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[57] ABSTRACT 
A computer-based arti?cial network is presented that is 
capable of learning, recognizing, and generating tem 
poral-spatial sequences. The network system includes 
time-delays and arti?cial neural subnetworks. The sys 
tem generally includes three parts: (1) comparator units, 
(2) a parallel array of subnetworks and (3) delayed feed 
back lines from the output of the system to the neural 
subnetwork layer. 
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ARTIFICIAL NETWORK FOR TEMPORAL 
SEQUENCE PROCESSING 

BACKGROUND OF THE INVENTION 

This invention relates to a computer-based, arti?cial 
neural network system for learning, recognizing, and 
generating temporal-spatial sequences. Use of an array 
of associative neural networks (ANNs) permits manipu 
lation of complex sequences. 

Investigations of neural processing in biological sys 
tems have provided information from which arti?cial 
neural networks are being developed. However, what 
evolution has generated, man ?nds difficult to emulate. 
Arti?cial networks are implemented through software 
and/0r hardware to perform functions analogous to 
those performed by living organisms (for example, pat 
tern recognition and classi?cation), but there are many 
limitations precluding broad applications to problems of 
commercial interest. 

Conversely, an objective of constructing and testing 
arti?cial neural networks, is to develop an understand 
ing of biological neural networks. This information is 
particularly useful in appreciating and treating human 
neurological disorders. Many recent observations in the 
?eld of neurobiology suggest that biological neurons 
are much more complex than the kinds of model neu 
rons used in arti?cial neural networks in the art. Some 
examples of the complexity are that the learning rule 
need not be Hebbian (Hebb, 1949), and that learning can 
occur locally and independently of whether the post 
synaptic neuron ?res. Furthermore, even to make one 
association, memory involves the interaction of changes 
in more than one spatially distinct compartment of the 
same neuron. 

A component which needs to be factored into arti?c 
ial networks to increase their applicability is the ability 
of a brain to continuously process temporal informa 
tion, as the environment changes over time. In particu 
lar, the brain routinely and dynamically learns and re 
calls information. Therefore, integrating temporal 
adaptive processes analogous to those operative in a 
brain is a major goal in constructing useful arti?cial 
neural networks (ANNs). ANNs have been developed 
for static processing and for temporal processing. How 
ever, systems are not yet available which incorporate 
temporal processing at a level of complexity that is 
suitable for useful applications such as the classi?cation 
of temporal signals. Temporal patterns represented by 
signals include those generated from time-varying spa 
tial patterns. 
Temporal processing includes one or more of the 

following functions: learning, recalling, classifying, 
generalizing, or generating time-dependent phenomena. 
Neural networks that have been developed to perform 
temporal processing may be divided into two catego 
ries: (i) those with time delays and (ii) those without 
time delays. 
Time delays are implemented in a variety of systems, 

including physical and chemical systems, as well as 
arti?cial neural networks. Experimental evidence for 
neural signal propagation delays has been found in rat 
hippocampus. Further work is needed to elucidate 
whether time-delay is actually used in temporal process 
ing in the brain. A theoretical hippocampal model with 
time-delays has been proposed by Zipser (1986). 

Time-delays have been proposed to represent tem~ 
poral sequences. For example, Fukushima (1973) pres 
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2 
ented a temporal processing system, in which a number 
of McCulloch-Pitts neurons are fully connected with 
Hebbian-type synapses. McCulloch-Pitts neurons 
(McCulloch and Pitts, 1943) are non-linear processing 
elements that have two states, i.e., ?ring and quiescent. 
Each neuron receives signals from its neighboring ?ring 
neurons, and the signals are transmitted through synap 
tic weights. The neuron then either ?res if the total 
input exceeds a threshold, or remains quiescent. A Heb 
bian-type synapse is a synapse whose strength increases 
when the two neurons connected by the synapse ?re 
together at a given instance during learning, and con 
versely, decreases when only one of the two neurons 
?res and the other remains quiescent. There are multi 
ple synapses between any two neurons and different 
time-delays in these synapses. 

Fukushima’s system operates by associating a spatial 
pattern with a pattern present at a previous time. How 
ever, this formulation has only a limited ability to store 
sequences, i.e., it is rapidly saturated. Furthermore, this 
system requires many iterations for sequence retrieval 
and has great difficulty discriminating non-orthogonal 
patterns. Non-orthogonal patterns are those for which 
the mathematical relationship of the vector of binary 
signals is that their product is not zero, that is, they are 
not independent. This is in comparison with orthogonal 
vectors whose product is zero and are independent. 
Furthermore, images retrieved by this system are often 
obscured by noise. This noise is referred to as “spurious 
memories.” 
Time delays have been incorporated into Hop?eld 

networks (Hop?eld, 1982) to generate temporal-spatial 
sequences (Sompolinsky and Kanter, 1986; Kleinfeld, 
1986; Tank and Hop?eld, 1987). These systems also use 
Hebbian learning rules and have problems similar to 
those of Fukushima’s system. The ANN discussed by 
Guyon et al. (1988) requires that all stored sequences 
are known analytically a priori. After synaptic connec 
tions are calculated, any additional sequences that need 
to be stored in the system require reconstruction of the 
entire synaptic connectivity. 
Time delays have also been used together with back 

propagation networks in processing temporal speech 
signals (Lippmann, 1989), although back propagation 
networks are known to have unacceptably long training 
times due to iterative learning procedures. Other itera 
tive learning algorithms include that used by Unnikrish 
nan et al. (1991). 
A number of ANNs have been reported to generate 

temporal sequences without time delays. Stochastic 
noise has been used to induce transitions between at 
tractors in Hop?eld networks (Buhmann, 1987). Other 
existing mechanisms are time-dependent (Peretto and 
Niez, 1985; Dehaene et al., 1987), asymmetric (Coolen 
and Ruijgrak, 1988; Nishimori et al., 1990), and diluted 
higher order synaptic interactions (Wang and Ross, 
1990 a, b; 1991 a, b, 1992). But it is not yet straightfor 
ward to train these ANNs for practical applications, 
such as classi?cations of temporal signals. Limitations 
on systems are that single values, rather than arrays of 
data are output; only single neural networks have been 
used, limiting processing to orthogonal spatial images 
and data sets; and complex sequences encounter storage 
limits. 
The present invention relates an arti?cial neural net 

work system which overcomes these limitations by 
employing a time-delay signal processing method and 
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an array of neural subnetworks. The system may be 
incorporated into a general neural network such as the 
DYSTAL (Dynamically Stable Associative Learning 
Network) associative neural network (Alkon et al., 
1990) for the purpose of learning temporal associations. 
Unlike previously proposed temporal systems, the pres 
ent invention relates a parallel array of neural subnet 
works and a comparator layer to determine the overall 
output of the network. This design is novel and pro 
vides for several advantageous performance features. 

SUMMARY OF THE INVENTION 

The present invention relates to an arti?cial neural 
network system that incorporates time-delay signal 
circuits, comparator units, and a parallel array of neural 
subnetworks. This system is capable of learning and 
recognizing temporal-spatial sequences. A temporal 
spatial sequence is de?ned herein as a time dependent 
sequence of patterns in a space. Examples of such a 
sequence include acoustic signals connected to form a 
speech pattern, robotic and unmanned defense system 
control commands, and forecasts of multivariable sto 
chastic processes. 
Speech processing such as retrieval, production, and 

recognition, has potential for voice information systems 
such as electronic telephone systems. In such a system, 
a computer-based operator answers questions from a 
caller and initiates an appropriate response, removing 
the need for human operators. The input to a neural 
network for this application may be a waveform. Ro 
botic and unmanned defense systems are activated to 
make movements needed for task performance and for 
directing missile trajectories by temporal commands. 

Multivariate stochastic processes such as weather, 
earthquake, stock markets and the like, are forecast 
according to information and experience previously 
acquired. 
A system according to the present invention is able to 

memorize temporal-spatial sequences after some re 
peated presentations of these sequences or some varia 
tions, such as noisy versions, of these sequences. After 
learning (training) is completed, the system is able to 
recall an entire sequence after being presented only a 
small portion of this sequence which may also be ob 
scured by noise and/ or contain gaps (blank spatial pat 
terns). 
A system according to the invention requires more 

than a single image to recall a sequence if that image has 
occurred in more than one sequence during training. 

In general, the system includes two separate input 
channels: a CS (conditioned stimulus) and an UCS (un 
conditioned stimulus). To train the system to associate 
patterns at successive times in a sequence, pairs of se 
quences of spatial patterns are presented to the CS and 
the UCS input channels simultaneously. These signals 
are then transmitted to an array of neural subnetworks 
embedded in a comparator. After training, a test pat 
tern, which is presented to the CS input 10 channel 
only, causes the system to output images in a sequence 
that has been learned. 
More speci?cally, the invention relates a computer 

based, arti?cial neural network system for learning, 
recognizing, and generating temporal-spatial sequences. 
The system includes a parallel array of hetero-associa 
tive neural subnetworks which receive signals from 
input channels of the system and produce output sig 
nals; the output differs from the input and its noisy 
versions. 
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4 
A “signal” is a detectable physical quantity or im 

pulse (such as a voltage, current, or magnetic ?eld 
strength) by which information can be transmitted; it 
may be a physical representation of data. Input signals 
may be generated by an optical scanner, for example, by 
scanning a visual image, such as a photograph or a 
handwritten set of numbers, a “chipped” digital image 
wherein images are digitally extracted from photos into 
image chips, or an analog output from an instrument, 
such as an oscilloscope showing a voice waveform. 
Input signals may be continuous or discrete (binary). 
The system also includes N comparator units. Each 

comparator unit receives inputs from the corresponding 
output neurons in each neural subnetwork and decides 
its own output by making the following comparison 
(comparator rule). (There are N output neurons in each 
neural subnetwork.) A critical fraction f6, e.g., two 
thirds is selected, the value being determined by the 
accuracy desired in a particular application. The higher 
f0 is, the lower the error rate will be, but there will be 
more “don’t know” answers, during testing the tem 
poral system. If there exists one comparator unit that 
does not receive the same “know” input from more than 
the critical fraction of the neural subnetworks, the over 
all output from the comparator units, thus the overall 
output from the system, is a “don’t know”. Otherwise, 
each comparator unit outputs an average of its inputs 
from the subnetworks (details are given in the following 
sections). 
A delay element links the comparator output signal 

with each neural subnetwork, while delaying the signal 
by a desired length of time. There is one time delay 
element attached to each subnetwork. 
The invention also relates to a method for associating 

patterns presented to a neural network system in a tem 
poral sequence. The method includes simultaneously 
presenting signals from pairs of elements of sequences 
of spatial patterns to a conditioned stimulus channel and 
an unconditioned stimulus channel of the system, and 
training the system to associate elements presented to 
the system at successive times in a temporal sequence. 
Elements of a sequence to be analyzed by the system are 
then presented to the conditioned stimulus channel of 
the system. The sequence is analyzed by using the asso 
ciations learned during training to predict successive 
elements in the sequence being analyzed. 

In another aspect, the system relates to a signal pro 
cessing system which includes an array of n subnet 
works and a ?rst and a second system input channel. A 
pair of signals designated a conditioned and an uncondi 
tioned stimulus are simultaneously presented to the 
system for each 1 through m elements of a sequence. An 
unconditioned stimulus from a first element of a se 
quence is transmitted directly by means of a signal 
transmission pathway to a second input channel of each 
of the subnetworks within the system. The conditioned 
stimulus of the ?rst element of a sequence is transmitted 
at a ?rst time to the ?rst input channel of the ?rst sub 
network, and successively at subsequent times to the 
?rst channel of each of the subnetworks 2 through n. 
This signal inputting process is repeated so that ele 
ments two through m of the sequence are presented 
successively to the ?rst and the second input channels 
of the system. Each subnetwork computes and stores an 
association between the patterns in the first and second 
channels of the subnetwork at each time. 
The architecture of a neural network according to 

the invention includes a conditioned stimulus input 
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channel and an unconditioned stimulus input channel. 
In an illustrative embodiment which employs a hetero 
associative subnetwork array such as DYSTAL (Dy 
namically Stable Associative Learning Network) (Al 
kon, 1990; 1992), the channels are con?gured to receive’ 
simultaneously pairs of signals from successive elements 
of a sequence presented at successive times, to associate 
the elements by means of “patches,” to form a sequence 
by analyzing such associations, and to output the images 
of the sequence. These input signals generate or modify 
the “patches,” which are storage and processing areas 
interposed between the input and output elements of the 
system. 
More speci?cally, patches are created initially by 

signals input to the system. Patches are storage areas in 
whatever physical apparatus is used to implement a 
neural subnetwork of the present invention, and are 
important elements where signals interact and are modi 
?ed according to the training set developed for a partic 
ular application and the network training rules. In par 
ticular, patches are the sites of local learning in the 
immediate vicinity of paired stimuli (conditioned and 
unconditioned) where component signals are aggre 
gated and simpli?ed so that subnetwork association 
learning is made efficient. 

Patches are dynamic areas which respond to condi 
tioned and unconditioned stimuli in accordance with 
various rules and methods, so as to organize signals into 
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classes and/or features and to process the signals, ' 
thereby to condense or modify information to achieve 
goals of particular applications of the subnetwork. 
A training or learning rule is a set of relationships that 

determine how the CS and UCS interact to modify the 
patches. A difference between training and testing the 
system, is that patches are not modified in the latter 
phase. 

Signi?cant advantages of the DYSTAL subnetwork 
are realized with the implementation of dendritic 
patches which model the local interaction of uncondi 
tioned stimuli and conditioned stimuli pathways into 
two separate input streams. The pathway for the uncon 
ditioned stimuli pattern is separate and distinct from the 
pathway for the conditioned stimuli pattern. Also, in 
order to induce associative learning, the unconditioned 
stimuli pattern is presented together with the condi 
tioned stimuli pattern (each to their own input neurons). 
After the association has been learned, presentation of 
the conditioned stimuli input alone will elicit, as the 
output of the subnetwork, that unconditioned stimuli 
with which that conditioned stimuli has previously been 
associated. 

Considering the input to the neural network system 
for temporal processing, these channels receive signals 
from a plurality of sequences which form a complex 
pattern. The images output by the system include a 
digitized image. Additional signal processing may be 
incorporated, for example, sound may be synthesized. A 
microphone may produce a signal, data may be prepro 
cessed, and features extracted from the digital signal. 
An analog signal may be converted to a digital signal by 
sampling. 
A system according to the invention is implemented 

in either software or hardware, for example, with C 
computer language as a software package. In this em 
bodiment of a software implementation, the outputs of 
the system at different time steps are stored in computer 
memory. The time delays in the system are realized by 
selecting the stored outputs at desired predetermined 
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6 
times, according to a particular application. The system, 
including synapses, neurons, delays and comparators, 
can also be readily implemented in hardware, i.e., with 
electronic components such as resistors, transistors, 
capacitors, inductors, and the like. Because all logic 
designs for the system are speci?ed, detailed board 
level electronic circuits can be easily designed and fabri 
cated by any company that specializes in Application 
Speci?c Integrated Circuit (ASIC). The present system 
will then take the form of a semiconductor chip (inte 
grated circuit). 

In an illustrative embodiment, any arbitrary hetero 
associative neural network (HANN), such as a DYS 
TAL and a back-propagation network, may be used for 
temporal processing. A network can be trained as an 
auto-associator, by presenting the same pattern to both 
the unconditioned stimuli and conditioned stimuli path 
ways, or as a hetero-associator, by presenting different 
patterns to the unconditioned stimuli and conditioned 
stimuli pathways. In an embodiment, a hetero-associa 
tive neural network may be formed by two auto 
associative neural network (AANNs) in parallel. There 
fore, any arbitrary associative neural network, includ 
ing an AANN, is expected to be suitable for temporal 
processing in the general framework of the present 
invention. An AANN outputs a clean image after re— 
ceiving a noisy version of this image as input. 
The temporal processing system maintains the advan 

tages originally shown by a hetero-associative neural 
network such as DYSTAL (Alkon, 1990), for example, 
short training time and ability to store a large number of 
temporal sequences consisting either of orthogonal or 
non-orthogonal spatial patterns. A system according to 
the invention can also be generalized for use in any 
arbitrary associative neural networks for temporal pro 
cessing. ’ 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 presents an architecture for a system accord 
ing. to the invention composed of general HANNs 
(hetero-associative neural networks). The architecture 
includes (1) comparator units; (2) a parallel array of 
neural subnetworks; and (3) feedback signal transmis 
sion lines with time delays from the output of the system 
to the subnetworks; and (4) system input and output 
channels. 
FIGS. 2a and 2b present a schematic diagram of a 

neuron of an arti?cial neural network system designated 
(Dynamically Stable Associative Learning Network) 
DYSTAL; FIG. 2b is a symbolic representation, and 
FIG. 2a is a corresponding architectural structure. 
FIGS. 3a and 3b are schematic diagrams of a plurality 

of neurons included in an arti?cial neural network des 
ignated DYSTAL; FIG. 3b is the symbolic representa 
tion, and FIG. 3a is a corresponding architectural struc 
ture. 

FIG. 4 illustrates an overview of the operation of the 
neural network of FIGS. 2 and 3, showing input chan 
nels, intermediate processing steps, and output chan 
nels. 
FIG. 5 illustrates an architecture for temporal-spatial 

processing in the present invention realized with DYS 
TAL subnetworks. 
FIG. 6a and 6b present two temporal sequences 

which are suitable as input to a system according to the 
invention. 
FIG. 7 shows the training process for a sequence of 

letters. 
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FIG. 8 shows the training process for a sequence of 
numbers. 
FIG. 9 shows the testing process for a sequence of 

letters. 
FIG. 10 shows the testing process where I and l are 

indistinguishable. 
FIG. 11 shows the testing process of a sequence of 

numbers. 
FIGS. 12a-12f exemplify responses of a neural net 

work system according to the invention, to various 
input signals. 
FIG. 13a and 13b present a schematic diagram of a 

hereto-associative neural network (HANNA) compris 
ing two auto-associative neural networks (AANNl and 
AANN2) in parallel; FIG. 13b is a symbolic representa 
tion, and FIG. 13a the architecture of the network. 
FIG. 14 shows substitution of the HANNAs of FIG. 

13 for the HANNs of FIG. 1. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

The generalized scheme of a system according to the 
invention is as follows. There are NL subnetworks, N 
neurons in each subnetwork, and N comparator units in 
the system. The time delay associated with the l-th 
subnetwork delays the signal by 1 time steps with re 
spect to the current time, where l: l, 2, . . . , NL. 
The system has two input channels: the CS and the 

UCS channels, which are analogous to classical condi 
tioning models and to de?nition of the channels em 
ployed in an associative neural network such as (Dy 
namically Stable Associative Learning Network) DYS 
TAL (Alkon, 1987, 1989; Alkon et a1. 1990, 1992). 
There are two stages of operations: training and testing. 
During training, pairs of sequences of spatial patterns 
are presented to the CS and the UCS input channels 
simultaneously, whereas during testing sequences are 
presented only to the CS input channel. 
The comparator units output a “don’t know” answer 

if too many subnetworks output con?icting or “don’t 
know” answers, which is further speci?ed mathemati 
cally as follows. A critical fraction is chosen, fcg, g_g_, 
f¢=§, and coef?cients {a120, léléNL} are used to 
measure the relative importance of each subnetwork. 
These coef?cients and the critical fraction are generally 
assumed in the present invention to be ?xed and do not 
change during training. Suppose a comparator receives 
x, which is not a “don’t know” as input from subnet 
work {i1x, i2‘, } . . . , and y, which is not a “don’t know”, 
as input from subnetwork {i|J’,i2Y,} . . . A weighted 
fraction for this comparator is computed for each differ 
ent not-“don’t know” input it receives: 

Here 2' means a sum over only signal-carrying subnet 
works, and B=x,y, . . . If there exists one comparator 
unit such that its weighted fractions for all non-“don’t 
know” inputs from subnetworks are less than the 
chosen critical fraction, i.e., 

j3<fo for all B=x,y, . . .. 

this means that too many subnetworks output con?ict 
ing or “don’t know” answers to this comparator unit 
and in this case the overall output from the comparator 
units, thus the overall output from the system, is a 
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“don’t know.” The system’s capability of outputting 
“don’t know” answers can signi?cantly reduce the 
probability of making errors in practical applications. 
There are no particular requirements on how coef?ci 

ents {alé 0,1 éléNL} should be chosen. The following 
rules for coefficient determination are, however, rea 
sonable: (i) All subnetworks are equally important, i.e., 
all coef?cients are the same. (ii) The coef?cients de 
crease monotonically for subnetworks with larger de 
lays, i.e., the earlier the events the less in?uence they 
have on the present processes. (iii) More excited, i.e., 
better matched, subnetworks have larger coef?cients. 
An individual subnetwork will output a “don’t 

know” or con?ict if it does not recognize the input 
signal. This will occur if the signal is outside of any 
boundary de?ned by the training process as a set of 
elements in a sequence. 
Each comparator unit receives outputs of the corre 

sponding neurons in all the subnetworks that carry 
signals, and computes a weighted average of the out 
puts, i.e., 

Here S,(t) is the state of the i-th comparator unit of the 
system, O,~1(t) is the state of the i-th neuron in the l~th 
subnetwork. The function ¢(x) rounds up x to the near 
est gray shade value. 
A neural network system according to the invention 

may be implemented on several types of neural network 
architecture. 
FIG. 1 shows an architecture which includes hetero 

associative neural networks. The system has two input 
channels; the CS 101 and UCS 102 channels. The UCS 
go directly to the subnetworks, HANN 1, 2, and 3 103, 
whereas the CS 101 goes successively to each of the 
subnetworks after a time delay 104. The signals go from 
the subnetworks to comparator units 105 where they 
are processed and output as signals on line 106. 
FIGS. 2-5 illustrate the elements of an illustrative 

embodiment of a suitable architecture for the present 
invention, an associative neural network including a 
DYSTAL neuron and its patches. 
DYSTAL provides an example of a neural network 

suitable for the implementation of the system of the 
present invention. FIG. 2 is a schematic representation 
of a single output neuron and its associated patches. 
Each patch consists of the patch vector, the expected 
value of one component of the UCS, and a frequency of 
use based weight. Each output neuron has many 
patches and the CS and UCS inputs are connected to 
the output neuron via the patches. As shown in FIG. 2a, 
a DYSTAL neuron contains a number of dendritic 
compartments or synaptic “patches” 201, which are 
created and modified during learning. In the symbolic 
representation in FIG. 212, each neuron has N CS inputs 
101 and one UCS input 102, all received by each patch, 
therefore, there are NC, CS synapses (corresponding to 
a patch vector) and one UCS synapse in each patch. 

In one type of architecture, when a pattern is pres 
ented, each neuron compares its input pattern with the 
patch vector (a stored pattern of CS values) of each of 
its patches. It then selects the patch with the most simi 
lar patch vector (using, for example, Pearson’s r, a mea~ 
sure of correlation, as a similarity measure). During 
training, if the patch vector of the selected patch is not 
suf?ciently similar to the input pattern, or if the UCS 












