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Abstract. We study the influence of a variable neuronal
threshold on fixed points and convergence rates of an
associative neural network in the presence of noise. We
allow a random distribution in the activity levels of the
patterns stored, and a modification to the standard
Hebbian learning rule is proposed for this purpose.
There is a threshold at which the retrieval ability,
including the average final overlap and the convergence
rate, is optimized for patterns with a particular activity
level at a given noise level. This type of selective atten-
tion to one class of patterns with a certain activity level
may be obtained at the cost of reducing the retrieval
ability of the network for patterns with different activ-
ity levels. The effects of a constant threshold indepen-
dent of noise, time, and pattern are discussed. For
high-(low-) activity patterns, the average final overlap is
shown to be increased at high noise levels and de-
creased at low noise levels by a negative (positive)
constant threshold, whereas a positive (negative)
threshold always reduces the final average overlap.
When the magnitude of the constant threshold exceeds
a critical value, there is no retrieval. Rates of conver-
gence towards the stored pattern with negative (posi-
tive) thresholds are greater than those with positive
{negative) thresholds. These results are related to
{de)sensitization and anesthesia. For certain threshold
values and patterns with certain activity levels, hys-
teresis appears in the plot of the average final overlap
versus the noise level, even for first order interactions.
We make the analogy between the patrern-dependent
neuronal threshold proposed in the present paper and
the “task-related” modulation in neuronal excitability
determined by cognitive factors, such as the attentional
state of a higher animal. A constant threshold is associ-
ated with overall changes in neuronal excitability
caused, e.g., by various drugs and physical injuries.
Neurophysiological evidence of a dynamically variable
neuronal threshold, such as accommodation and poten-
tiation, is presented.

1 Introduction

Since the pioneering work of Grossberg (1970); Little
(1974); Kohonen (1988); and Hopficld (1982, 1984),
there have been many research efforts on improvements
and generalizations of associative neural network mod-
els (for recent reviews, see e.g., Sompolinsky 1988;
Domany 1988; Crick 1989). In conventional associative
neural network models, the threshold for a neuron to
fire an action potential is fixed (usually assumed to be
zero), and stored patterns are created randomly. As a
result, there are equal amounts of “on” bits and “off”
bits in each pattern stored. This type of pattern is called
unbiased and has an activity level, which is defined as
the fraction of “on” bits, r = 50% (or 0.5). Amit et al.
(1987a) have recently discussed neural networks with
low levels of activity (# < 0.5). In their analysis stored
patterns are biased and the system is said to be “magne-
tized” in the language of spin glasses. They have stud-
ied the so-called constraint dynamics in which there is a
non-zero threshold for each neuron so that the system
evolves only in certain regions of the phase space with
pre-specified activity level. In the unbiased case, this
imposed threshold vanishes. The work of Amit et al.
(1987a) has been generalized by Gutfreund (1988) to a
layered neural network model with hierarchically corre-
lated patterns (Parga and Virasoro 1986; Cortes et al.
1987). Krogh and Hertz ( 1988) have presented a mean-
field analysis on hierarchical neural networks with a
variable threshold at a finite temperature, that is, in the
presence of noise. They have shown that by varying the
threshold it is possible to focus on a certain level in the
hierarchy and increase the capacity slightly. A mean-
field study has been carried out for an asynchronous
neural network model with an adaptive threshold and
biased patterns for the noise-free case (Buhmann et al.
1989). All the work cited concentrates on the storage
capacity and the effect of a finite magnetization (bias in
stored patterns); however, issues such as the detailed
analysis on the dependences of the dynamics (the
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convergence rate) and the fixed points on noise and
threshold of the network, as well as the neuro-physio-
logical aspects related to a variable neuronal threshold,
have not been discussed.

In the present paper we consider theoretically the
effects of a variable threshold on convergence rates and
fixed points of an associative neural network model in
the presence of noise. We allow a random distribution
in the activity levels of the patterns stored. Dynamical
formulation with arbitrary threshold values is presented
in Sect. 2, where a modification to the standard Heb-
bian learning rule is proposed for storage of patterns
with an activity distribution, For patterns with a given
activity level, we find, in Sect. 3, an optimal threshold
as a function of the noise level and the time, at which
the retricval ability, e.g., the average final overlap and
the convergence rate, of the network for these patterns
are the greatest. While the neuronal threshold is set to
its optimal value corresponding to patterns with one
activity level, we show that performances of the net-
work with respect to patterns with different activity
levels are significantly reduced. Hence the network can
achieve selective attention by choosing threshold values.
The effects of a constant (noise-, time-, and pattern-in-
dependent) threshold are discussed in Sect. 4. For high-
{(low-} activity patierns, the average final overlap is
shown to be increased at high noise levels and de-
creased at low noise levels by a negative (positive)
threshold, whereas a positive (negative) threshold al-
ways reduced the final average overlap. When the mag-
nitude of the threshold exceeds the certain critical
value, there is no retrieval. These results are related to
sensitization, desensitization, and anesthesia. For cer-
tain threshold values and patterns with certain activity
levels, hysteresis appears in the plot of the average final
overlap versus the noise level, even for first order
interactions. Rates of convergence towards a stored
pattern are studied as function of threshold in Sect. 5.
Effects of a variable threshold on the memory capacity
are studied in Sect. 6. In Sect. 7, we discuss neurophys-
iological evidence of a variable neuronal threshold.

2 Dynamical formulation

Consider a network of McCulloch-Pitts (1943} neurons
connected via the Hebbian learning rule (Hebb 1949;
Hopfield 1982). Suppose that the threshold for the i-th
neuron is §,, which may depend on a number of vari-
ables such as time, noise and activity levels; applying an
external field —@, to the i-th neuron is equivalent to
shifting its threshold to ;. For simplicity, we consider a
synchronous updating algorithm (Little 1974; Kinzel
1985; Keeler et al. 1989; Wang and Ross 1990 a, b); the
dynamics of the system is

8,(t + 1) = signlhs (1) — 0,1, (1)

where sign(x) = —1 for negative x and sign(x) = +1
for positive x, and

hi(1) = _Z] T,;S8,(0) +n:, (2a)

is the total input signal for the i-th neuron. We have
included in (2a) a random Gaussian noise n, with a
mean of zero in order to take into account the presence
of noise (Abelles 1982). In the presence of noise or a
non-zero temperature, the dynamics is no longer deter-
ministic. The discussions presented below are therefore
probabilistic, i.€., we treat average behaviors in many
independent trials (ensembles). The synaptic efficacy T,
is specified below.

An interesting scaling property results from the
simple fact that sign(x) = sign{x/c), for any positive c.
In the case where the synaptic efficacy undergoes a
change from T, to ¢, T, for any arbitrary ¢; >0, this
synaptic change can be rescaled into the threshold and
the noise as follows

N
S, (t + 1) =sign Z Cz‘Tij'S'j(t) +m— 9:‘]
j= 1

N n 0
= sign LZ TS + Z' —;’ ] (2b)
j=1 i i

In conventional associative neural network models,
each bit in the stored pattern is assigned “+17 or
“_—1” with equal probability. Thus the activity level of
the u-th pattern r,, defined as N% /N where N’ is the
number of “+ 1”’s in the u-th pattern, is 50%. In other
words, r, =0.5foru=1,2,..., p, where p is the num-
ber of stored patterns. The deviations of the activity
levels from (.5 are on the order of 1/./N, which is
negligible for large networks considered here. In the
present paper, we consider a more general case in which
we allow a random distribution of activity levels in the
stored patterns, ie, 0sr, <1 for pu=1,2,...,p. A
procedure to generate a collection of patterns with a
distribution in their activity levels may be described as
follows. First pick an activity level r; from a random
number generator, which produces a random activity
level. Assign each of the N bits of the pattern “+1”
with a probability r, and “~1" with a probability
1 — r,. We thus have produced a random pattern S' for
this selection of activity level. Next pick another activ-
ity r, from the same random number generator and
produce another pattern 2. We pick a total of p values
of activity level to produce p patterns. In order to store
patterns with an activity distribution, the original
Hopfield prescription of the Hebbian learning rule
(Hebb 1949; Hopfield 1982) has to be modified. We
introduce the form, the motivation for which will be

discussed shortly,

1 L Ap— 1452+ 4%
T =— agu 3
i N(p=.S'SJ) N ’ (3a)

where §# is the u-th stored pattern,
525("‘21)1( —(<r,u>R)2 for u =112! Y 4 (3b)

is the standard deviation of the activity distribution,
and

A4=(r,>p—05 for p=1,2,....p (3¢c)

represents the bias of the average activity level; (3 is




an agverage' over the activity distribution. The quanti-
ties ¢ and 4 are the same for every pattern
p=1,2,...,p. In the absence of the activity distribu-
tion and average bias, i.e., § = A =0, (3) reduces to the
standard Hebbian rule (Hebb 1949; Hopficld 1982).

Similar to our previous work (Wang and Ross
1990a, b), we consider the pattern S' say, which is in
the vicinity of the initial state of the network. Explicitly,
we let the initial conditions of the network be

m'(0) =max{m*(0)|u=1,2,...,p}, (4

where max{- - -} is the maximum in the data set given in
the curly parentheses and

1
ma(f) = 5 S+ - 8(1) (5

is the overlap between the state of the system at time ¢
and the u-th stored pattern. Note that m'(0) does not
need to be 1; thus the initial condition of the network is
not necessarily in complete overlap with pattern S'. We
have defined the term vicinity by a scalar product given
by (5) (the overlap); but one can also define vicinity
through a norm or Hamming distance. These defini-
tions are all equivalent (see e.g., Wang and Ross
1990a).

We separate the first term in the total signal {2) into
two parts (Kinzel 1985):

N o p
hj(:)=m'(z)s,!+l ) Iisys;f
Nj=lp=2

(6)
— 4%+ 4% :IS,-(!) + 1

the first term is proportional to the overlap of the
system with pattern S'. The second part, the
“crosstalk”™ (Keeler et al. 1989) term, is interference
from patterns S, 8%, ...,$%. In a fully connected net-
work such as the one discussed here, a detailed analysis
of effects of the interference on network performance,
especially the dynamics, is quite complicated (see e.g.,
Amit et al. 1985, 1987b). For a qualitative discussion,
we adapt the approximation in which the correlation
between the state of the system S(r) and patterns
§%, 8% ..., % is neglected (see e.g., Kinzel 1985). It has
been shown (Derrida et al. 1987) that this approxima-
tion becomes exact if enough synapses are disconnected

! Mathematically, the average of a quantity @ over a random distri-
bution P(Q) is calculated by integrating this quantity with the distri-
bution function over all possible values, i.e., {Q>={Q'P(Q") dQ’,
where P(Q") dQ’ is the probability that @ is between values @' and
(Q’ +dQ’. Practically, e.g., in a computer simulation, the average of a
given random variable is simply the mean of the values that this
random variable assumes in many independent trials, provided that
the number of trials is large. Suppose there are two random variables,
0, and Q,, and P(Q,, Q,) is their joint distribution function, ie.,
P(Q7, Q%) 40 dQ; is the probability that @, is between values Q)
and Q) +d@;, and at the same time, O, is between values (5 and
Q3 +dQ;. Thus, <0,0,> ={ 0iQ3P(Q}. Q3) dQ;dQ;. Random
variables (0, and (), are said to be uncorrelated if and only if
P(Q,, Q) = PQ)IP(Q,), so that (Q,0,) = | Q1Q5P(Q;)PQ3)
4, 405 =<Q0{@Y

233

randomly (dilution) in a large network. In this approx-
imation, the crosstalk becomes a sum of N(p —1)
independent random variables with zero averages,
which is proven as follows,

We recall that there are two random processes in
generating the stored patterns, i.e., (i) select an activity
level r for each pattern and (i) select a random pattern
according to this activity level. Thus there are two
corresponding average processes. The first corresponds
to random process (i) and is an average over the
activity level distribution, i.e., (>4, which is used in
(3b) and (3c). We denote the second average corre-
sponding to random process (i) by {>,, which stands
for an average over many possible choices of the p-th
stored pattern according to a given activity level r,.
Therefore the total average over the randomness in the
stored patterns is {- - *> = {{- - "Dy r- Since all neurons
are equivalent on average, for all i=1,2,..., N, we
have (5%, = {(1/N)YE}_,8%>, =2r, — 1. For instance,
at 50% activity level, or r, = 0.5, the mean of the state

variable for each neuron fs {8§%>=2r, — 1=0. Hence

(SESED, = {54064 St0s = 2r, — 1)*. (7a)
The total average of this term is:

(8484 =(SESIM IR =(2r, —1)Dr =457+ 47).
(7b)

The last equality in (7b) is a direct result from (3b) and
{(3c). Therefore the averages of all interference terms in
{6) vanish

([S4S% — 46+ 49)5,()>
= (SESF - 43T+ ADXS,()> =0. (T0)

Additionally, the standard deviation of each interfer-
ence term is

S84 — 4% + AH)AS; (D
= ([SES¥?) —(SESEY =1 - 16(62 + 412 (7d)

Thus, in this approximation, the distribution of the
interference becomes a time- and neuron-independent
Gaussian with a deviation

o = \/(p — (1 - ;{6(52 +4%)7 7e)

in the large N limit (Kinzel 1985; Noest 1988), accord-
ing to the central limit theorem.

We now discuss the motivation for modifying the
standard version of the Hebbian learning rule, which is
a prescription for determining synaptic efficacy T; in
order to stabilize a given set of patterns with no activity
distribution (Hebb 1949; Hopfield 1982). The modified
learning rule given by (3) guarantees the stability (in an
average sense, if there is noise) of a stored pattern in the
presence of an activity distribution. Without losing
generality, let us consider the stability of pattern S'.
Suppose at a certain time the state of the network is in
pattern S', ie., S(r) =S! at some time 1, the “local
field” for the i-neuron is obtained by letting S(¥) = S' in
(6). In the light of (7c), which results from the modified
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learning rule given by (3), (6) indicates that the aver-
age “local field” is aligned with the “spin” when
S(H) =8, ie, (h()> =S'. This means that for any
threshold |#;| < 1,8 is an atrractor in the system, ac-
cording to the update algorithm given by (1) (note
that 8! would be a repellor if we had {h(0)) = —§'
instead). Stability of other stored patterns, ie.,
S2, 8% ...,8” can be demonstrated in the same fash-
ion. Hence we have proven that the modified Hebbian
learning rule given by (3) stabalize a given set of
patterns with an activity distribution. Effects of a vari-
able threshold on the memory capacity, i.e., maximum
number of patterns that the network can store, will be
discussed in Sect. 6.

We continue our derivation of the dynamical equa-
tion obeyed by the network. In the approximation that
the interference terms in the double sum of (6) are
independent random variables, we have shown that
resultant random variable is Gaussian distributed and
has a mean of zero. We recall that the external noise #,
is also a random variable with a Gaussian distribution
and mean of zero. We can therefore combine the inter-
ference with the external noise to get a total noise of the
same nature, ie., with a Gaussian distribution and
mean of zero. By substituting (1) and (6) into (5) (with
i =1), we obtain

N
mi(r+1) =% 3 S sign[Sim'(H) -6, + 1], (8)
i=1

where »” is the combination of the internal noise
and the interference with a deviation (Keeler et al.,
1989)

o =\/o% +a;. (9

From here on, we omit superscript ““1” and assume that
the state of the neural network is converging to pattern
S!, unless otherwise specified. Hence, under a mean-
field approximation that the average can be taken in-
side the sign function, ie., {sign(x}) = sign({x)), the
average overlap can be written as follows (detailed
proof is given in the Appendix)

1 N
mlt + 1)) = -Z. {1 =m0 - 6,51}, (10)
with

+ o
W) = | e dx. (1)
\/E;I yio
In (11) and onwards, the statistical average ¢ includes
not only an average over the randomness in the stored
patterns, but also an average over the external Gaus-
sian noise (#; ).

For simplicity, we now assume that all neurons in
the network have the same threshold value, ie., 6, =6,
for all i; however, @ may depend on variables such as
the time, the noise level, and the activity level. Suppose
that there are N, “+1” and (N —N,) “—1" in 8",
Separating the summation in (10) into two groups, with
S, =+1 and S, = —1, respectively, we obtain the fol-
lowing dynamic equation for a neural network with a

variable threshold @
{mit + 1)) = r{l = 29[{m(0)> ~ 6]}
+ (1= {1 = 2¢[<m(n> + 61},

where r = N, /N is the activity level of S' (we have
omitted the subscript “I")and 0 <r < 1.

In the following sections, we study the consequences
of a variable threshold by analyzing (12) in detail.
Although we have assumed in {12) that every neuron
has the same threshold, (12) is still quite general since
the threshold 6 can be an independent variable, or it
can depend, in any arbitrary fashion, on other variables
such as the time, the noise level, and the activity level.
In the present paper we are concerned with only two
special cases. In Sect. 3, we seek a special dependence of
the threshold on the time, the noise, and the activity
level so that the retricval ability of the network is
optimized with respect to a particular class of patterns.
In Sect. 4, we evaluate effects of a constant (time-,
noise-, activity-independent) threshold.

(12)

3 Optimal threshold: selective attention

The average overlap between the state of the network at
time ¢ + 1 given by (12) is a function of, among other
variables, the threshold value 8. We now find an opti-
mal threshold which maximizes the average overlap
{m(t + 1)} at each time step. Notice that

o{m(t + 1)) - 2 {—r e~ [(ml1)y — 821202

08 JV2re (13)

+(1—r) e lm+ o 50, if

_ o? |

Therefore (m(t + 1)) reaches the maximum for a given
set of r (or N_), o, and ¢, when 8 =46,,,. In other
words, the average overlap given by (12) is the largest
at any given time if we choose 8@ =48,,,. The final
average overlap {m(o0)>, which is the fixed point of
{12), as well as the convergence rate towards {m{w0)},
for which more discussions will be presented in Sect. 5,
is therefore also the greatest. The limit ¢ = co always
exists in the present system since the network has a
Lyapunov {energy) function and always reaches ther-
mal equilibrium (see e.g., Hopfield 1982).

We than concluded that the retrieval ability of the
neural network is maximized for patterns with activity
level r by choosing an optimal threshold 6 =8,
given by (14).

Several analytic conclusions concerning the fixed
points of (12) can be drawn for the case where
# =0,,.. First of all, we have

oy Cm(0))) 2
a(m(c0Yy  J2me

+ (1 — rjeKmeo) +0nul252) 5 0 (15)

fre—Km()) — Omen)i207



where
yi[{m(o0) 3] = r{l — 2¢[<m(0)> — 0]}
+ (1 =0 {1 - 2¢[{m(0)>+ 6]} (16)

is the right hand side of (12} with ¢ =6, and 1 = co.
Equation (15) means that y,[{m(cc)>] increases
monotonously as {m(o0)> increases. Hence if we plot
yi1[{m(e0)}] and y,=(m(c0)) against (m(co)>, the
latter being a diagonal straight line, there exists only
one intersecting point, which is the fixed point {m(o0)>
of (12), for a given set of r (or N, ) and g: There can
be no hysteresis in the plot of the final average overlap
{m(0)) versus the noise level o if 8 =8_,,, see Fig. 1.
Secondly, we show that

ayl [<m(w)>] — _2<m( w)) {re_[(m(m» _gm“]2/232

Jo \/ﬂo’2 (17)

(1 = Py K@D + s}

Hence y,(# =0,,,) decreases as ¢ increases: for
a given r (or N,), the curve 3(8=20,,)
plotted against {m{cc)> gets flatter and flatter as ¢
increases. This curve becomes a straight line, i.e.,
(0 =8pan, t =0) =[1=2r|, for ¢ =+o0. Hence,
when intersected with y, = (m(o0)), the fixed point of
(12) at the high noise level limit is

{m{t=00)y=[1—2r|, for 6=+0w. (18)

After solving (12) numerically in the case where
# =86,.., we plot in Fig. 1 the final average overlap
{m(oc)) versus the noise level o for various choices of
activity level r. The general behavior of these curves
agrees with our analytic arguments presented above: At
any non-zero noise level and for a pattern with an
arbitrary activity level r # 0.5, the average final overlap
with threshold set to 6., is always greater than the
conventional result where a zero threshold is chosen

0.75+

{mlm) >

Fig. 1. Plot of average final overlap {m(c0)) given by (12} vs. the
standard deviation of the Gaussian noise ¢ for patterns with various
activity levels: @) r =0.7 () r =0.6 (c) r =0.5. The threshold is set
w @ = 0,,.(r) given by {14). Curve (¢} is the conventional plot, since
when r=035,8=8,,=0
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[compare curves (a), (b) with curve {c)]. This improve-
ment on the retrieval ability of the network is more
pronounced at high noise levels. As the noise level
increases, the average final overlap saturates at the
value given by (18). There is no hysteresis in this plot.

As indicated by (14), there are only two possibilities
that the conventional zero threshold can be the optimal
threshold (8., = 0). The first is in the absence of noise,
i.e., ¢ =0, where all curves in Fig. 1 meet at the point
{m()> = 1. The second possibility is when r = 0.5 (or
N, =N/2), which represents an unbiased pattern
(curve (¢) in Fig. 1).

The self-consistent solutions of (12) and (14) show
that the optimal threshold 8,,,, is negative (positive) for
r>0.5 (r <0.5 and decreases (increases) monotoni-
cally as the noise level ¢ increases.

An interesting observation can be made through
(18). The more biased (r closer to 1 or ) the activity is,
the larger the effect of letting & = 8,,,,. For instance, in
Fig. 1, the activity level in curve (a), where r = 0.7, is
closer to | than the activity level in curve (b), where
r = 0.6, hence the difference between curves (a) and (c)
(the conventional curve) is larger than the difference
between curves (b) and (c).

We now discuss the retrieval ability for pattern §
with activity level r’, when the threshold is set at the
optimal threshold corresponding to S' with activity
level r, i.e., @ = 8..,.(r), [see (14)] but with r # r’. The
equation that determines the final overlap {m’(20)>
with pattern 8’ can be obtained by a slight modification
of (12):

<m’(t + ])> = r’{l - 2!,[1[(?’”’([)) - Gmax(r)]} (19)
+ (L= {1 = 2Y[m' (1)) + G (N1}

In Fig. 2 we plot the fixed points of (19), which are
the average final overlaps {m’(20)} between the state of
the system and patterns 8 with activity level r’, and
when 8 =48,,..(r), as a function of the noise level . We
find that

(Tt = 050 = By (D] < <[t = 003 0
=0,..(rY>, when r #r.

The average final overlap with a pattern is, in general,
reduced when the threshold of the neural network
is set to the optimal threshold with respect to another
pattern with a different activity level. For instance, in
Fig. 2, curves (a) and (b) lic below curve (c). This
difference is more pronounced when these two patterns
(S’ and S') are biased differently, i.e., sign(r’ ~- 0.5) =
— sign{r — 0.5). In Fig. 2, the difference between curves
(a) and (c) is greater than the diflerence between curves
(b) and (¢).

In summary of the results of this section, we find
that the retrieval ability of the network with respect to
a stored pattern, at a given noise level, can be improved
significantly by setting the neuronal threshold to an
optimal threshold given by (14), which is a function of
the time, the activity level of the stored pattern, and the
noise level, in comparison with the conventional zero-
threshold case. After the threshold is set to 8., () with

(20)
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Fig. 2. Plot of average final overlap (m‘({ = ©)> between the state of
the network and a stored pattern with activity level r’ = 0.6, vs. the
standard deviation of the Gaussian noise o, according to (19), while
the network focuses its attention on stored patterns with activity level
7 by setting the neuronal threshold to 8 = 0, () given by (14): (a)
B=0_,0=04), () 8=0,,.0=08), @ 0="0y(r=r'= 0.6).
For comparison, we have also included curve (d), in which the
neuronal threshold 8 =0 and activity level r is arbitrary

respect to activity level r, however, retrieval abilities of
the network with respect to stored patterns whose
activity levels are different from r are, in general, not as
good compared to patterns with activity level r. Hence
choosing the optimal threshold 6., given in (14) may
be a mechanism for the neural network to focus its
attention selectively to a class of patterns with a partic-
ular activity leve! r. The effect of this kind of selective
attention is more pronounced when the artended and
unattended patterns are biased differently, i.c., one has a
high activity level (r >0.5) and the other has a low
activity level (r" < 0.5) and vice versa.

There exist also other possible mechanisms of atten-
tion, e.g., through interactions between neural networks
(Wang and Ross 1990a).

4 Effects of a constant threshold independent of
pattern, time, and noise

In Sect. 3 we consider a particular dependence of the
neuronal threshold on the time, the noise level, and the
activity level and stored patterns, that optimizes the
retrieval performance of the network with respect to a
given pattern. We show in this section that it the
threshold € in (12) is chosen to be independent of
variables such as the time ¢, the noise level o, and the
activity level r, the fixed points of the network display
different behavior.

The following symmetry rules for y, defined in (16)
(with ¢ = o) are useful:

y1[<m(00)>,"s 95 O'] =J’1[<m(30)>s(1 —r), _99 6] * (21)

Y1[—<m(°0)>s r, 95 _U] =J’|[<m(°°)>s (1 _r)’ 89 O'] -
(22)

and
y[—<m(e)), 1, 8, 0] = —y [{m(0)y, 1, =0, 0] (23)

We recall that 0 <r = N, /N < 1. Equation (21) means
that for any 0 < r < 0.5, the fixed point of (12) remains
the same if the activity level and the neuronal thres-
hold are changed to 0.5<r*=1—r <1 and §*= -0,
respectively. The fact enables us to focus only on
cases where 0.5 <r < 1. As a check on this symmetry
rule, we can easily verify by using (14) that
Gmax(r) = _Gmax(l - r)'

Figure 3A is a plot of the average final overlap
{m{w)> between the state of the neural network and
pattern S! versus the standard deviation of the Gaus-
sian moise, for a few typical cases where 6 >0 and
0.5 < r <1 (see curves (a)—(c)), according to (12).

We see from Fig. 3A that hysteresis results from a
constant threshold, even in the case of first-order inter-
action (for discussions on higher order interactions, sec,
e.g., Peretto and Niez 1986; Kecler et al., 1989; Wang
and Ross 1990a, b). The dashed lines represent unstable
fixed points, which define the domains of attraction of
the stable fixed points (solid lines). Only the points
above a given dashed line can be attracted to the
corresponding solid line (stable fixed points). For a
given neuronal threshold and at a given noise level, the
initial overlap between the state of the network and
pattern §' has to be greater than a critical value given
by the point on the dashed line, in order for the
network to converge to pattern S'. When the initial
condition of the neural network is below the dashed
line, the network does not converge to pattern S' which
is in the vicinity of the initial state of the system,
instead it converges to the corresponding spurious state
_S!, according to (12). Hence the overlap between the
final state of the system with pattern S' is negative in
this case. The symmetry rule given by (23) shows that
the absolute value of the average final overlap is equal
to that with the sign of the threshold reversed
{—8 <0). Also the unstable {dashed) portions of
curves (a) —(c) intersect with the {m(o0) >-axis at points
{m(o0)) = 0. Hence hysteresis exists for any positive
0 < 1 and disappears only when 8 =0 (see curve (d)).

Compared to the zero-threshold case [curve (d)], the
retrieval ability of the network, e.g., the average final
overlap, the size of the basin of attraction, and the noise
threshold ¢,(0) above which there is no retrieval, is
significantly reduced by the positive thresholds. In fact
the more positive the threshold, the larger the reduction
in the performance: the balloon-like curves ((c) through
(a)) shrink to the upper left corner as # increases towards
1. If > +1, then on the average, the state of the
network will not evolve towards the stored pattern that
the network is initially close to, no specific stored pattern
can be retrieved. We refer this condition as an anes-
thetized network. The network becomes completely in-
capable of retrieving when 8 = +1, i.e,, g = +1)=0,
and the input signal fails to affect an anesthetized
network. Hence, a positive threshold can desensitize
(0 < @ < 1) and anesthetize (§ = 1) the neural network
with respect to patterns with high activities (r >0.5).
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{miz})

Fig. 3. A-E., Plot of average final overlap
{m(o0))> given by (12) vs. the standard
deviation of the Gaussian noise ¢ for
patterns with various activity levels. The
thresholds here are independent of the
noise level, the time, and the activity level.

For comparison, we have also included (d),

{m{o))

in which the neuronal threshold & =0 and
activity level r is arbitrary, and curve (e), in
which 8 = f,,,,. The dashed portions
represent unstable fixed points which define
the domains of attraction of the stable fixed
points. A r =0.7 fa~e) and 8 >0 (a—c). (a)
0=04@>1-r=03)d)0=03
P=1—-r=03)()0=02

{8 <1 —r=03). At o =0, there are two
solutions for {m(c0)>, i.e., 1 (stabie) and 6
(unstable). B r =0.75 (a—e} and

| —05=(1-2)<0<0 (@—c). (@) 6 =—04

{miae) >

We want to show with some additional calculations
some possibilities of improving retrieval, in the presence
of noise, by varying the threshold of excitation. In cases
where the thresholds are negative and r > 0.5, there
exist three threshold regions, ie., (i) (1—2r) <8 <0,
(ii) —r =0 <(1—2r) and (&i) 6 < —r, where the net-
work shows different behaviors, and the fixed points of
{12) are shown in Fig. 3B, C and D, respectively. There
is only one branch for the fixed point in case (i),
whereas bistable regions (hysteresis) appear in cases (if)
and (iii). Again the dashed lines represent unstable fixed
points, which define the domains of attraction of the
stable fixed points (solid lines). We find that the re-
trieval ability of the network is improved by a positive
threshold in the region of large noise level, in compari-
son with the zero-threshold case; however, the average
final overlaps are reduced at low noise levels. In Fig.
3B, the final overlaps above the arrow are arranged in
the following decreasing order: (¢), {d), (¢), (b), (a).
These are the effects of a negative threshold (sensitiza-
tion) to patterns with high activity levels.

For unbiased stored patterns (r =0.5), (21) indi-
cates that the average final overlap {m(c)) is un-
changed if the sign of the threshold @ is reversed. We
plot in Fig. 3E the average final overlap as a function of
the noise level ¢ for the case with r = 0.5 and different

E@d)i=—-03()08=—-02 Cr=055
fa-e)and —0.55=—-r <8 <(t-2r=
—0.f (a-c). @@m4) @ = —0.5 ()8 = —0.4
{c) 8 = —0.3. At & =0, there are three
solutions for {m(c0)}, i.e., 1 {stable), |6
{unstable), and |1 — 27| = 0.1 (stable). D
r=0.55 (@a—e) and 6 < —r = —0.55 [(a—c]].
(@) =—-063)e=-07)6=—-08. At
¢ =0, there are three solutions for
{m(a0)}, i.e., 1 (stable), |#| {unstable), and
il —2¢|=0.1 (stable). E r =0.5 (@—e¢). (a)
8=055})8=—0485 () 8 =045 (d)
and () @ =0, =0

choices of 0. Since the optimal threshold for unbiased
patterns is 8., =0, according to (14), curve (e)
#=0,, and curve (d) (#=0), the conventional
curve, merge into one single curve. Figure 3E indicates
that the larger |0| is, the smaller {m(c0)) and the noise
threshold o.(f). The network’s retricval ability with
respect to unbiased stored patterns decreases as the
magnitude of the neuronal threshold increases. In fact,
{m(0)) =0 at any noise level g, if r = 0.5 and |6 = 1.
There is hysteresis in the {m(w0)) vs. ¢ plots for
|| = 0.484.

Another interesting case occurs when & =0, and
{m(x)> becomes independent of r. If average final
overlaps {m(o0)) are plotted against the noise level ¢
for various activity levels at zero threshold, we obtain
only one single curve, that is the conventional plot with
r =0.5 and & =0 [curves (d) in Fig. 3].

5 Effects of a variable neuronal threshold on
convergence rates

In the discussions above we have concentrated on the
effects of a variable threshold on the fixed points of the
neural network. The temporal dynamics of the system
with a variable threshold can also be studied through
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Fig. 4. Plot of average overlap {m(1)) given by (12) vs. time 1
(temporal dynamics) for various choices of the neurconal
threshold: (@) 6 = 6,,,,(r =0.7), ¢} =—03, )8 =-0.15, and
{(d) 0 = 0. The stored pattern to which the network converges has
an activity level r =0.7. The standard deviation of the Gaussian
noise is @ = 0.5, and the initial condition is {m(t = 0)> = 0.05. We
compare the average final overlaps as follows: {m(l = w;
f=—-03><imt=c0; 8=0<{mii=w; 8§=-0.15)<
(mlt = o0; 0 = b0, ))

(12). For instance, in Fig. 4, we plot the average
overlaps between the state of the network with pattern
S! as functions of time for various choices of threshold.
As already mentioned in Sect. 3, the convergence rate
with 0 = @_,, is the highest. Although the system con-
verges faster with § = —0.3 than with 6 =0, the aver-
age final overlap of 8 =0 is greater.

6 Effects of a variable threshold on the memory
capacity

In Sects. 5 and 6 we discussed two characteristics of the
performance of a network, i.e., the average final overlap
and the convergence rate, in the presences of a variable
threshold. Now we study the effects of a variable
threshold and an activity level distribution in the stored
patterns on another important property of the network
performance, the memory capacity.

If we let threshold 8 =0, (12) reduces to (Kinzel
1985)

{m(t + 1)) =1 =24[{m(1)3], (24)

where ¥(x) and o are given by (11) and (7¢), respec-
tively. The fixed point {m(c0)) of (24) can be calcu-
lated similarly. {m{oc)) decreases as o increases and
vanishes for ¢ = ./2/n. The memory capacity, i.c., the
maximum number of pattern p that can be stored in
the network, is qualitatively determined by letting ¢ =

2/z. By using the expression of given in (7¢), we find
that the storage capacity is greater when there exist
either an activity level distribution or a deviation of the
average activity level from 50%, or both (for similar
conclusions in the absence of activity distribution, see

Gardner 1988: Buhmann et al. 1989). This increase of
memory capacity is due to the overlap between the
stored patterns and does not imply an increase in the
information capacity of the network. Tt is also evident
from this analysis that the memory capacity increases
with the size of the network N, since ¢ given in (7e)
decreases as N increases.

If we consider a nonzero threshold, then for a given
# # 0, the stability of a stored pattern depends on its
activity level . Hence a variable threshold has different
effects on stored patterns with different activity levels.
For instance, a positive threshold makes patterns with
low activity levels (r < 0.5) stabler and makes patterns
with high activity levels (r > 0.5) less stable. A pattern
becomes unstable (disappears) when the average final
overlap (see Figs. 2 and 3) vanishes. Hence as the
threshold is varied, some stored patterns may disap-
pear, which causes p to change. However, throughout
this paper, we assume that the network is so large that
the pattern of interest, S', never disappears and the
effects of disappearances of other stored patterns arc
negligible when the threshold is varied.

7 Neurophysiological aspects related to a variable
neuronal threshold

In this section we discuss the evidence of a variable
neurcnal threshold in neurophysiological systems and
interesting phenomena caused by variations in
thresholds. We begin by first relating the present model
to neurophysiological systems. For references, see, e.g.,
Guyton 1981, chap. 2; Carpenter 1984, chap 2; and
Kufler et al. 1984, chap. 5.

When a real neuron is in its quiescent state, differ-
ences in the permeabilities and the initial concentrations
of sodium and potassium ions (both extra- and intra-
cellular) cause an electrical potential difference across
the membrane, which is called the resting potential V,
and ranges normally from —95mV to —75mV, the
negative sign meaning that the potential inside the
membrane is lower than that outside the membrane. If
this potential difference is made less negative (depolar-
ized), e.g., by applying an external electric field, to a
firing potential V;, a voltage impulse (or action poten-
tial) is generated. Hence the threshold signal for a
neuron to fire is

0=V,—V,. (25)

We emphasize the difference between the definitions
given in the present paper for the firing potential ¥, and
the threshold 8, since ¥, is sometimes referred as “firing
threshold” (Alberts et al. 1989, p. 1080).

The quantities used in the present model, ie., the
input &,(z), the state variables S;(¢), the threshold 6,, and
the internal noise #,, as well as its standard deviation oy,
all correspond to electrical voltages in physiological
neural systems or their artificial implementations. They
are shifted and rescaled so that the ground state (V,) and
the excited (firing) state of a neuron are described by
S:(f) = —1 and §,(f) = +1, respectively.



In such a representation, the maximum input signal,
which is given by the first term of (6), is of the order of
1. The rest of the right hand side in (6) is noise, the
internal interferences and external Gaussian noise,
which are assumed to be not too large compared to the
signal term. Hence qualitatively the state of aresthesia
in the network corresponds to #, = 1: the input signal
into any neurcn is always insufficient to overcome its
threshold to achieve an action potential. The average of
the “+1” and the “—1" states are 0: a positive 8,
makes it harder for the neuron to fire (desensitizition)
and a negative 8, make it easier for the neuron to fire
(sensitizition). According to the scaling property given
by (2b), overall synaptic changes can be represented by
threshold changes. The maximum noise level a system
with a zero-threshold can tolerate is . /2/n =~ 0.8 (Keeler
et al. 1989). The time ¢ in the present model is scaled
with the average length of an updating cycle. Equation
(24) now simply means that the neuronal threshold can
be varied by changing either the resting potential or the
firing potential, or both, which ¢an in turn be con-
trolled by a number of variables, for example, perme-
abilities and concentrations of key ions such as K™,
Na*, Ca®™* (Hodgkin and Huxley 1952), temperature,
and other chemicals, to be discussed.

In general any condition that favors the potassium
{sodium) transport across the membrane, rather than
the sodium (potassium) transport, tends to raise (re-
duce) the neuronal threshold (Carpenter 1984, p. 40).
For instance, the drug veratrine increases the membrane
permeability to sodium, and the lowest strength of
stimulus needed to elicit an impulse is significantly
reduced by applying this drug. Sometimes it can make
the fiber so excitable that it fires spontaneously without
any extraneous excitation. A lower-than-average cal-
cium ion concentration in the extracellular fluids has the
same effects on a neuron. For patients who have lost
their parathyroid glands and who therefore cannot
maintain normal calcium-ion concentrations, this condi-
tion may caus¢ spontaneous respiratory muscle spasm
and can be fatal. On the other hand, a high calcium
concentration increases neuronal threshold and makes a
neuron less excitable. There exist many other such
*stabilizers”, some of which are used as local anesthetics,
e.g., procaine, cocaine, tetracaing. When the concentra-
tions of these drugs are large enough, the neuronal
threshold can be raised so high that the maximum signal
received by a neuron is always below its firing threshold
and the neuron thus never responds to signals of action
potentials from other neurons, which stops nerve im-
pulses from affecting the anesthetized region (Guyton
1981, p. 28). Changes in neural excitability can also be
caused by damage to sensory fibers, which produces
reduced (increased) sensation and is also called hy-
pe{re)sthesia (Willis and Grossman 1977, p. 410). An
overall change (either increase or decrease) in neuronal
threshold, e.g., caused by special chemicals and physical
injuries discussed above, is related to the constant
threshold discussed in the present paper.

It has been known that cognitive factors, such as the
attentional state of a higher animal or the significance of
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an event, can alter the excitability of sensory
neurons. For instance, athletes and soldiers frequently
fail to notice painful injuries until after the game or
battle. Human subjects asked to focus their attention
elsewhere while receiving a painful stimulus rate the pain
as less than that experienced when they are allowed to
attend to the pain { Leventhal et al. 1979). The foliowing
experiment {Bushnell et al. 1984, 1987) is particularly
interesting. Single unit activity was recorded in thermally
sensitive neurons of awake monkeys whose attentional
states were controlled by varying the tasks that they
performed for a juice reward. These tasks involve detect-
ing changes in visual or thermal stimuli. In some in-
stances, the monkeys received a reward for detecting
changes in the temperature of a thermode positioned on
the face, and thus were encouraged to attend to the
thermal sensation. At other times, however, they re-
ceived their award for detecting changes in a visual cue,
which distracted attention from changes in temperature
of the thermode. It was found that the thermally sensi-
tive neurons were much more excitable when a monkey
was encouraged to attend to the thermal stimulus in
comparison with situations in which the monkey was
encouraged to attend elsewhere (visual cue in this exper-
iment). This “task-related” modulation in neuronal
excitability (also see Desmedt 1977, 1979) is closely
analogous to our pattern-dependent neuronal threshold
change proposed in the present paper (see 14), whereas
the constant threshold shift is similar to the effects of
chemicals discussed in previous paragraphs.

{De)sensitization and anesthesia are concepts usu-
ally confined to sensory neurons. In the present paper,
we have incorporated the concepts of (de)sensitization
and anesthesia into associative neural systems. By con-
sidering an associative neural network model we have
shown that the system can achieve such higher func-
tions as selective attention by purposefully changing its
neuronal threshold in a prescibed manner;
(de)sensitization in an associative neural network
causes a variety of interesting effects on stationary
points and dynamical properties (such as relaxation
time) of the system.

The neuronal threshold can also change according
to the dynamics of the neuron. For example, the
threshold is considerably increased when the neuron is
repetively stimulated below its firing potential V,. A
slow depolarization of the membrane has the same
effect. This phenomenon is called accommodation (Guy-
ton 1981, p. 27). In fact, if the rate of depolarization is
too slow, the neuron may never fire at all, no matter
how much it is depolarized, i.e., the threshold tends to
infinity (Fabre 1927). Hill (1936) has developed a
model for accommodation, in which a variable
threshold is introduced. The Hill model has been tested
against detailed experiments and good agreement has
been found (e.g., Bradley and Somjen 1961).

Opposite to accommodation is potentiation {(Car-
penter 1984, p. 76): the neuronal threshold decreases
when the neuron is repetetively stimulated above the
firing potential ¥,. This type of threshold change is in
the spirit of hysteresis in a single neuron proposed
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recently by Hoffmann (Hoffmann 1986; also see
Hoffmann et al. 1986) and studied in detail in associa-
tive neural network models by Wang and Ross (1990a).
Neuronal hysteresis represents an increase in excitabil-
ity (or decrease in threshold) for firing neurons and no
change for quiescent neurons. Hence neuronal hys-
teresis introduces a threshold which is neuron-specific
dependent on the firing history. In contrast, our present
discussions concentrate on various cases where
thresholds are identical for all neurons, although (10) is
more general in that the neuronal thresholds there are
arbitrary.
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Appendix: proof of (10)

We adapt a mean-field approximation that the average
can be taken inside the sign function, ie.,
sign(x) ) ~sign({x)), and rewrite (8) as follows

1 ¥

Ny=— A, Al
e+ 1)) = T A (A1)
with
A; = 8, sign[S;{m()) — 6, +n']. (A2)

We consider (i) S, = +1 and (ii} S, = —1 separately.
When S, = +1, (A2) gives

A,=P, —P_, (A3)
where P, are the probabilities that
sign[(m(f)> — 0, + 1] = £ 1, respectively. Since n" is a
Gaussian noise, we have sign[(m()> - 8, + 1] = —1,if

1’ < —[{m()>—8,] Considering the fact  that
P, + P_ =1, we obtain

A, =1-2P_

ERREPL -

A 27 —[<m(r)j; — 8;)a

=1 —24[<m(r) _Bi]}’ if §;=+1,

where  is defined by (11).
In the S, = —1 case, we have, instead of (A3),

e~ dx (A4)

A;=—P,+P =1-2P_, (AS)

where P, are  the  probabilities  that
sign[ — {m(1)> — 6; + n'1 = £ 1, respectively. Hence

A =1 =2 {[(m@D> + 61}, if S=-1. (A6)
Combination of (A1), (A4) and (A6) gives (10).
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