204].

Partially supervised learning occurs when both labeled and unlabeled data are avail-
able. Therefore, the question arises: How do partially supervised learning techniques lever-
age unlabeled data to improve model performance when trained on limited labeled data?
Labeled data act as anchor points for training and prediction phases with the unlabeled
data [149]. In partially supervised detection, two main schemes emerge: semi-supervised
detection and weakly supervised detection.

Table 5 provides a summary of partially supervised detection research. Semi-supervised
approaches, exemplified by Sikdar and Chowdhury [150] and Wu et al. [137], achieve high
AUC scores (up to 0.989 for Ped2) through adaptive training and re-learning schemes but
encounter challenges with sparse datasets, local descriptor construction, and dependen-
cies on baseline models. In contrast, weakly supervised methods, such as those by Ullah
et al. [162] and Chen et al. [164], leverage weakly labeled data, achieving high performance
(up to 0.984 for Ped2) across diverse environments. However, they face challenges such as
high false alarm rates, occlusion issues, and significant computational demands, particu-
larly with transformer-based models. Therefore, while semi-supervised methods excel in
data-specific performance, weakly supervised techniques offer broader applicability at the
cost of increased complexity.

Table 5. Strengths and Drawbacks of Partially Supervised Approach.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 UCF-
Crime ST

Se
m

i-
su

pe
rv

is
ed

Sikdar and
Chowd-
hury [150]
(2020)

Ped1, Ped2,
CUHK,
UMN, ST

0.945 0.979 N/A N/A
Proposed adaptive
training-less anomaly
detection method

Performance lag due
to sparse dataset and
difficulty in
constructing local
descriptors

Singh et al.
[151] (2021)

CUHK,
PETS,
UMN

N/A N/A N/A N/A

Proposed algorithm for
suspicious event
detection based on
direction and magnitude

Not suitable for
real-time application
due to
time-consuming
optical flow
calculation for each
frame

Wu et al.
[137] (2021)

Ped1,
CUHK 0.885 0.989 N/A N/A

Implemented
semi-supervised
re-learning scheme to
boost the baseline
approach. Constructed
new training selectively
from the original
testing set

Model performance
is positively related
to the baseline deep
model, but
occasional failure
cases still occur
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Table 5. Cont.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 UCF-
Crime ST

W
ea

kl
y

su
pe

rv
is

ed

Li et al.
[145] (2022)

Ped1, Ped2
UCF-
Crime, ST

0.833 0.954 0.785 0.903

Proposed
attention-based multiple
instances learning using
attention-based features
and a stringent loss

Not robust to
significant occlusion

Hu et al.
[154] (2020)

Ped1, Ped2,
CUHK,
UMN,
Subway

N/A N/A N/A N/A

Trained a discriminative
classifier for anomaly
detection with weakly
labeled data

Unable to achieve
end-to-end detection
of abnormal
behaviors

Degardin
and
Proença
[155] (2021)

Ped1, Ped2,
UBI-Fights,
UCF-Crime

0.819 0.819 0.769 N/A

Introduced an iterative
learning framework,
based on weakly and
self-supervised
paradigms

Performance gap
between indoor and
outdoor scenarios

Ullah et al.
[156] (2022)

UCF-
Crime,
Surveil-
lance Fight,
Hockey
Fight,
Violent
Flows, ST

N/A N/A 0.858 0.849

Introduced a
dual-stream CNN
framework for detecting
anomalous events in
surveillance and
non-surveillance
environments

Some highly
complex video
sequences are
mispredicted,
contributing to
model failure cases

Yi et al.
[157] (2022)

UCF-
Crime, ST N/A N/A 0.843 0.977

Presented a scheme to
assess anomaly degree
and used triplet loss to
optimize the network

Limited
discrimination for
unseen normal
events, leading to
high false alarm
rates

Liu et al.
[158] (2022)

Ped2, ST,
UCF-Crime N/A 0.914 0.831 0.882

Proposed a collaborative
normality learning
framework to address
weakly supervised
video anomaly detection

Some false detection
cases due to image
obscuration and
low-resolution

Ullah et al.
[162] (2023)

Ped2,
CUHK, ST N/A 0.984 N/A 0.946

Proposed a weakly
supervised hybrid CNN-
and transformer-based
framework to learn
anomalous events using
video-level labels

Transformer
approach requires
more computational
resources due to
model parameter
variation

Shao et al.
[163] (2023)

UCF-
Crime, ST N/A N/A 0.851 0.953

Enhanced temporal
features for the entire
video sequence,
redefining integrity and
coherence

Limited
interpretability

Chen et al.
[164] (2023)

Ped2, ST,
UCF-
Crime,
TAD

N/A 0.974 0.803 0.972

Proposed a
spatial-temporal graph
attention network to
address video anomaly
detection

Local discriminative
representations may
deteriorate in long
videos with complex
scenes, resulting in
underfitting
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Table 5. Cont.

Research Anomaly
Datasets

Performance (AUC)
Strengths Drawbacks

Ped1 Ped2 UCF-
Crime ST

W
ea

kl
y

su
pe

rv
is

ed

Tang et al.
[165] (2023)

UCF-
Crime, ST N/A N/A 0.843 0.967

Prior knowledge guided
pseudo label generator
and improved
self-guided attention
encoder

High training time
cost, and
pseudo-label
generator not robust
enough

Zhang and
Xue [166]
(2023)

UCF-
Crime,
Ped2

N/A 0.941 0.832 N/A
Proposed sub-Max
method for anomaly
detection

Pixel-level AUC
result is suboptimal

Wang et al.
[167] (2023)

UCF-
Crime, ST N/A N/A 0.815 0.940

Proposed attention
mechanism-guided
multi-instance learning
weakly supervised
video anomaly detection
method

Difficulty in
detecting anomalies
in low-resolution
video, challenging to
evaluate confusing
actions without
additional context

4.2.1. Semi-Supervised Detection

Semi-supervised learning offers a method of learning the underlying structure of
data using both labeled and unlabeled data [204]. It falls within the partially supervised
detection approach, which is commonly encountered in real-world scenarios due to the
limited availability of labeled data [207]. The semi-supervised detection scheme emphasizes
augmenting limited labeled data with unlabeled data [208]. The model is initially trained
with labeled data to understand underlying patterns. It then uses predictions on unlabeled
data to create pseudo-labels. The model is subsequently retrained with this combination of
labeled and pseudo-labeled data, improving generalization. Techniques such as consistency
regularization and graph-based methods are also used to ensure the model produces
consistent predictions and propagates label information from labeled data to unlabeled
data [209].

Sikdar and Chowdhury [150] introduced an adaptive training-less method for anomaly
detection. The model identifies abnormal behavior without pre-training, dynamically
adjusting certain model parameters during runtime. Achieving an AUC of 0.992 on the
UMN dataset, the method has shown promising results. However, a slight performance lag
was observed, attributed to the sparse dataset nature and challenges in constructing local
descriptors. Singh et al. [151] proposed an algorithm for suspicious event detection based
on direction and magnitude using a semi-supervised scheme, achieving an impressive AUC
score of 0.999 using the UMN dataset, indicating near-perfect performance. However, the
method’s suitability for real-time applications is limited due to the time-consuming optical
flow calculation required for each frame. Wu et al. [137] further enhanced this baseline
approach with a semi-supervised re-learning scheme. They constructed a new training
set by selectively extracting training instances from the original testing set, resulting in an
increased AUC score from 0.858 to 0.885 on UCSD Ped1 datasets. Nevertheless, the model’s
performance remains closely tied to that of the baseline deep model, and occasional failure
cases may still occur.

The research gap in semi-supervised detection includes developing methodologies
that effectively handle sparse datasets and improve the accuracy of local descriptors.
Exploring innovative semi-supervised and adaptive learning strategies could enhance the
adaptability and robustness of anomaly detection models across different datasets and
environments. Closing these gaps is essential for advancing anomaly detection systems in
practical applications.
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4.2.2. Weakly Supervised Detection

Weakly supervised learning aims to generate predictions with high information con-
tent [204]. Unlike the semi-supervised scheme, the weakly supervised scheme focuses on
enhancing detection results with limited labeled data [208]. In weakly supervised detection,
the model uses labels that are less precise, coarser, or noisier than fully supervised labels.
Techniques such as multiple instance learning, where groups of instances are labeled rather
than individual instances [210], and expectation-maximization algorithms, which estimate
the most likely labels and optimize model parameters, are used [211]. Regularization
and adjustment of the loss function help the model deal with noise in the labels. This
scheme addresses the challenge of missing training data without requiring extensive object
annotation [212].

Recent works in weakly supervised AHB detection have utilized both video-level
data [162–164,167], and image-level data [165,166]. These recent works have demonstrated
promising results, achieving AUC scores above 0.940 using the ST dataset. Temporal
features have been a primary focus in these recent works to better distinguish abnormal
human behavior. However, drawbacks of video-level weakly supervised AHB detec-
tion include increased computational resources required by transformers due to model
parameter variation, limited interpretability of results, potential degradation of local dis-
criminative representations in lengthy videos, and challenges in detecting anomalies in
low-resolution videos. Additionally, image-level weakly supervised AHB detection faces
several drawbacks, including high training time costs and a pseudo-label generator that
lacks robustness.

Therefore, Ullah et al. [156] introduced a dual-stream CNN framework for detecting
anomalous events in surveillance and non-surveillance environments. The first scheme
employs a two-dimensional CNN as an auto-encoder for visual feature extraction and
further utilizes temporal relations. Subsequently, three-dimensional features are extracted
and integrated into two-dimensional spatiotemporal features for accurate detection. The
achieved AUC scores are high, nearly 0.990 on the Violent Flow and Hockey Fight dataset,
which indicates excellent performance. As illustrated in Figure 9, this work also achieves
the highest result compared to others, reaching 0.858 using UCF-Crime. However, some
extremely complex video sequences were mispredicted, contributing to the failure cases
of the proposed model. This finding suggests that combining reconstruction-based and
weakly supervised approaches could be a promising avenue for future research to integrate
temporal and spatiotemporal features.
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4.3. Fully Supervised Approach

Fully supervised learning is a paradigm where the model is trained to produce ac-
curate detection outputs based on input data [59]. Therefore, most research employing
fully supervised learning schemes uses accuracy as the primary metric to assess model
performance [213]. Typically, the model captures local features using CNN layers and
then incorporates them into the LSTM layer to learn temporal relationships between fea-
tures [93].

The recent works in fully supervised AHB detection focus on specific tasks such as fall
detection [84,85] and detecting suspicious activity at automated teller machines [94]. How-
ever, the effectiveness of the approach depends on factors such as image quality, camera
position, and the presence of subjects. Moreover, fall detection encounters challenges in
scenarios involving actions like crouching and sitting. The recent research addresses these
challenges by combining CNN with LSTM and GRU to learn temporal features within video
sequences [91,92]. Some frameworks also utilize Kalman Filter, dual-stream CNN, dual-
attentional CNN (DA-CNN), and Bi-GRU. These studies use various datasets, including
UP-Fall, AVA, UR-Fall, MCF, VOC2007, Penn-Fudan, OpenImages, CMU, UT-Interaction,
PEL, Hockey Fight, WED, Ped1, Ped2, HMDB51, UCF-50, UCF-101, Kinetics-600, and
YouTube Action. However, there are challenges in detecting motion on edge devices, and
the model may generate non-zero probabilities for certain action classes. An outstanding
result was achieved by Ahn et al. [89], who developed a vision-based factory safety mon-
itoring system to detect human presence on assembly lines. They utilized YOLOv3 as a
base model and employed the OpenImages dataset. The accuracy achieves a precision of
0.999 and a recall value of 0.964 across 24 detection classes. However, concerns were raised
regarding the detection quality due to lens distortion issues.

The research gap in fully supervised detection encompasses several challenges: ef-
fectiveness depends on factors such as image quality, camera position, and subject pres-
ence. Additionally, optimizing hyperparameters for optimal results proves challenging.
Lens distortion issues contribute to reduced detection accuracy compared to state-of-
the-art methods. Furthermore, higher computational requirements increase costs, while
motion detection on edge devices may result in non-zero probabilities for certain ac-
tion classes. Table 6 summarizes the strengths and drawbacks of fully supervised AHB
detection research.

Table 6. Strengths and Drawbacks of Fully Supervised Approach.

Research Anomaly Datasets Framework Strengths Drawbacks

Espinosa et al. [84]
(2019)

UP-Fall CNN Presented multi-camera
vision-based fall detection and
classification system using CNN

The efficacy depends on image
quality, camera position, and
subject presence

Gomes et al. [85]
(2022)

AVA, MCF, UR-Fall CNN,
Kalman Filter

Combined CNN and Kalman filter
for fall tracking

Fall detection faces challenges in
scenarios like crouching and sitting

Sivachandiran et al.
[88] (2022)

VOC2007,
Penn-Fudan

CNN Enhanced model for person
detection and tracking on
surveillance videos

Difficulty in hyperparameter
tuning for optimum results

Ahn et al. [89] (2023) OpenImages CNN Designed vision-based factory
safety monitoring system for
detecting human presence on
assembly lines

Low detection performance due to
lens distortion issues

Michael Onyema et al.
[90] (2023)

CMU, UT-Interaction,
PEL, Hockey Fight,
WED, Ped1, Ped2

CNN Designed slow–fast CNN for
abnormal behavior identification
in surveillance videos

Consumes more computational
time, increasing costs
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Table 6. Cont.

Research Anomaly Datasets Framework Strengths Drawbacks

Hussain et al. [91]
(2023)

HMDB51, UCF-50,
YouTube Action

Dual-stream CNN Proposed dual-stream network
combining image enhancement,
convolutional, and transformer
techniques

Unable to detect motion in edge
devices

Ullah and Munir [92]
(2023)

HMDB51, UCF-50,
UCF-101, YouTube
Action, Kinetics-600

DA-CNN,
Bi-GRU

Proposed cascaded
spatial-temporal discriminative
feature-learning framework for
human activity recognition in
video streams

May produce non-zero
probabilities for some action
classes

Kshirsagar and Azath
[94] (2023)

YouTube Action CNN Used heuristic-assisted deep
learning techniques for detecting
suspicious human activities in the
automated teller machines

Accuracy is slightly lower than
state-of-the-art methods

4.4. Summary: Advantages and Disadvantages

Offering a definitive answer to the question “Which abnormal human behavior de-
tection technique is most suitable for a specific application?” may not always be practical.
Therefore, this section explains the advantages and disadvantages of each deep learning
technique. In the reconstruction-based approach, the auto-encoder method is commonly
employed for image dimension reduction. This learning process is subsequently utilized to
compute the loss function within the network, which is used to identify abnormal behavior
within the input data. However, the distribution of these data presents a significant challenge
when implementing models in heterogeneous environments. Additionally, the effectiveness
of the model using this auto-encoder method is also contingent upon data quality. Table 7
summarizes the advantages and disadvantages of each deep learning technique.

Methods have been devised to address generalization issues arising from data dis-
tribution using VAE. Techniques such as regularization and probabilistic formulation are
incorporated into VAE methods, enabling their applications in detecting abnormal behav-
ior across more heterogeneous environments. However, VAEs may struggle to identify
abnormal behavior occurring within specific time frames. Moreover, probabilistic calcu-
lations throughout the image can lead to small object sizes and slightly disrupted pixel
localization. A specialized strategy is required to fully leverage the potential of VAEs in
detecting abnormal behavior in surveillance videos.

Within the reconstruction-based approaches, convolutional auto-encoders are em-
ployed to maximize detection for each pixel in the image. CAEs offer benefits due to their
generalization capabilities, enabling weight distribution across all areas of the input image.
This feature allows the model to localize and identify abnormal human behaviors within
specific regions. However, convolutional networks often require augmentation with other
methods to optimize output. Therefore, techniques like max-pooling and deconvolutional
layers from a supervised learning framework are used to assist in distributing weight
dependencies for each pixel in the image.

Generative detection approaches excel in recognizing environments unseen during
the learning phase. This advantage can be leveraged by refining the generator module to
improve the quality of training images, mitigate noise in images, and distinguish between
foreground and background objects to streamline detection targets. However, careful con-
sideration is required regarding the model’s priorities, whether to emphasize the model’s
adaptability to objects or prioritize computational time and resources. This prioritization
is crucial as it influences training paradigms and the balance between the generator and
discriminator. By understanding the model’s requirements, training objectives become
more focused, enabling the mitigation of several drawbacks associated with generative
detection approaches in identifying abnormal human behaviors.
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Table 7. Advantages and disadvantages of deep-learning-based AHB detection approaches.

Approach Methods Advantages Disadvantages

Unsupervised

Reconstruction-based
Detection (AE, VAE, CAE)

• Can perform image dimensionality
reduction

• Capable of localizing AHB in frames
• Can be trained solely with normal data
• Handles data scarcity effectively

• Challenged with data distribution
when implemented in
heterogeneous environments

• Difficult to accurately capture
abnormal behavior occurring within
certain timeframes

• Disrupted by pixel localization

Generative Detection (GAN)

• Capable of detecting AHB in new
environments

• Easily select AHB due to foreground
object subtraction ability

• Handles data scarcity effectively

• Experiences a gradient exploding
problem

• Challenged with high complexity
• Requires a significant amount of

computational resources

Partially
Supervised

Semi-supervised Detection,
Weak-supervised Detection

• Extends the amount of labeled data with
minimal supervision

• Rapidly modifies models based on
recent data

• Reduces time and minimizes human
efforts for data labeling

• Performs well in training with
scarce data

• Enable quick detection of video
sequences

• Handles data scarcity effectively

• Noisy labeled data as an anchor
complicates the training phase

• Limited interpretability
• Suboptimal for pixel-level AHB

detection

Fully Supervised CNN, LSTM, GRU
• Useful for predefined AHB detection

classes
• Beneficial for short-term AHB detection

• Requires substantial human effort
for data labeling

• Not beneficial for long-term AHB
detection

• Consumes significant computing
resources and time

• Unable to handle data scarcity
problems

In partially supervised detection, a semi-supervised detection scheme offers an alter-
native path to training detection models by concentrating on developing training data. By
leveraging a small amount of labeled data, the focus shifts to instructing unlabeled data to
serve as new references for subsequent model training. Through a pseudo-labeling scheme,
additional labeled data can be generated with minimal supervision. This scheme finds
diverse applications, particularly in adapting models to the latest data reflecting evolv-
ing real-world environments. Notably, it significantly reduces labeling time, minimizing
human effort. However, it is crucial to acknowledge that if the reference data used for
labeling are noisy or of poor quality, subsequent processes become more challenging. For
endeavors aiming to augment unlabeled data and enhance dataset quality, the utilization
of the semi-supervised detection scheme is recommended.

Weakly supervised detection is another scheme of partially supervised detection. This
scheme focuses on training the model to yield higher-quality information. The emphasis lies
in utilizing a small amount of data while still producing an accurate model. Much research
has adapted layers and weighting strategies to enable models to learn patterns from sparsely
labeled datasets and generalize from them. There are various advantages, such as quicker
detection of video sequences and detecting abnormal human behavior. It is essential to
note that hyperparameter tuning is crucial here. Recent advancements offer promising
strategies to optimize model performance by tuning fewer hyperparameters, known as
visual tuning [214]. Visual tuning holds significant potential for growth through the
application of self-supervised learning, which enables models to learn from vast amounts
of unlabeled data. This approach reduces the need for extensive labeled datasets and
improves the model’s ability to generalize across different scenarios of abnormal behavior.
Additionally, the input data must be of high quality. Weakly supervised detection is utilized
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when the focus and ultimate goal are on maximizing model output to make the model
more informative and accurate.

Training a model to detect abnormal human behavior using fully supervised learning
is highly beneficial if the behavior category to be detected has been determined. Detection
using CNN is feasible only for short-term detection, i.e., detecting abnormal behavior at
the frame level. CNN is less efficient for detecting behavior that requires a certain period
to determine its abnormality, known as long-term abnormal behavior. Some research
incorporates LSTM and GRU to assess behavior temporally [87,92,93]. Unfortunately, data
on abnormal human behaviors are scarce and expensive. Therefore, the fully supervised
scheme necessitates more human effort solely to determine normal and abnormal data
in the model training phase. Additionally, this scheme consumes significant computing
resources and time due to the diverse nature of abnormal human behaviors.

5. Open Research Issues

This section discusses open research issues with deep learning techniques for abnormal
human behavior detection in surveillance videos. Table 8 outlines the open research issues
for each deep learning approach.

For unsupervised detection, particularly within the reconstruction-based approach,
managing the variability of data distribution is a significant challenge, as it changes accord-
ing to the detection environment of the target object. Addressing this requires developing
strategies to handle the high levels of environmental variability in the data, potentially
leading to new research directions. Additionally, accurately detecting AHB within specific
temporal frames poses a challenge due to the difficulty of detection within certain time-
frames. Thus, developing coherent temporal models is crucial to prioritize these temporal
AHB detections effectively. The VAE method faces issues with pixel localization accuracy,
necessitating alternative mechanisms to improve AHB detection precision. This challenge
warrants further exploration as one of many open research questions aimed at creating a
more sophisticated AHB detector.

Table 8. Open research issues with deep learning techniques for AHB detection in surveillance videos.

Approach Methods Open Research Issues

Unsupervised

Reconstruction-based
Detection (AE, VAE, CAE)

• Handling high environmental variation in data
• Finding optimal combinations with other temporal models
• Introducing additional mechanisms for a more fine-grained AHB

detector to address pixel localization disruption

Generative Detection (GAN)

• Addressing the gradient exploding issue through the
development of model-learning techniques

• Managing complexity for smoother detection
• Developing solutions to reduce high computational resources

requirements

Partially Supervised Semi-supervised Detection,
Weak-supervised Detection

• Formulating strategies for better understanding AHB in
contextual settings

• Implementing efficient preprocessing phases to clean noisy data
• Developing strategies to integrate every pixel to gain

comprehensive information

Fully Supervised CNN, LSTM, GRU • Designing lightweight AHB models
• Integrating with LSTM and GRU for long-term AHB detection

Concerning generative detection, addressing issues such as gradient exploding is of
significant importance. This phenomenon causes abrupt changes in weight values during
calculations, disrupting the learning process, particularly as the model performance heavily
relies on the training data [141]. This presents a significant challenge as the model needs to
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efficiently and effectively generalize to new data. Establishing mechanisms for improving
model learning while preserving the model’s benefits is the core principle for overcoming
these challenges. As the model processes more data, the demand for computer resources
increases, raising questions about whether the current resources can meet the demand
for AHB detection. This research problem arises from the need to model and allocate
proper computing resources of sufficient quality. Concerning complexity reduction, several
questions arise. Integration between the generator and discriminator is necessary, as their
inability to work in unison undoubtedly leads to poor model performance [119]. Conversely,
managing complexity is equally important to maintain the pace of the detection process.

The predominant challenge in partially supervised detection is limited interpretability.
In this context, labels produced either automatically or manually may not always be
accurate, casting doubt on the validity of the model interpretation. Therefore, special
attention should be given to the development of new approaches to better predict abnormal
human behavior. The noisy anchor data are also challenging, leading to a research question
about implementing a robust preprocessing phase. Additionally, pixel-level AHB detection
becomes inaccurate due to suboptimal performance, resulting in inaccurate results [166].
The extraction technique may fail to capture important information at the pixel level,
leading to the omission of vital details necessary for AHB detection. Hence, the classifier
should employ an adequate approach to integrate the detected object pixel information.

Another challenge associated with fully supervised detection is the requirement for
high computational resources. Analyzing this situation, an effective lightweight model is
needed. The research on lightweight AHB detection brings many benefits, especially in
rapid inference, faster decision-making, and minimal computational consumption. How-
ever, there are still challenges in detecting long-term AHB using fully supervised learning.
Therefore, the research issue opened in the use of LSTM and GRU for the feasibility of
long-term AHB detection follows the path of fully supervised detection.

6. Conclusions

The detection of abnormal human behavior in video surveillance systems is a crucial
task, yet datasets demonstrating such behavior are scarce and costly to collect. Hence,
developing strategies that effectively utilize optimal abnormal data alongside accurate
models becomes imperative. To address this challenge, we present a comprehensive survey
of deep learning techniques for abnormal human behavior detection in surveillance videos.
This survey begins by defining abnormal human behaviors and categorizing them into
three detection approaches: unsupervised, partially supervised, and fully supervised. Each
approach is extensively described, including its strengths and drawbacks. Additionally, we
conduct a comparative analysis of the prior research findings on popular benchmarking
datasets. In unsupervised detection, the reconstruction-based detection approach excels in
reducing image dimensionality and localizing AHB in normal data. However, it struggles
with environmental diversity and inaccurate timeframe detection, often due to pixel local-
ization issues. Generative detection approaches are adept at identifying AHB in unfamiliar
scenarios and addressing data shortages. Yet, they face challenges like exploding gradients,
high complexity, and significant computational demands. Partially supervised detection
mitigates data scarcity by enhancing limited labeled data with minimal supervision. How-
ever, it grapples with noisy labeled data, limited interpretability, and suboptimal AHB
detection at the pixel level. Fully supervised detection, while suitable for defined AHB
detection classes, is resource-intensive for labeling and less effective in long-term detection.
Additionally, its data scarcity poses a trade-off between comprehensiveness and efficacy.
Finally, we discuss several open research issues in AHB detection, including the issue of
high environmental variation data, optimizing temporal AHB detection, tackling gradient
exploding, and reducing computational resource usage. Through investigation of these
potential research issues, we aim to drive progress in this field, ultimately bringing greater
benefits to video surveillance systems in the future.
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38. Grabušić, S.; Barić, D. A Systematic Review of Railway Trespassing: Problems and Prevention Measures. Sustainability 2023,
15, 13878. [CrossRef]

39. Zaman, A.; Ren, B.; Liu, X. Artificial Intelligence-Aided Automated Detection of Railroad Trespassing. Transp. Res. Rec. J. Transp.
Res. Board. 2019, 2673, 25–37. [CrossRef]

40. Havârneanu, G.M. Behavioural and organisational interventions to prevent trespass and graffiti vandalism on railway property.
Proc. Inst. Mech. Eng. F J. Rail Rapid. Transit. 2017, 231, 1078–1087. [CrossRef]

41. Zhang, T.; Aftab, W.; Mihaylova, L.; Langran-Wheeler, C.; Rigby, S.; Fletcher, D.; Maddock, S.; Bosworth, G. Recent Advances in
Video Analytics for Rail Network Surveillance for Security, Trespass and Suicide Prevention—A Survey. Sensors 2022, 22, 4324.
[CrossRef] [PubMed]

42. Bamaqa, A.; Sedky, M.; Bosakowski, T.; Bastaki, B.B.; Alshammari, N.O. SIMCD: SIMulated crowd data for anomaly detection
and prediction. Expert Syst. Appl. 2022, 203, 117475. [CrossRef]

43. Mehmood, A. Abnormal Behavior Detection in Uncrowded Videos with Two-Stream 3D Convolutional Neural Networks. Appl.
Sci. 2021, 11, 3523. [CrossRef]

44. Pouyan, S.; Charmi, M.; Azarpeyvand, A.; Hassanpoor, H. Propounding First Artificial Intelligence Approach for Predicting
Robbery Behavior Potential in an Indoor Security Camera. IEEE Access 2023, 11, 60471–60489. [CrossRef]

45. Chen, H.; Bohush, R.; Kurnosov, I.; Ma, G.; Weichen, Y.; Ablameyko, S. Detection of Appearance and Behavior Anomalies in
Stationary Camera Videos Using Convolutional Neural Networks. Pattern Recognit. Image Anal. 2022, 32, 254–265. [CrossRef]

46. Patel, A.S.; Vyas, R.; Vyas, O.P.; Ojha, M.; Tiwari, V. Motion-compensated online object tracking for activity detection and crowd
behavior analysis. Vis. Comput. 2023, 39, 2127–2147. [CrossRef] [PubMed]

https://doi.org/10.3390/s23042153
https://www.ncbi.nlm.nih.gov/pubmed/36850753
https://doi.org/10.3390/electronics12051259
https://doi.org/10.3934/mbe.2023498
https://doi.org/10.1109/ACCESS.2023.3307138
https://doi.org/10.1117/1.JRS.17.044502
https://doi.org/10.1049/ccs2.12084
https://doi.org/10.3390/electronics12051165
https://doi.org/10.1186/s40537-023-00779-4
https://doi.org/10.18280/ts.400110
https://doi.org/10.1016/j.neucom.2023.01.059
https://doi.org/10.3390/mol2net-08-13932
https://doi.org/10.1049/ipr2.12720
https://doi.org/10.1109/ICACCI.2018.8554678
https://doi.org/10.1111/exsy.13474
https://doi.org/10.32604/cmc.2023.029629
https://doi.org/10.32604/iasc.2023.027205
https://doi.org/10.3390/computers12090175
https://doi.org/10.1109/BigData47090.2019.9006426
https://doi.org/10.1016/j.aap.2022.106594
https://doi.org/10.3390/su151813878
https://doi.org/10.1177/0361198119846468
https://doi.org/10.1177/0954409716675004
https://doi.org/10.3390/s22124324
https://www.ncbi.nlm.nih.gov/pubmed/35746103
https://doi.org/10.1016/j.eswa.2022.117475
https://doi.org/10.3390/app11083523
https://doi.org/10.1109/ACCESS.2023.3284472
https://doi.org/10.1134/S1054661822020067
https://doi.org/10.1007/s00371-022-02469-3
https://www.ncbi.nlm.nih.gov/pubmed/35437336


Electronics 2024, 13, 2579 29 of 35

47. Wahyono; Harjoko, A.; Dharmawan, A.; Adhinata, F.D.; Kosala, G.; Jo, K.-H. Loitering Detection Using Spatial-Temporal
Information for Intelligent Surveillance Systems on a Vision Sensor. J. Sens. Actuator Netw. 2023, 12, 9. [CrossRef]

48. Huang, T.; Han, Q.; Min, W.; Li, X.; Yu, Y.; Zhang, Y. Loitering Detection Based on Pedestrian Activity Area Classification. Appl.
Sci. 2019, 9, 1866. [CrossRef]

49. Dwivedi, N.; Singh, D.K.; Kushwaha, D.S. An Approach for Unattended Object Detection through Contour Formation using
Background Subtraction. Procedia Comput. Sci. 2020, 171, 1979–1988. [CrossRef]

50. Agarwal, H.; Singh, G.; Siddiqui, M.A. Classification of Abandoned and Unattended Objects, Identification of Their Owner with
Threat Assessment for Visual Surveillance. In Proceedings of 3rd International Conference on Computer Vision and Image Processing;
Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S., Eds.; Springer: Singapore, 2020; pp. 221–232. [CrossRef]

51. Htun, B.; Sein, M.M. Observation of Unattended or Removed Object in Public Area for Security Monitoring System. In Genetic
and Evolutionary Computing; Springer International Publishing: Cham, Switzerland, 2017; pp. 45–53. [CrossRef]

52. Park, H.; Park, S.; Joo, Y. Robust Real-time Detection of Abandoned Objects using a Dual Background Model. KSII Trans. Internet
Inf. Syst. 2020, 14, 771–788. [CrossRef]

53. Bangare, P.S.; Bangare, S.L.; Yawle, R.U.; Patil, S.T. Detection of human feature in abandoned object with modern security alert
system using Android Application. In Proceedings of the 2017 International Conference on Emerging Trends & Innovation in ICT
(ICEI), Pune, India, 3–5 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 139–144. [CrossRef]

54. Planinc, R.; Kampel, M. Detecting Unusual Inactivity by Introducing Activity Histogram Comparisons. In Proceedings of the 9th
International Conference on Computer Vision Theory and Applications, SCITEPRESS—Science and and Technology Publications,
Lisbon, Portugal, 5–8 January 2014; pp. 313–320. [CrossRef]

55. Koehler, S.; Goldhammer, M.; Bauer, S.; Zecha, S.; Doll, K.; Brunsmann, U.; Dietmayer, K. Stationary Detection of the Pedestrian’s
Intention at Intersections. IEEE Intell. Transp. Syst. Mag. 2013, 5, 87–99. [CrossRef]

56. Yi, S.; Li, H.; Wang, X. Pedestrian Behavior Modeling From Stationary Crowds With Applications to Intelligent Surveillance. IEEE
Trans. Image Process. 2016, 25, 4354–4368. [CrossRef] [PubMed]

57. Deep, S.; Zheng, X.; Karmakar, C.; Yu, D.; Hamey, L.G.C.; Jin, J. A Survey on Anomalous Behavior Detection for Elderly Care
Using Dense-Sensing Networks. IEEE Commun. Surv. Tutor. 2020, 22, 352–370. [CrossRef]

58. Nayak, R.; Pati, U.C.; Das, S.K. A comprehensive review on deep learning-based methods for video anomaly detection. Image Vis.
Comput. 2021, 106, 104078. [CrossRef]

59. Choudhry, N.; Abawajy, J.; Huda, S.; Rao, I. A Comprehensive Survey of Machine Learning Methods for Surveillance Videos
Anomaly Detection. IEEE Access 2023, 11, 114680–114713. [CrossRef]

60. Patrikar, D.R.; Parate, M.R. Anomaly detection using edge computing in video surveillance system: Review. Int. J. Multimed. Inf.
Retr. 2022, 11, 85–110. [CrossRef]

61. Xefteris, V.-R.; Tsanousa, A.; Meditskos, G.; Vrochidis, S.; Kompatsiaris, I. Performance, Challenges, and Limitations in Multimodal
Fall Detection Systems: A Review. IEEE Sens. J. 2021, 21, 18398–18409. [CrossRef]

62. Roka, S.; Diwakar, M.; Singh, P.; Singh, P. Anomaly behavior detection analysis in video surveillance: A critical review. J. Electron.
Imaging 2023, 32, 42106. [CrossRef]

63. Newaz, N.T.; Hanada, E. The Methods of Fall Detection: A Literature Review. Sensors 2023, 23, 5212. [CrossRef] [PubMed]
64. Jenga, K.; Catal, C.; Kar, G. Machine learning in crime prediction. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 2887–2913.

[CrossRef]
65. Pandiaraja, P.; Saarumathi, R.; Parashakthi, M.; Logapriya, R. An Analysis of Abnormal Event Detection and Person Identifi-

cation from Surveillance Cameras using Motion Vectors with Deep Learning. In Proceedings of the 2023 Second International
Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2–4 March 2023; IEEE: Piscataway, NJ, USA, 2023;
pp. 1225–1232. [CrossRef]

66. Zhou, Z.-H.; Schwenker, F. Partially Supervised Learning; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
67. Ren, J.; Xia, F.; Liu, Y.; Lee, I. Deep Video Anomaly Detection: Opportunities and Challenges. In Proceedings of the 2021

International Conference on Data Mining Workshops (ICDMW), Auckland, New Zealand, 7–10 December 2021; IEEE: Piscataway,
NJ, USA, 2021; pp. 959–966. [CrossRef]

68. Hao, Y.; Tang, Z.; Alzahrani, B.; Alotaibi, R.; Alharthi, R.; Zhao, M.; Mahmood, A. An End-to-End Human Abnormal Behavior
Recognition Framework for Crowds With Mentally Disordered Individuals. IEEE J. Biomed. Health Inf. 2022, 26, 3618–3625.
[CrossRef] [PubMed]

69. Zhang, C.; Li, G.; Xu, Q.; Zhang, X.; Su, L.; Huang, Q. Weakly Supervised Anomaly Detection in Videos Considering the Openness
of Events. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21687–21699. [CrossRef]

70. Zhu, S.; Chen, C.; Sultani, W. Video Anomaly Detection for Smart Surveillance. In Computer Vision; Springer International
Publishing: Cham, Switzerland, 2020; pp. 1–8. [CrossRef]

71. Wang, Y.; Qin, C.; Bai, Y.; Xu, Y.; Ma, X.; Fu, Y. Making Reconstruction-based Method Great Again for Video Anomaly Detection.
In Proceedings of the 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 28 November–1 December
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1215–1220. [CrossRef]

72. Ganokratanaa, T.; Aramvith, S.; Sebe, N. Anomaly Event Detection Using Generative Adversarial Network for Surveillance
Videos. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), Lanzhou, China, 18–21 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1395–1399. [CrossRef]

https://doi.org/10.3390/jsan12010009
https://doi.org/10.3390/app9091866
https://doi.org/10.1016/j.procs.2020.04.212
https://doi.org/10.1007/978-981-32-9088-4_19
https://doi.org/10.1007/978-3-319-48490-7_6
https://doi.org/10.3837/tiis.2020.02.017
https://doi.org/10.1109/ETIICT.2017.7977025
https://doi.org/10.5220/0004670203130320
https://doi.org/10.1109/MITS.2013.2276939
https://doi.org/10.1109/TIP.2016.2590322
https://www.ncbi.nlm.nih.gov/pubmed/27416595
https://doi.org/10.1109/COMST.2019.2948204
https://doi.org/10.1016/j.imavis.2020.104078
https://doi.org/10.1109/ACCESS.2023.3321800
https://doi.org/10.1007/s13735-022-00227-8
https://doi.org/10.1109/JSEN.2021.3090454
https://doi.org/10.1117/1.JEI.32.4.042106
https://doi.org/10.3390/s23115212
https://www.ncbi.nlm.nih.gov/pubmed/37299939
https://doi.org/10.1007/s12652-023-04530-y
https://doi.org/10.1109/ICEARS56392.2023.10085466
https://doi.org/10.1007/978-3-642-40705-5
https://doi.org/10.1109/ICDMW53433.2021.00125
https://doi.org/10.1109/JBHI.2021.3122463
https://www.ncbi.nlm.nih.gov/pubmed/34699376
https://doi.org/10.1109/TITS.2022.3174088
https://doi.org/10.1007/978-3-030-03243-2_845-1
https://doi.org/10.1109/ICDM54844.2022.00157
https://doi.org/10.1109/APSIPAASC47483.2019.9023261


Electronics 2024, 13, 2579 30 of 35

73. Popoola, O.P.; Wang, K. Video-Based Abnormal Human Behavior Recognition—A Review. IEEE Trans. Syst. Man Cybern. Part C
(Appl. Rev.) 2012, 42, 865–878. [CrossRef]

74. Wu, X.; Ou, Y.; Qian, H.; Xu, Y. A detection system for human abnormal behavior. In Proceedings of the 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; IEEE: Piscataway, NJ,
USA, 2005; pp. 1204–1208. [CrossRef]

75. Fei, F.; Fang, Z.; Shu, L. A fast algorithm based on human visual system for abnormal event detection. In Proceedings of the 2017
International Conference on Computer, Information and Telecommunication Systems (CITS), Dalian, China, 21–23 July 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 185–189. [CrossRef]

76. Tran, C.H.; Kong, S.G. An Iterative Learning Scheme with Binary Classifier for Improved Event Detection in Surveillance Video.
Electronics 2023, 12, 3275. [CrossRef]

77. Jin, C.; Wang, T.; Alhusaini, N.; Zhao, S.; Liu, H.; Xu, K.; Zhang, J. Video Fire Detection Methods Based on Deep Learning:
Datasets, Methods, and Future Directions. Fire 2023, 6, 315. [CrossRef]

78. Cao, X.; Su, Y.; Geng, X.; Wang, Y. YOLO-SF: YOLO for Fire Segmentation Detection. IEEE Access 2023, 11, 111079–111092.
[CrossRef]

79. Yam, C.; Nixon, M.S.; Carter, J.N. On the relationship of human walking and running: Automatic person identification by gait. In
Object Recognition Supported by User Interaction for Service Robots; IEEE Computer Society: Washington, DC, USA, 2002; pp. 287–290.
[CrossRef]

80. Gutiérrez, J.; Martin, S.; Rodriguez, V. Human stability assessment and fall detection based on dynamic descriptors. IET Image
Process 2023, 17, 3177–3195. [CrossRef]

81. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
82. Shubber, M.S.M.; Al-Ta’i, Z.T.M. A review on video violence detection approaches. Int. J. Nonlinear Anal. Appl. (IJNAA) 2022, 13,

1117–1130. [CrossRef]
83. Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A review of convolutional neural networks in computer vision.

Artif. Intell. Rev. 2024, 57, 99. [CrossRef]
84. Espinosa, R.; Ponce, H.; Gutiérrez, S.; Martínez-Villaseñor, L.; Brieva, J.; Moya-Albor, E. A vision-based approach for fall detection

using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset. Comput. Biol. Med.
2019, 115, 103520. [CrossRef]

85. Gomes, M.E.N.; Macêdo, D.; Zanchettin, C.; de-Mattos-Neto, P.S.G.; Oliveira, A. Multi-human Fall Detection and Localization in
Videos. Comput. Vis. Image Underst. 2022, 220, 103442. [CrossRef]

86. Chandrakala, S.; Vignesh, L.K.P. V2AnomalyVec: Deep Discriminative Embeddings for Detecting Anomalous Activities in
Surveillance Videos. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1307–1316. [CrossRef]

87. Gandapur, M.Q. E2E-VSDL: End-to-end video surveillance-based deep learning model to detect and prevent criminal activities.
Image Vis. Comput. 2022, 123, 104467. [CrossRef]

88. Sivachandiran, S.; Mohan, K.J.; Nazer, G.M. Deep Learning driven automated person detection and tracking model on surveillance
videos. Meas. Sens. 2022, 24, 100422. [CrossRef]

89. Ahn, J.; Park, J.; Lee, S.S.; Lee, K.-H.; Do, H.; Ko, J. SafeFac: Video-based smart safety monitoring for preventing industrial work
accidents. Expert. Syst. Appl. 2023, 215, 119397. [CrossRef]

90. Onyema, E.M.; Balasubaramanian, S.; Suguna S, K.; Iwendi, C.; Prasad, B.V.V.S.; Edeh, C.D. Remote monitoring system using
slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. Meas. Sens.
2023, 27, 100718. [CrossRef]

91. Hussain, A.; Khan, S.U.; Khan, N.; Rida, I.; Alharbi, M.; Baik, S.W. Low-light aware framework for human activity recognition via
optimized dual stream parallel network. Alex. Eng. J. 2023, 74, 569–583. [CrossRef]

92. Ullah, H.; Munir, A. Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework.
J. Imaging 2023, 9, 130. [CrossRef] [PubMed]

93. Mao, J.; Zhou, P.; Wang, X.; Yao, H.; Liang, L.; Zhao, Y.; Zhang, J.; Ban, D.; Zheng, H. A health monitoring system based on flexible
triboelectric sensors for intelligence medical internet of things and its applications in virtual reality. Nano Energy 2023, 118, 108984.
[CrossRef]

94. Kshirsagar, A.P.; Azath, H. YOLOv3-based human detection and heuristically modified-LSTM for abnormal human activities
detection in ATM machine. J. Vis. Commun. Image Represent. 2023, 95, 103901. [CrossRef]

95. Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.;
Al-Timemy, A.H.; et al. A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and
applications. J. Big Data 2023, 10, 46. [CrossRef]

96. Baxter, R.H.; Robertson, N.M.; Lane, D.M. Human behaviour recognition in data-scarce domains. Pattern Recognit. 2015, 48,
2377–2393. [CrossRef]

97. Tu, H.; Allanach, J.; Singh, S.; Pattipati, K.R.; Willett, P. Information integration via hierarchical and hybrid bayesian networks.
IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum. 2006, 36, 19–33. [CrossRef]

98. Duong, H.-T.; Le, V.-T.; Hoang, V.T. Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey. Sensors 2023,
23, 5024. [CrossRef] [PubMed]

https://doi.org/10.1109/TSMCC.2011.2178594
https://doi.org/10.1109/IROS.2005.1545205
https://doi.org/10.1109/CITS.2017.8035338
https://doi.org/10.3390/electronics12153275
https://doi.org/10.3390/fire6080315
https://doi.org/10.1109/ACCESS.2023.3322143
https://doi.org/10.1109/ICPR.2002.1044691
https://doi.org/10.1049/ipr2.12847
https://doi.org/10.1038/nature14539
https://doi.org/10.22075/ijnaa.2022.6369
https://doi.org/10.1007/s10462-024-10721-6
https://doi.org/10.1016/j.compbiomed.2019.103520
https://doi.org/10.1016/j.cviu.2022.103442
https://doi.org/10.1109/TCSS.2021.3119957
https://doi.org/10.1016/j.imavis.2022.104467
https://doi.org/10.1016/j.measen.2022.100422
https://doi.org/10.1016/j.eswa.2022.119397
https://doi.org/10.1016/j.measen.2023.100718
https://doi.org/10.1016/j.aej.2023.05.050
https://doi.org/10.3390/jimaging9070130
https://www.ncbi.nlm.nih.gov/pubmed/37504807
https://doi.org/10.1016/j.nanoen.2023.108984
https://doi.org/10.1016/j.jvcir.2023.103901
https://doi.org/10.1186/s40537-023-00727-2
https://doi.org/10.1016/j.patcog.2015.02.019
https://doi.org/10.1109/TSMCA.2005.859180
https://doi.org/10.3390/s23115024
https://www.ncbi.nlm.nih.gov/pubmed/37299751


Electronics 2024, 13, 2579 31 of 35

99. Lavee, G.; Rivlin, E.; Rudzsky, M. Understanding Video Events: A Survey of Methods for Automatic Interpretation of Semantic
Occurrences in Video. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2009, 39, 489–504. [CrossRef]

100. Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A survey of
uncertainty in deep neural networks. Artif. Intell. Rev. 2023, 56, 1513–1589. [CrossRef]

101. Myagmar-Ochir, Y.; Kim, W. A Survey of Video Surveillance Systems in Smart City. Electronics 2023, 12, 3567. [CrossRef]
102. Şengönül, E.; Samet, R.; Al-Haija, Q.A.; Alqahtani, A.; Alturki, B.; Alsulami, A.A. An Analysis of Artificial Intelligence Techniques

in Surveillance Video Anomaly Detection: A Comprehensive Survey. Appl. Sci. 2023, 13, 4956. [CrossRef]
103. Wang, T.; Miao, Z.; Chen, Y.; Zhou, Y.; Shan, G.; Snoussi, H. AED-Net: An Abnormal Event Detection Network. Engineering 2019,

5, 930–939. [CrossRef]
104. Hu, J.; Zhu, E.; Wang, S.; Liu, X.; Guo, X.; Yin, J. An Efficient and Robust Unsupervised Anomaly Detection Method Using

Ensemble Random Projection in Surveillance Videos. Sensors 2019, 19, 4145. [CrossRef] [PubMed]
105. Liu, Q.; Zhou, X. A Fully Connected Network Based on Memory for Video Anomaly Detection. In Proceedings of the 2022 IEEE

8th International Conference on Cloud Computing and Intelligent Systems (CCIS), Chengdu, China, 26–28 November 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 221–226. [CrossRef]

106. Chang, Y.; Tu, Z.; Xie, W.; Luo, B.; Zhang, S.; Sui, H.; Yuan, J. Video anomaly detection with spatio-temporal dissociation. Pattern
Recognit. 2022, 122, 108213. [CrossRef]

107. Wang, X.; Che, Z.; Jiang, B.; Xiao, N.; Yang, K.; Tang, J.; Ye, J.; Wang, J.; Qi, Q. Robust Unsupervised Video Anomaly Detection by
Multipath Frame Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 2301–2312. [CrossRef] [PubMed]

108. Wang, Y.; Liu, T.; Zhou, J.; Guan, J. Video anomaly detection based on spatio-temporal relationships among objects. Neurocomputing
2023, 532, 141–151. [CrossRef]

109. Liu, Y.; Guo, Z.; Liu, J.; Li, C.; Song, L. OSIN: Object-Centric Scene Inference Network for Unsupervised Video Anomaly Detection.
IEEE Signal Process Lett. 2023, 30, 359–363. [CrossRef]

110. Li, N.; Chang, F.; Liu, C. A Self-Trained Spatial Graph Convolutional Network for Unsupervised Human-Related Anomalous
Event Detection in Complex Scenes. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 737–750. [CrossRef]

111. Sampath, D.K.; Kumar, K. Abnormal Crowd Behaviour Detection in Surveillance Videos Using Spatiotemporal Inter-Fused
Autoencoder. Int. J. Intell. Eng. Syst. 2023, 16, 470–481. [CrossRef]

112. Wang, T.; Qiao, M.; Lin, Z.; Li, C.; Snoussi, H.; Liu, Z.; Choi, C. Generative Neural Networks for Anomaly Detection in Crowded
Scenes. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1390–1399. [CrossRef]

113. Xu, M.; Yu, X.; Chen, D.; Wu, C.; Jiang, Y. An Efficient Anomaly Detection System for Crowded Scenes Using Variational
Autoencoders. Appl. Sci. 2019, 9, 3337. [CrossRef]

114. Yan, S.; Smith, J.S.; Lu, W.; Zhang, B. Abnormal Event Detection From Videos Using a Two-Stream Recurrent Variational
Autoencoder. IEEE Trans. Cogn. Dev. Syst. 2020, 12, 30–42. [CrossRef]

115. Wang, T.; Xu, X.; Shen, F.; Yang, Y. A Cognitive Memory-Augmented Network for Visual Anomaly Detection. IEEE/CAA J. Autom.
Sin. 2021, 8, 1296–1307. [CrossRef]

116. Cho, M.; Kim, T.; Kim, W.J.; Cho, S.; Lee, S. Unsupervised video anomaly detection via normalizing flows with implicit latent
features. Pattern Recognit. 2022, 129, 108703. [CrossRef]

117. Huang, C.; Wu, Z.; Wen, J.; Xu, Y.; Jiang, Q.; Wang, Y. Abnormal Event Detection Using Deep Contrastive Learning for Intelligent
Video Surveillance System. IEEE Trans. Ind. Inf. 2022, 18, 5171–5179. [CrossRef]

118. Wang, L.; Tan, H.; Zhou, F.; Zuo, W.; Sun, P. Unsupervised Anomaly Video Detection via a Double-Flow ConvLSTM Variational
Autoencoder. IEEE Access 2022, 10, 44278–44289. [CrossRef]

119. Slavic, G.; Baydoun, M.; Campo, D.; Marcenaro, L.; Regazzoni, C. Multilevel Anomaly Detection Through Variational Autoen-
coders and Bayesian Models for Self-Aware Embodied Agents. IEEE Trans. Multimed. 2022, 24, 1399–1414. [CrossRef]

120. Liu, Y.; Yang, D.; Fang, G.; Wang, Y.; Wei, D.; Zhao, M.; Cheng, K.; Liu, J.; Song, L. Stochastic video normality network for
abnormal event detection in surveillance videos. Knowl. Based Syst. 2023, 280, 110986. [CrossRef]

121. Chu, W.; Xue, H.; Yao, C.; Cai, D. Sparse Coding Guided Spatiotemporal Feature Learning for Abnormal Event Detection in Large
Videos. IEEE Trans. Multimed. 2019, 21, 246–255. [CrossRef]

122. Duman, E.; Erdem, O.A. Anomaly Detection in Videos Using Optical Flow and Convolutional Autoencoder. IEEE Access 2019, 7,
183914–183923. [CrossRef]

123. Yan, M.; Meng, J.; Zhou, C.; Tu, Z.; Tan, Y.-P.; Yuan, J. Detecting spatiotemporal irregularities in videos via a 3D convolutional
autoencoder. J. Vis. Commun. Image Represent. 2020, 67, 102747. [CrossRef]

124. Bahrami, M.; Pourahmadi, M.; Vafaei, A.; Shayesteh, M.R. A comparative study between single and multi-frame anomaly
detection and localization in recorded video streams. J. Vis. Commun. Image Represent. 2021, 79, 103232. [CrossRef]

125. Asad, M.; Yang, J.; Tu, E.; Chen, L.; He, X. Anomaly3D: Video anomaly detection based on 3D-normality clusters. J. Vis. Commun.
Image Represent. 2021, 75, 103047. [CrossRef]

126. Li, B.; Leroux, S.; Simoens, P. Decoupled appearance and motion learning for efficient anomaly detection in surveillance video.
Comput. Vis. Image Underst. 2021, 210, 103249. [CrossRef]

127. Wang, J.; Zhang, J.; Ji, G.; Sheng, B. Criss-Cross Attention Based Auto Encoder for Video Anomaly Event Detection. Intell. Autom.
Soft Comput. 2022, 34, 1629–1642. [CrossRef]

https://doi.org/10.1109/TSMCC.2009.2023380
https://doi.org/10.1007/s10462-023-10562-9
https://doi.org/10.3390/electronics12173567
https://doi.org/10.3390/app13084956
https://doi.org/10.1016/j.eng.2019.02.008
https://doi.org/10.3390/s19194145
https://www.ncbi.nlm.nih.gov/pubmed/31554333
https://doi.org/10.1109/CCIS57298.2022.10016377
https://doi.org/10.1016/j.patcog.2021.108213
https://doi.org/10.1109/TNNLS.2021.3083152
https://www.ncbi.nlm.nih.gov/pubmed/34086581
https://doi.org/10.1016/j.neucom.2023.02.027
https://doi.org/10.1109/LSP.2023.3263792
https://doi.org/10.1109/TCDS.2022.3183997
https://doi.org/10.22266/ijies2023.1231.39
https://doi.org/10.1109/TIFS.2018.2878538
https://doi.org/10.3390/app9163337
https://doi.org/10.1109/TCDS.2018.2883368
https://doi.org/10.1109/JAS.2021.1004045
https://doi.org/10.1016/j.patcog.2022.108703
https://doi.org/10.1109/TII.2021.3122801
https://doi.org/10.1109/ACCESS.2022.3165977
https://doi.org/10.1109/TMM.2021.3065232
https://doi.org/10.1016/j.knosys.2023.110986
https://doi.org/10.1109/TMM.2018.2846411
https://doi.org/10.1109/ACCESS.2019.2960654
https://doi.org/10.1016/j.jvcir.2019.102747
https://doi.org/10.1016/j.jvcir.2021.103232
https://doi.org/10.1016/j.jvcir.2021.103047
https://doi.org/10.1016/j.cviu.2021.103249
https://doi.org/10.32604/iasc.2022.029535


Electronics 2024, 13, 2579 32 of 35

128. Kommanduri, R.; Ghorai, M. Bi-READ: Bi-Residual AutoEncoder based feature enhancement for video anomaly detection. J. Vis.
Commun. Image Represent. 2023, 95, 103860. [CrossRef]

129. Taghinezhad, N.; Yazdi, M. A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and
Multipath Temporal Information Prediction. IEEE Access 2023, 11, 9295–9310. [CrossRef]

130. Jeong, J.; Jung, H.; Choi, Y.; Park, S.; Kim, M. Intelligent Complementary Multi-Modal Fusion for Anomaly Surveillance and
Security System. Sensors 2023, 23, 9214. [CrossRef] [PubMed]

131. Li, N.; Chang, F. Video anomaly detection and localization via multivariate gaussian fully convolution adversarial autoencoder.
Neurocomputing 2019, 369, 92–105. [CrossRef]

132. Ganokratanaa, T.; Aramvith, S.; Sebe, N. Unsupervised Anomaly Detection and Localization Based on Deep Spatiotemporal
Translation Network. IEEE Access 2020, 8, 50312–50329. [CrossRef]

133. Li, Y.; Cai, Y.; Liu, J.; Lang, S.; Zhang, X. Spatio-Temporal Unity Networking for Video Anomaly Detection. IEEE Access 2019, 7,
172425–172432. [CrossRef]

134. Chen, D.; Wang, P.; Yue, L.; Zhang, Y.; Jia, T. Anomaly detection in surveillance video based on bidirectional prediction. Image Vis.
Comput. 2020, 98, 103915. [CrossRef]

135. Patil, P.W.; Dudhane, A.; Murala, S. End-to-End Recurrent Generative Adversarial Network for Traffic and Surveillance Applica-
tions. IEEE Trans. Veh. Technol. 2020, 69, 14550–14562. [CrossRef]

136. Liu, S.; Yang, E.; Fang, K. Self-Learning pLSA Model for Abnormal Behavior Detection in Crowded Scenes. IEICE Trans. Inf. Syst.
2021, E104.D, 473–476. [CrossRef]

137. Wu, R.; Li, S.; Chen, C.; Hao, A. Improving video anomaly detection performance by mining useful data from unseen video
frames. Neurocomputing 2021, 462, 523–533. [CrossRef]

138. Yang, Z.; Liu, J.; Wu, P. Bidirectional Retrospective Generation Adversarial Network for Anomaly Detection in Videos. IEEE
Access 2021, 9, 107842–107857. [CrossRef]

139. Chen, D.; Yue, L.; Chang, X.; Xu, M.; Jia, T. NM-GAN: Noise-modulated generative adversarial network for video anomaly
detection. Pattern Recognit. 2021, 116, 107969. [CrossRef]

140. Ganokratanaa, T.; Aramvith, S.; Sebe, N. Video anomaly detection using deep residual-spatiotemporal translation network.
Pattern Recognit. Lett. 2022, 155, 143–150. [CrossRef]

141. Yu, J.; Lee, Y.; Yow, K.C.; Jeon, M.; Pedrycz, W. Abnormal Event Detection and Localization via Adversarial Event Prediction.
IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3572–3586. [CrossRef]

142. Zhong, Y.; Chen, X.; Jiang, J.; Ren, F. A cascade reconstruction model with generalization ability evaluation for anomaly detection
in videos. Pattern Recognit. 2022, 122, 108336. [CrossRef]

143. Aslam, N.; Rai, P.K.; Kolekar, M.H. A3N: Attention-based adversarial autoencoder network for detecting anomalies in video
sequence. J. Vis. Commun. Image Represent. 2022, 87, 103598. [CrossRef]

144. Hao, Y.; Li, J.; Wang, N.; Wang, X.; Gao, X. Spatiotemporal consistency-enhanced network for video anomaly detection. Pattern
Recognit. 2022, 121, 108232. [CrossRef]

145. Li, Q.; Yang, R.; Xiao, F.; Bhanu, B.; Zhang, F. Attention-based anomaly detection in multi-view surveillance videos. Knowl. Based
Syst. 2022, 252, 109348. [CrossRef]

146. Zhao, L.; Wang, S.; Wang, S.; Ye, Y.; Ma, S.; Gao, W. Enhanced Surveillance Video Compression With Dual Reference Frames
Generation. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1592–1606. [CrossRef]

147. Huang, H.; Zhao, B.; Gao, F.; Chen, P.; Wang, J.; Hussain, A. A Novel Unsupervised Video Anomaly Detection Framework Based
on Optical Flow Reconstruction and Erased Frame Prediction. Sensors 2023, 23, 4828. [CrossRef]

148. Li, G.; He, P.; Li, H.; Zhang, F. Adversarial composite prediction of normal video dynamics for anomaly detection. Comput. Vis.
Image Underst. 2023, 232, 103686. [CrossRef]

149. Pedrycz, W.; Waletzky, J. Fuzzy clustering with partial supervision. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1997, 27,
787–795. [CrossRef]

150. Sikdar, A.; Chowdhury, A.S. An adaptive training-less framework for anomaly detection in crowd scenes. Neurocomputing 2020,
415, 317–331. [CrossRef]

151. Singh, G.; Kapoor, R.; Khosla, A. Optical Flow-Based Weighted Magnitude and Direction Histograms for the Detection of
Abnormal Visual Events Using Combined Classifier. Int. J. Cogn. Inform. Nat. Intell. 2021, 15, 12–30. [CrossRef]

152. Khaire, P.; Kumar, P. A semi-supervised deep learning based video anomaly detection framework using RGB-D for surveillance
of real-world critical environments. Forensic Sci. Int. Digit. Investig. 2022, 40, 301346. [CrossRef]

153. Pramanik, A.; Sarkar, S.; Pal, S.K. Video surveillance-based fall detection system using object-level feature thresholding. Knowl.
Based Syst. 2023, 280, 110992. [CrossRef]

154. Hu, X.; Dai, J.; Huang, Y.; Yang, H.; Zhang, L.; Chen, W.; Yang, G.; Zhang, D. A weakly supervised framework for abnormal
behavior detection and localization in crowded scenes. Neurocomputing 2020, 383, 270–281. [CrossRef]

155. Degardin, B.; Proença, H. Iterative weak/self-supervised classification framework for abnormal events detection. Pattern Recognit.
Lett. 2021, 145, 50–57. [CrossRef]

156. Ullah, W.; Hussain, T.; Khan, Z.A.; Haroon, U.; Baik, S.W. Intelligent dual stream CNN and echo state network for anomaly
detection. Knowl. Based Syst. 2022, 253, 109456. [CrossRef]

https://doi.org/10.1016/j.jvcir.2023.103860
https://doi.org/10.1109/ACCESS.2023.3237028
https://doi.org/10.3390/s23229214
https://www.ncbi.nlm.nih.gov/pubmed/38005599
https://doi.org/10.1016/j.neucom.2019.08.044
https://doi.org/10.1109/ACCESS.2020.2979869
https://doi.org/10.1109/ACCESS.2019.2954540
https://doi.org/10.1016/j.imavis.2020.103915
https://doi.org/10.1109/TVT.2020.3043575
https://doi.org/10.1587/transinf.2020EDL8115
https://doi.org/10.1016/j.neucom.2021.05.112
https://doi.org/10.1109/ACCESS.2021.3100678
https://doi.org/10.1016/j.patcog.2021.107969
https://doi.org/10.1016/j.patrec.2021.11.001
https://doi.org/10.1109/TNNLS.2021.3053563
https://doi.org/10.1016/j.patcog.2021.108336
https://doi.org/10.1016/j.jvcir.2022.103598
https://doi.org/10.1016/j.patcog.2021.108232
https://doi.org/10.1016/j.knosys.2022.109348
https://doi.org/10.1109/TCSVT.2021.3073114
https://doi.org/10.3390/s23104828
https://doi.org/10.1016/j.cviu.2023.103686
https://doi.org/10.1109/3477.623232
https://doi.org/10.1016/j.neucom.2020.07.058
https://doi.org/10.4018/IJCINI.20210701.oa2
https://doi.org/10.1016/j.fsidi.2022.301346
https://doi.org/10.1016/j.knosys.2023.110992
https://doi.org/10.1016/j.neucom.2019.11.087
https://doi.org/10.1016/j.patrec.2021.01.031
https://doi.org/10.1016/j.knosys.2022.109456


Electronics 2024, 13, 2579 33 of 35

157. Yi, S.; Fan, Z.; Wu, D. Batch feature standardization network with triplet loss for weakly-supervised video anomaly detection.
Image Vis. Comput. 2022, 120, 104397. [CrossRef]

158. Liu, Y.; Liu, J.; Zhao, M.; Li, S.; Song, L. Collaborative Normality Learning Framework for Weakly Supervised Video Anomaly
Detection. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2508–2512. [CrossRef]

159. Kamoona, A.M.; Gostar, A.K.; Bab-Hadiashar, A.; Hoseinnezhad, R. Multiple instance-based video anomaly detection using deep
temporal encoding–decoding. Expert. Syst. Appl. 2023, 214, 119079. [CrossRef]

160. Thakare, K.V.; Sharma, N.; Dogra, D.P.; Choi, H.; Kim, I.-J. A multi-stream deep neural network with late fuzzy fusion for
real-world anomaly detection. Expert. Syst. Appl. 2022, 201, 117030. [CrossRef]

161. Krishna, N.S.; Bhattu, S.N.; Somayajulu, D.V.L.N.; Kumar, N.V.N.; Reddy, K.J.S. GssMILP for anomaly classification in surveillance
videos. Expert. Syst. Appl. 2022, 203, 117451. [CrossRef]

162. Ullah, W.; Hussain, T.; Ullah, F.U.M.; Lee, M.Y.; Baik, S.W. TransCNN: Hybrid CNN and transformer mechanism for surveillance
anomaly detection. Eng. Appl. Artif. Intell. 2023, 123, 106173. [CrossRef]

163. Shao, W.; Xiao, R.; Rajapaksha, P.; Wang, M.; Crespi, N.; Luo, Z.; Minerva, R. Video anomaly detection with NTCN-ML: A novel
TCN for multi-instance learning. Pattern Recognit. 2023, 143, 109765. [CrossRef]

164. Chen, H.; Mei, X.; Ma, Z.; Wu, X.; Wei, Y. Spatial–temporal graph attention network for video anomaly detection. Image Vis.
Comput. 2023, 131, 104629. [CrossRef]

165. Tang, J.; Wang, Z.; Hao, G.; Wang, K.; Zhang, Y.; Wang, N.; Liang, D. SAE-PPL: Self-guided attention encoder with prior
knowledge-guided pseudo labels for weakly supervised video anomaly detection. J. Vis. Commun. Image Represent. 2023,
97, 103967. [CrossRef]

166. Zhang, B.; Xue, J. Weakly-supervised anomaly detection with a Sub-Max strategy. Neurocomputing 2023, 560, 126770. [CrossRef]
167. Wang, L.; Wang, X.; Liu, F.; Li, M.; Hao, X.; Zhao, N. Attention-guided MIL weakly supervised visual anomaly detection.

Measurement 2023, 209, 112500. [CrossRef]
168. Ullah, W.; Ullah, F.U.M.; Khan, Z.A.; Baik, S.W. Sequential attention mechanism for weakly supervised video anomaly detection.

Expert. Syst. Appl. 2023, 230, 120599. [CrossRef]
169. Lv, H.; Zhou, C.; Cui, Z.; Xu, C.; Li, Y.; Yang, J. Localizing Anomalies From Weakly-Labeled Videos. IEEE Trans. Image Process.

2021, 30, 4505–4515. [CrossRef] [PubMed]
170. Jebur, S.A.; Hussein, K.A.; Hoomod, H.K.; Alzubaidi, L.; Santamaría, J. Review on Deep Learning Approaches for Anomaly Event

Detection in Video Surveillance. Electronics 2022, 12, 29. [CrossRef]
171. Mahadevan, V.; Li, W.; Bhalodia, V.; Vasconcelos, N. Anomaly detection in crowded scenes. In Proceedings of the 2010 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE:
Piscataway, NJ, USA, 2010; pp. 1975–1981. [CrossRef]

172. Luo, W.; Liu, W.; Gao, S. A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 341–349. [CrossRef]

173. Sultani, W.; Chen, C.; Shah, M. Real-World Anomaly Detection in Surveillance Videos. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 6479–6488. [CrossRef]

174. Lu, C.; Shi, J.; Jia, J. Abnormal Event Detection at 150 FPS in MATLAB. In Proceedings of the 2013 IEEE International Conference
on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2720–2727. [CrossRef]

175. Detection of Unusual Crowd Activity Dataset. n.d. Available online: https://mha.cs.umn.edu/proj_events.shtml#crowd
(accessed on 14 June 2024).

176. Ferryman, J.; Shahrokni, A. PETS2009: Dataset and challenge. In Proceedings of the 2009 Twelfth IEEE International Workshop
on Performance Evaluation of Tracking and Surveillance, Snowbird, UT, USA, 7–9 December 2009; IEEE: Piscataway, NJ, USA,
2009; pp. 1–6. [CrossRef]

177. Adam, A.; Rivlin, E.; Shimshoni, I.; Reinitz, D. Robust Real-Time Unusual Event Detection using Multiple Fixed-Location
Monitors. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 555–560. [CrossRef]

178. Degardin, B.; Proenca, H. Human Activity Analysis: Iterative Weak/Self-Supervised Learning Frameworks for Detecting
Abnormal Events. In Proceedings of the 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, USA, 28
September–1 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [CrossRef]

179. Leyva, R.; Sanchez, V.; Li, C.-T. The LV dataset: A realistic surveillance video dataset for abnormal event detection. In Proceedings
of the 2017 5th International Workshop on Biometrics and Forensics (IWBF), Coventry, UK, 4–5 April 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1–6. [CrossRef]

180. Akti, S.; Tataroglu, G.A.; Ekenel, H.K. Vision-based Fight Detection from Surveillance Cameras. In Proceedings of the 2019 Ninth
International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul, Turkey, 6–9 November 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–6. [CrossRef]

181. Nievas, E.B.; Suarez, O.D.; García, G.B.; Sukthankar, R. Violence Detection in Video Using Computer Vision Techniques. In
Computer Analysis of Images and Patterns; Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 332–339. [CrossRef]

https://doi.org/10.1016/j.imavis.2022.104397
https://doi.org/10.1109/TCSII.2022.3161061
https://doi.org/10.1016/j.eswa.2022.119079
https://doi.org/10.1016/j.eswa.2022.117030
https://doi.org/10.1016/j.eswa.2022.117451
https://doi.org/10.1016/j.engappai.2023.106173
https://doi.org/10.1016/j.patcog.2023.109765
https://doi.org/10.1016/j.imavis.2023.104629
https://doi.org/10.1016/j.jvcir.2023.103967
https://doi.org/10.1016/j.neucom.2023.126770
https://doi.org/10.1016/j.measurement.2023.112500
https://doi.org/10.1016/j.eswa.2023.120599
https://doi.org/10.1109/TIP.2021.3072863
https://www.ncbi.nlm.nih.gov/pubmed/33872149
https://doi.org/10.3390/electronics12010029
https://doi.org/10.1109/CVPR.2010.5539872
https://doi.org/10.1109/ICCV.2017.45
https://doi.org/10.1109/CVPR.2018.00678
https://doi.org/10.1109/ICCV.2013.338
https://mha.cs.umn.edu/proj_events.shtml#crowd
https://doi.org/10.1109/PETS-WINTER.2009.5399556
https://doi.org/10.1109/TPAMI.2007.70825
https://doi.org/10.1109/IJCB48548.2020.9304905
https://doi.org/10.1109/IWBF.2017.7935096
https://doi.org/10.1109/IPTA.2019.8936070
https://doi.org/10.1007/978-3-642-23678-5_39


Electronics 2024, 13, 2579 34 of 35

182. Hassner, T.; Itcher, Y.; Kliper-Gross, O. Violent flows: Real-time detection of violent crowd behavior. In Proceedings of the 2012
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June
2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [CrossRef]

183. Martínez-Villaseñor, L.; Ponce, H.; Brieva, J.; Moya-Albor, E.; Núñez-Martínez, J.; Peñafort-Asturiano, C. UP-Fall Detection
Dataset: A Multimodal Approach. Sensors 2019, 19, 1988. [CrossRef]

184. Gu, C.; Sun, C.; Ross, D.A.; Vondrick, C.; Pantofaru, C.; Li, Y.; Vijayanarasimhan, S.; Toderici, G.; Ricco, S.; Sukthankar, R.;
et al. AVA: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 6047–6056. [CrossRef]

185. Auvinet, E.; Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. Multiple Cameras Fall Dataset; Tech. Rep. 1350; DIRO-Université
de Montréal: Montréal, QC, Canada, 2010; p. 24.

186. Kwolek, B.; Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput.
Methods Progr. Biomed. 2014, 117, 489–501. [CrossRef]

187. Everingham, M.; Van, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2007 (VOC2007)
Results. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

188. Wang, L.; Shi, J.; Song, G.; Shen, I. Object Detection Combining Recognition and Segmentation. In Computer Vision—ACCV 2007;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 189–199. [CrossRef]

189. Reddy, K.K.; Shah, M. Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 2013, 24, 971–981. [CrossRef]
190. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,

arXiv:1212.0402. [CrossRef]
191. Krasin, I.; Duerig, T.; Alldrin, N.; Ferrari, V.; Abu-El-Haija, S.; Kuznetsova, A.; Rom, H.; Uijlings, J.; Popov, S.; Veit, A.; et al.

OpenImages: A Public Dataset for Large-Scale Multi-Label And Multi-Class Image Classification. 2017. Dataset. Available online:
https://github.com/openimages (accessed on 12 June 2024).

192. CMU Graphics Lab Motion Capture Database. n.d. Available online: http://mocap.cs.cmu.edu/ (accessed on 3 June 2024).
193. Ryoo, M.S.; Aggarwal, J.K.; Dataset, U.T.-I. ICPR contest on Semantic Description of Human Activities (SDHA). 2010. Available

online: https://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html (accessed on 3 June 2024).
194. Peliculas Movies Fight Detection Dataset. n.d. Available online: http://academictorrents.com/details/70e0794e2292fc051a13f0

5ea6f5b6c16f3d3635/tech&h%20it=1&filelist=1 (accessed on 12 June 2024).
195. Mehran, R.; Oyama, A.; Shah, M. Abnormal crowd behavior detection using social force model. In Proceedings of the 2009 IEEE

Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009;
pp. 935–942. [CrossRef]

196. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A large video database for human motion recognition. In
Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 2556–2563. [CrossRef]

197. Carreira, J.; Noland, E.; Banki-Horvath, A.; Hillier, C.; Zisserman, A. A short note about kinetics-600. arXiv 2018, arXiv:1808.01340.
[CrossRef]

198. Liu, J.; Luo, J.; Shah, M. Recognizing realistic actions from videos “in the wild”. In Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1996–2003.
[CrossRef]

199. Cinelli, L.P.; Marins, M.A.; da Silva, E.A.B.; Netto, S.L. Variational Methods for Machine Learning with Applications to Deep Networks;
Springer International Publishing: Cham, Switzerland, 2021. [CrossRef]

200. Oliveira, E.E.; Rodrigues, M.; Pereira, J.P.; Lopes, A.M.; Mestric, I.I.; Bjelogrlic, S. Unlabeled learning algorithms and operations:
Overview and future trends in defense sector. Artif. Intell. Rev. 2024, 57, 66. [CrossRef]

201. Ribeiro, M.; Lazzaretti, A.E.; Lopes, H.S. A study of deep convolutional auto-encoders for anomaly detection in videos. Pattern
Recognit. Lett. 2018, 105, 13–22. [CrossRef]
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