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ABSTRACT We use Hoffmann’s suggestion [Hoffmann,
G. W.(1986) J. Theor. Binl. 122, 33—67] of hysteresis in a single
neuron level and determine its consequences in a synchronous
network made of such neurons. We show that the overall
retrieval ability in the presence of noise amd the memory
capacity of the network in the present mode] are better than in
conventional models without such hysteresis. Second-order
interaction further improves the retrieval ability of the network
and causes hysteresis in the retrieval-noise curve for any
arbitrary width of the bistable region. The convergence rate is
increased by the hysteresis at high noise levels but is reduced
by the hysteresis at low noise levels, Explicit formulae are given
for calculations of average final convergence and noise thresh-
old as functions of the width of the bistable region. There is
neurophysiological evidence for hysteresis in single neurons,
and we propose optical implementations of the present model
by vsing ZnSe interference filters to test the predictions of the
theory.

Neural networks (1-21) have become the focus of consider-
able research effort recently (for recent reviews on neural
networks, see refs. 1-3). These seemingly simple systems
show intriguing properties such as learning, memory, and
fault-tolerant information retrieval, Two key features of a
neural network model are (i} the properties of each individual
neurcn and {if} the connectivity between neurons. Vanations
in either the properties of a single neuron or synaptic corre-
lations among neurons are expected to alter the emergent
characteristics of the neural network.

In the present paper, we consider theoretically a feature
new to conventional synchronous neural networks of asso-
ciative memory—that is, nonlinear threshold elements with
hysteresis. The existence of hysteresis at the level of a single
ncuron has been recently proposed by Hoffmann (18) in a
neural network model based on the analogy with the immune
system. The purpose of our present paper is to adopt and
apply Hoffmann’s suggestion of hysteresis at a single neuron
level and determine its consequences in a synchronous neural
network. We show that the retrieval property in the presence
of noise and the memory capacity of the network in the
present mode! are better than that of conventional synchro-
nous models, where it has been assumed that there is no such
hysteresis. Inclusion of higher-order interaction further im-
proves these advantages. We seek and find some experimen-
tal neurophysiological evidence for hysteresis in the response
of a single neuron. We also discuss possible implementations
of the present model.

BASIC FORMULATION

We consider N threshold elements that have two states—i.e.,
; = *1—which is the same as the McColluch-Pitts neurons
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(22) in conventional neural network models of associative
memory (4-6). The dynamics in the present model is differ-
ent, however; the input—output response functions for both
the conventional and the present model are given in Figs. 1
and 2, respectively. In the conventional model, hysteresis
does not exist in the neuronal response function (see Fig. 1).
For simplicity, we focus on the discrete case shown by Fig.
2A, and we consider a synchronous updating algorithm (4, 8,
20, 21).
Suppose that

N

-2

is the total input signal for the ith neuron, where Sir)
represents the state of the jth neuron at time ¢,

__Es.u
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N u=1

k(1) Ty SHe} + 1 [11

(21

with T; =0, 1s the synaptic efficacy according to the Hebbian
rule (7, 23), S~ is the uth stored pattern, and p is the number
of patterns stored. We include in Eq. 1 a random Gaussian
noise ; with a SD o, to take into account the presence of
noise. Neural noise in physiological systems has largely been
attributed to spontaneous neural firing and the statistical
variation in the number of vesicles containing neurotrans-
mitters, such as acetylcholine, released at the synaptic junc-
tions (24-27). (For experimental evidence that supports a
Gaussian noise distribution, see, for example, ref. 26, p. 21.)
In artificial implementations of neural networks (11-17),
noise may result from electrical, thermal, and quantum
fluctuations. The updating rule in the present model is as
follows (see Fig. 2A):

S+ 1)= {+1 if $(0) = +1 and (1) > —a;
—1if S = +1 and A1) < —a:

or §;(r) = —1 and k(1) > a 3
or S{(6) = =1 and h(f) < DI

where « is the half-width of the bistable region. Eq. 3 can be
cast into the following compact form:

Si(t + 1) = sign[h;(r) + aS5;(1)]. 41

where sign(x) = +1 for
positive x.
Suppose that the initial state of the network is set in the

neighborhood of pattern st Explicitly, we let
m*0) = w=1,2,...

—1 for negative x and sign(x) =

max{m*(0)| » Ph (51

Abbreviations: HNN and CNN, Hoffmann and conventional neural
network models, respectively.
*To whom reprint requests should be addressed.
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FiG. 1. Input-output response function for the conventional {A)
discrete (8) continuous threshold condition for signalling. §;, the
state of the ith neuron; A;, the total input signal for the ith neuron.

where
1

3 6
~ N ) [6]

m#{t) =

is the overlap between the state of the system at time ¢ and
the pth pattern. We separate the first term in the total signal
(Eq. 1) into two parts (8).

7N
hir) = m'(n) S} + 1 DR S% 8500 7

Np=2/=1
the first term is proportional to the overlap of the system with
pattern §1. The second part, the crosstalk term (20), consists
of contributions from patterns $2, §3, - ,3“’, which we
assume to be Gaussian distributed with an average of zero

and a deviation
p-1
—_— 8
\/ N [8]
in the large N limit (8).

In real physiological and electronic artificial neural sys-
tems, the input A1), the state variable $4¢), the half-width of
the bistable region «, and the noise n; as well as its deviation
o, are all electric voltages. In the present model, these
quantities are shifted and rescaled so that the ground state
and the excited state of a neuron are described by §,(r} = -1
and S4{#) = +1, respectively. In such a unit, the maximum
input signal is on the order of 1, according to Eq. 7, whereas
the maximum noise level a system without neuronal hyster-
esis can tolerate is described by a deviation of V2/7 ~ 0.8
(20). The time ¢ is scaled with the average length of an
updating cycle.

It follows from Eqgs. 4, 6, and 7 that

Tt

N
m(t+1) =}% Zl S; sign[m(S; + aS,(0 + 1'], 9
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Fic. 2. Input-output response function for a single neuron with
hysteresis {A) discrete (B) continuous threshold condition for sig-
nalling. Dashed portions are unstable. S;, the state of the ith neuron;
h,. the total input signal for the /th neuron.

where 7' is the combination of the internal noise 7; and the
crosstalk (20). The total SD (20) is

+t)'2

o=\l +o, (10]

We have omitted superscript 1 in Eq. 9; we refer to the
overlap between the state of the system with pattern s,
unless otherwise specified. Considering the fact that ' is a
Gaussian distribution and the value of §; is either —1 or +1,
we write the statistical average (8, 20) of Eq. 9 as follows:

1 N
e+ )y = = El {1 - 2¢[m(t) + aS;HST,  (11]
with

1 T 2
e~ dx. (12]

t{y) =
\/ET e

Suppose that the Hamming distance between the state of
the system at time ¢ and the stored pattern is d(z) [d{z) bits
different], which is related to the overlap

dity 1 —mip
N 2

. [13]

Separating the summation in Eq. 11 in two groups with (i)
541) = §; and (i) S;(t) # §; or S{t) = —§;, and using Eq. 13,
we obtain the dynamical equation for the present model

(m(r + 1)) =1 —{[1 + m(®)] ylm() + o]
+[1 = mit}] ym(t) — e]t. (14]

which has to be solved iteratively.

The final overlap (the fixed point) is obtained by letting
{m(t + 1)} = {m{1)) = {mi=)) in Eq. 14. The solutions of {m(=))
as a function of the noise level o are obtained by numerical
solution of Eq. 14 and presented in Fig. 3, which shows that
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the final average overlap {m(=)) at a given noise level, as well
as the critical noise threshold o, above which {m(«)) van-
ishes, are improved by a nonzero width of the bistable region.
The dynamics of the system given by Eq. 14 show some
interesting properties at various noise levels. In Fig. 4 A-D.
we plot the overlap of the state of the system with pattern §*
{m(2)), as functions of time ¢, with initial condition m{0) = 0.
Fig. 44 indicates that at low noise levels the neuronal
hysteresis decreases the speed of convergence towards the
stored pattern. However, as the noise level increases, the
speed of convergence for o > 0 gradually surpasses that for
a = 0, as shown in Fig. 4 B and C. Fig. 4D shows that at high
noise levels the convergence rate increases as « increases.
Furthermore, the memory capacity of the network is
improved by the neuronal hysteresis. The maximum number
of patterns that can be stored in an N-neuron network, pmax
(N), can be obtained as follows. In the absence of internal
noise, i.e., o, = 0, we have, according to Eqs. 8 and 10

p-1
o=04= N [15]
The memory of the network reaches its limit if
Ny -1
pmax(N) . [16]

where the noise threshold o, increases with the width of the
bistable region, and hence so does pya.(N).

Hence we conclude that the overall retrieval ability in the
presence of noise and the memory capacity of the present
model of neural network are better than in the conventional
model.

The physical reason underlying these changes in the pres-
ent model is the increased tendency of each neuron to remain
in its current state (see Eqs. 3 and 4). This tendency helps the
neurons to resist random signals and therefore avoid random
neuronal response. The neuronal hysteresis shown in Fig. 24
essentially introduces a dead-region centered at zero, which
is particularly efficient in suppressing Gaussian-like noises
with distributions also centered at zero. These facts also
explain the increase of effectiveness in convergence of the
system towards the memorized pattern at higher noise levels,

1
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FiG. 3. Plot of average final overlap {m(t = =)) given by Eq. 14
vs. SD of the Gaussian noise o for various widths « of the bistable
region shown in Fig, 2A. Forcurvesa, a = 0.3, forcurves b, o = 0.15,
and for curves ¢, o = 0 (the conventional curve). The numerals
denote the first order (v1 = 1, ¥2 = 0, Eq. 14) (numeral 1) and the
second order (y; = ¥; = 1, Eq. 20) curves (numeral 2), respectively.
Here v, and y, represent the relative strengths of the first- and the
second-order interactions, respectively. The dashed portions in the
second-order curves are unstable.
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{m(t)>

FiG.4. Plot of average overlap (m()) given by Eq. 14 as function
of time ¢ at different noise levels. In curves a, o = 0.3 (O); in curves
b, @ = 0.15 (¢), and in curves ¢, @ = 0 (a). R, denotes the rate of
convergence towards the stored pattern when the half-width of the
bistable regionis a. (A} o = 0.15, and Ry > Rg.15 > Rp3.{B) o = 0.34,
and Rp15 > Rg > Rp3.(C) o =042, and Ry15 > Ros > Rp. (D) 7 =
0.6, and Ry 3 > Ro.15 > Rp.
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However, at low noise levels, the tendency to remain in the
current state delays updating and decreases the convergence
rate.

We can evaluate the noise threshold &, explicitly as a
function of the width of the bistable region a. Since the stable
solution of Eq. 14 can be considered as the intersecting point
of the two sides of Eq. 14 when plotted against m, these two
curves must be tangent to each other when o= o, and m =
{ m (=)) = 0. Explicitly, . is determined by

e — yla) + -] =1 [17)

1
V2o,

When « = 0, Eq. 17 gives o.,—¢ = V2/m, which is the
conventional noise threshold. With the help of Eq. 17 it is not
difficult to prove that o. increases monotonically as « in-
Creases.

SECOND-ORDER INTERACTION

We now consider the effects of inclusion of second-order
interactions (9, 20). (For experimental evidence of nonlinear,
multiplicative neuronal interactions, see, for example, refs.
28-30.) Instead of Eq. 1, the total input for the ith neuron (9,
20} is now

N N
Rt =7 -21 TS0 + 7 -,\21 Tk SANSHD + msy (18]
i= Jh=

where v, and v, measure the relative strengths of the first-
order and second-order interactions and

P

1
T =3 E} St S¢St [19]

Instead of Eq. 14 the dynamical equation is now
(m(r + 1)) = 1 — ({1 + m()] dlyym(n) + vLm(n)] + a}
+[1 - m()] plyyml) + lmF - o). 1200

Compared to the case with only first-order interaction (y; =
1, ¥z = 0), the final retrieval ability is further enhanced by the
second-order interaction (y; = 1, y» > 0, see Fig. 3. The
second-order interaction also causes hysteresis in the retriev-
al-noise curves (20). We can show analytically that for
arbitrary v; and vy {the first and second order) and any given
a, the curves {m(=)} vs, o always start at (m(=)) =1, 0 =0
and end at {m(=)} = 0, ¢ = 7o, where o, is given by Eq. 17.

NEUROPHYSIOLOGICAL EVIDENCE FOR
HYSTERESIS IN A SINGLE NEURON

Neurons may fire at different rates (number of action poten-
tials per unit time), (see ref, 27, p. 45). This type of neural
information transmission is analogous to frequency modula-
tion (FM) in radio broadcasting (27). In the discrete model
used in the present discussion, which is also frequently
employed in the literature (1-17, 20, 21), a neuron has only
two states {on and off, or +1), and we assign the on (or +1)
state to neurons that are firing at a rapid rate and the off (or
—1) state to the remainder of the neurons (see ref. 3).
Maintained increases in motoneuronal excitability and
prolonged activity resulting from short-lasting synaptic in-
puts have been reported in the decerebrate cat (31-34), This
excitability increase, which outlasts the excitory stimulus
train, can stay constant during long perieds (even minutes)
unti! it is terminated by an inhibitory impulse train (off
stimulus). This behavior supports the present model of neu-
ronal response (see Fig. 24 and Eq. 3): a neuron stays on even
after the input falls below the initial firing threshold, until it
is turned off by inhibitory input. Experiments (32-34) have
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shown that this excitability increase is due to an all-or-none
plateau depolarization, which is ““an intrinsic bistable mem-
brane property”’; however, a detailed mechanism needs yet
to be developed.

Similar prolonged bursting has been observed in the red
nucleus of the turtle cerebellum (35), but further experiments
are needed to determine whether it is due to membrane
properties of a single neuron or connectivity among neurons
(for experimental evidence of hysteresis in squid nerves with
clamped electric current, see ref. 36).

Hysteresis in the response of a single neuron presented in
Fig. 2 can be interpreted as follows: neurons that have just
fired repetitively (been on) have higher excitability compared
with neurons that have been guiescent {off). This equivalent
interpretation of neuronal hysteresis is helpful in understand-
ing why the following facts support the present view of
neuronal response.

Some chemicals show voltage-dependent interactions with
sodium channels that produce action potentials: they only
increase the excitability of firing neurons and have no effects
on quiescent neurons. Hence the presence of these chemicals
may induce hysteresis in the level of a single neuron. For
instance, batrachotoxin has a strong depolarizing effect on
the innervated membrane of the monocellular electroplax
preparation from the electric eel while the cell is subject to
repetitive stimulation at a stimulus voltage slightly above the
threshold for action potential firing (37), whereas no effect on
the excitability is observed when the toxin is applied to a
resting membrane for a long period of time (up to an hour).

As frequently seen at the neuromuscular junction or at
autonomic ganglia, the neuronal excitability can be increased
through repetitive stimulation. This phenomenon is well
known and often referred to as long-term potentiation (LTP)
or posttetanic potentiation (see p. 76 in ref. 27). Although this
type of phenomenon occurs on a time scale of seconds and
firings of action potentials occur on a time scale of tens of
miniseconds, its existence supports the view of neuronal
response with hysteresis in the sense that neuronal excitabil-
ity does depend on the firing hiszory of a neuron and neurons
that have fired more frequently show higher excitability.

IMPLEMENTATIONS OF THE PRESENT NEURAL
NETWORK MODEL

Models of neural networks have been implemented through
various physical devices (11-17). An artificial neuron usually
consists of an input device, a threshold element, and an
output device. For instance, in implementations involving
optical devices, the action potentials are represented by laser
beams, the synapses are implemented by memory masks
(13-16) and holographic elements (17), whereas dynamical
updating is performed through feedback loops. The nonlinear
electronic and optical devices used so far as threshold
elements show no hysteresis in the input—output response
function (11-17).

The validity of the predictions on effects of neuronal
hysteresis can be readily checked out by carrying out mea-
surements on retrieval performance using an artificial imple-
mentation of the present neural network model under differ-
ent noise leveis. There are many nonlinear bistable systems
with hysteresis in their input-output relationships, which can
be used as thresholding elements in various implementations:
chemical (38-41), electronic (42), and optical (for recent
review on optical bistability, see refs. 43; 44-46) systems.
For instance, optical implementations of the present neural
network mode! can be achieved by replacing the thresholding
devices in refs. 13—16 by ZnSe interference filters (44, 45). A
variable noise can be easily added to the laser system. The
width dependences of retrieval abilities can be evaluated by
varying the angle between the surface of the filter and the
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incident laser beam because the width of the bistable region
in a ZnSe interference filter depends on this angle (44, 45).

COMMENTS

Hoffmann and coworkers have proposed an interesting neu-
ral network model (HNN) based on an analogy with the
immune system {18, 19). The constituents of the immune
system are primarily millions of different clones of lympho-
cytes. All the cells belonging to one clone are descendants of
one cell. Each clone stimulates or suppresses a fraction of
other clones, The mathematical model of the system (18, 19)
consists of coupled differential equations [see Eq. 7in ref. 18]
on the rate of change x(1} of the number of cells in the ith clone
according to its dependences on the rate at which it is
stimulated and/or killed by a small set of the other cells,
which is proportional to

=2 Biix (1),

with §8; being the interaction matrix between clenes, together
with a rate of influx of the cells into the system, and a rate of
cell death. The nonlinearity in these differential equations
gives rise to a hysteresis in the x;(¢#)—y;(t) relation; no direct
experimental evidence for the existence of such a hysteresis
was presented (18, 19). Hoffmann has made an analogy (18)
between {x,(6), y{)} and {SA{r), h;(r)} in conventional neural
network models (CNN) (117, 20, 21). There are at least three
major differences between the HNN and CNN models. (7}
There is no Hebbian synaptic plasticity in the HNN; instead,
“*learning would correspond to the system finding its way (or
being led) to a region in the phase space with desired
stimulus—responsec characteristics’ (18, 19). (i) There is no
upper limit for x;(r) in the xAt}—y; (¢} relationship. In other
words, therc are no all-or-none thresholding processes,
whereas an all-or-nene law is present in CNN models where
the state variable S,(t) is bound by its upper (on) and lower
(off) limits and in real neurons (see, for example, ref, 27, p.
42). (iii) for N > 2, the complexity of the differential equa-
tions of HNN makes further analytical discussions, such as
the dynamics and influence of noise, in the model difficult.

Hoffmann argues that there exist almost 2" attractors in the
neural network model proposed in ref, 18. This is the number
of attractors for no or weak correlations between neurons,
but the number of attractors may decrease as the correlations
between neurons increase. Once the response relation of a
single neuron is given, the equilibrium properties, such as the
number and locations of attractors, of the network are solely
determined by the connectivity—i.e., the interaction matrix.
For instance, when the neurons interact strongly only with
their nearest neighbors and the interactions are all positive,
the network has only two stable states, the all-on state and the
all-off state, which are analogous to ferromagnetic states (47).
Intermediate cases are analogous to those of spin-glasses (for
review, see ref. 48). Gardner has shown that the number of
attractors of a CNN can be much larger than N, but this does
not increase the information content of the network (49). For
a conventional synchronous neural network that consists of
N two-state neurons, one can construct, at most, N linearly
independent patterns, which determine the maximum infor-
mation capacity of the network. Personnaz ef al. {50) have
described a pseudo-inverse method that enables one to store
an arbitrary set of linearly independent patterns; however,
this prescription is rather complex and is difficult to analyze
and implement. The widely used Hebbian rule (7, 23) given
by Eq. 2 is very cost-effective for being simple and yet having
a relatively large information content. In the present discus-
sions, we have adopted the Hebbian rule and have treated
correlations between neurons in an approximate fashion—
i.e., by assuming the crosstalks (the last term in Eq. 7) to be
random and Gaussian distributed (8, 20).
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