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Abstract--An artificial network is described that can learn, recognize, and generate higher-order temporal- 
spatial sequences. It consists of three parts: (1) comparator units, (2) a parallel array of artificial neural 
networks that are derived from the visual-vestibular networks of the snail Hermissenda. as well as hippo- 
campal neuroanatomy, and (3) delayed feedback lines from the output of the system to the neural network 
layer. Its advantages include short training time, fast and accurate retrievals, toleration of spatial noise and 
temporal gaps in test sequences, and ability to store a large number of temporal sequences consisting of 
non-orthogonal spatial patterns. 

Temporal sequences Neural networks Comparator Dystal Delay Noise 

1. INTRODUCTION 

The brain is constantly processing temporal-spat ial  
information, since the environment is constantly chang- 
ing with respect to time. In particular, the brain often 
needs to dynamically learn and recall information. 
Hence understanding of temporal adaptive processes 
in the brain is of paramount importance. One fruitful 
way to achieve this understanding is to build and 
investigate various artificial neural network (ANN) 
models. A large body of work has been generated on 
ANN for static processing [e.g., references (1-12)] and 
on temporal processing [e.g., references (13-36)]. 

Temporal processing may mean one or more of 
the following: learning, recalling, classifying, gen- 
eralizing, or generating time-dependent phenomena. 
Existing ANN algorithms for temporal processing 
may be divided into two catagories, (i) with time 
delays, t13-2°'22-2s'29-32), (ii) without time de- 
lays.t21.26- 28.33-36) 

In a variety of systems including physical and che- 
mical systems [e.g., reference (37)], and artificial neural 
networks, tla-2°'22-2s'29-32) time-delays help repre- 
sent temporal sequences. Grossberg's Avalanche 
model ~13-19) was presented in the form of delayed 
partial-differential-difference equations. Although it 
was mathematically proven that this model is capable 
of learning temporal-spatial  sequences after infinite 
number of presentations of the training sequences, the 
model is computationally expensive and its practical 
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abilities to process temporal-spatial sequences have 
not been demonstrated. Fukushima ~2°) presented a 
temporal processing system, in which a number of 
McCulloch-Pitts neurons are fully connected with 
Hebbian-type synapses. There are multiple synapses 
between any two neurons and different time-delays in 
these synapses. Fukushima's system is capable of asso- 
ciating a spatial pattern with a pattern present at a 
previous time [see reference (20) for details of the 
formulation]. This formulation shows limited ability 
to store sequences, i.e., it rapidly saturates because it 
uses a Hebbian-type inner-product learning rule and 
it hasfixed number of processing units. Furthermore, 
it requires many iterations for sequence retrieval and 
discriminates non-orthogonal patterns with difficulty. 
Images retrieved by this system are often obscured by 
noise (spurious memories). Time delays have been in- 
corporated into Hopfield networks ~3m to generate 
temporal-spatial sequences ~2z-25~ and to process 
speech signals/3z) These systems also use Hebb-type ~38~ 
learning rules and have problems similar to those of 
Fukushima's system. The ANN discussed by Guyon 
et all 29) requires that all stored sequences are known 
analytically a priori. After synaptic connections are 
calculated, any additional sequences that need to be 
stored in the system require reconstruction of the entire 
synaptic connectivity. Time delays have also been used 
together with back-propagation networks in proces- 
sing temporal speech signals, ~3°) although back-pro- 
pagation networks are known to have long training 
times. 

A number of ANNs are capable of generating tem- 
poral sequences without time delaysf 21'26-28'33-36~ 
Stochastic noise t26~ has been used to induce transitions 
between attractors in Hopfield networks. Other exist- 
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ing mechanisms are time-dependent, 121'2vl asymmet- 
ric ~28'33~ and diluted higher order ~34-36~ synaptic inter- 
actions. These ANNs also require that all stored 
sequences are known analytically a priori and therefore 
are not suited for practical applications in which nu- 
merical databases are used and training may be mixed 
with testing. 

As discussed above, despite the great effort invested 
in the area of temporal sequence processing with artifi- 
cial neural networks, various problems, such as slow 
and inaccurate training and testing, rapid memory 
storage saturation, strict orthogonality requirements, 
remain in the existing approaches. The primary goal 
ofthe present study is to provide a temporal processing 
scheme that eliminates these difficulties thereby mark- 
edly improving the efficiency of temporal sequence 
recognition. 

In this paper we describe a network system which 
uses bioloyically-derived learning as incorporated into 
the Dystal network ~8't 2~ to learn temporal associations. 
As described below, this new system for learning and 
recognizing temporal sequences shows previously un- 
achieved fast and accurate training and retrieval, does 
not require individual images in.sequences to be ortho- 
gonal, and shows minimal saturation. Although the 
system is not a model of a specific biological network, 
it does include features that are directly derived from 
biological networks and are incorporated into the 
Dystal model used in the present system. These bio- 
logical features, which will be discussed briefly in the 
next section, together with a novel design containing a 
parallel array of neural networks and a comparator 
layer efficiently solve the problem of sequence recog- 
nition with an artificial network system. 

2. A BRIEF INTRODUCTION TO THE DYSTAL MODEL 

Many recent neurobiological observations [see, e.g., 
references (39-42)] suggest that in biological neuronal 
networks learning can occur locally and independently 
of whether the post-synaptic neuron fires, i.e., inde- 
pendent of the output of a neuron. Furthermore, even 
for one association, memory involves the interaction of 
changes in more than one spatially distinct compart- 
ment of the same neuron. 143~ The visual-vestibular 
network of the snail Hermissenda, for example, has 
been demonstrated to mediate Pavlovian conditioning 
induced by training with visual and vestibular stimuli 
precisely associated in time [Fig. l(a) and (b)l. It is the 
correlation in time of the input stimuli rather than 
the output of the network neurons that changes the 
weights of synaptic signals. Visual-vestibular cor- 
relation transforms a non-Hebbian GABA ergic 
synapse (between visual and vestibular neurons) from 
inhibitory to excitatory. These network properties are 
modeled in the DN~,I to eliminate the requirement for: 

(a) Hebbian correlation of input activation with 
output activation, 

(b) synaptic feedback from output to input layers, 
and 

a. Hermissenda soma membrane change 
during learning 

~ ( l i g h t )  ~/~X~CS (rot ation) 

b. Model of dendritic change during learning 

~ UCS 

C. Model of a synaptic patch 

C ~  UCS 

d. Model of an artificial patch 

Fig. 1. (a) Schematic diagram for classical conditioning in 
Hermissenda. Paired light and rotation are followed in the 
type B cell soma by an enhanced long-lasting depolarizing 
response to light. Repeated pairings lead to cumulative mem- 
brane depolarization, enhanced response during and after the 
light, decreased voltage-dependent K ÷ currents, increased 
input resistance, and thus increased excitability. On the days 
after training, i.e., during retention of the learning, the cumula- 
tive depolarization is no longer present, whereas the other 
changes remain (Alkon, 1984). (b) A simplified representation 
of(a). (c) A dendritic compartment of multiple synapses called 
a "patch". (d) A mathematical representation of an artificial 

patch. 

(c) independent inhibitory and excitatory pathways 
for correlation and anticorrelation. Each of these learn- 
ing network features reduces the complexity of the 
network architecture and improves computational 
efficiency. 

In the snail network, correlation of visual and 
vestibular inputs causes elevation of intracellular 
calcium in spatially separated compartments of the 
same post-synaptic (Type B) neuron. ~43,441 Evidence 
has recently become available t4s~ that such non- 
Hebbian post-synaptic interaction also occurs hip- 
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pocampal pyramidal cell neurons during associative 
learning. (42'46"47) The compartmental interaction of 
two correlated stimuli was, therefore, generalized to 
correlation and anti-correlation of multiple inputs on 
a shared post-synaptic dendritic branch, that we called 
a "patch ''14°~ [see Fig. l(c) and (d)]. 

Since patches in the DNN are virtual, they are 
generated only by the patterns of stimuli received by 
the network during training. This allows a compara- 
tively simple network organization to generate much 
greater complexity that is not explicitly preprogram- 
med. The patch allows for combinatorial specificity 
of distributed inputs in an image matrix and is quanti- 
tatively described by a patch vector. As demonstrated 
by Alkon et al. ~s~ and Blackwell et al. (12), combi- 
natorial correlation of inputs described as patch vec- 
tors allows for extremely rapid convergence of the 
learning algorithm, no orthogonality requirement on 
input patterns, as well as a large memory capacity. 

A Dystal neuron consists of a number of dendritic 
compartments (Fig. 2), or synaptic "patches", which 
are created and modified during learning (see below). 
There are Ncs  CS synapses (the patch vector) and one 
UCS synapse in each patch. A Dystal neural network 
(DNN) consists of N such Dystal neurons arranged in 

parallel that share common CS and UCS input fields 
(Fig. 3). Each Dystal neuron operates independently 
during training and testing. We denote the dimension 
of the CS input vector by N t. Usually Ncs  < NI,  i.e., a 
patch evaluates only a portion of the input field. 

In the training stage, paired CS and UCS training 
patterns are presented to the Dystal network's CS and 
UCS synapses, respectively. The Dystal learning rule, 
which describes how patches are created and updated 
during learning, is as follows. Prior to training no 
patches exist; the first patch within a given Dystal 
neuron is created by correlating the incoming CS input 
pattern with an accompanying UCS value. Subse- 
quently, the incoming CS input pattern is compared 
to the patch vector of every patch within each neuron. 

Suppose that pi is the i-th patch vector and S i is the 
similarity of that CS input to the i-th patch. At the 
present time, Pearson's R is used as the similarity 
measure; a normalized dot product would also be 
suitable. The patch with the greatest S, independent of 
the value of the UCS, is designated P,,o. The patch with 
the greatest S and with a sufficiently similai" UCS is 
designated Pm with similarity Sin. If S,, exceeds T n 
then that patch, which stores the particular correla- 
tion between the UCS and CS input patterns, is up- 

CS Input UCS Input 
(Architecture) 

Patch Np 

Output 

CS Input UCS Input 

(Symbol) 

Fig. 2. A Dystal neuron and its patches. Each patch consists of the patch vector that contains the running 
average values of the CS and one component of the UCS. The left hand side shows the internal architecture 
of a Dystal neuron. The right hand side defines a symbolic representation of a Dystal neuron and this symbol 

is used in Fig. 3 to illustrate the design of a Dystal network. 

Output 

T T T 

CS Input UCS Input 
(Architecture) 

Output 

T 
DYSTAL 

T t 
CS Input UCS Input 

(Symbol) 

Fig. 3. A Dystal neural network. The right hand side shows its internal architecture. The right hand side 
defines its symbolic representation and this symbol is used in Fig. 5 to illustrate the design of the proposed 

temporal-spatial processing system. 
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dated by a running average: 

(7 -- 1)P.,(~ -- 1) + Im('~ ) 
P ~ ( ~ )  = 

T 

where r is the number of times that patch pattern P~ 
has been updated and the CS training input to patch 
Pm at time r is {Ira(z)}. If Sin is less than TL a new patch 
is created using the incoming CS input pattern and the 
corresponding UCS component.  If  Sm lies between 
TL and Tn then a new patch is created only if Pm is 
not  the same patch as Pmo- Learning described above 
occurs simultaneously in all neurons in the network. 

In the testing stage, only CS synapses of the Dystal 
network are presented with input patterns and the 
patches do not change. The more similar an input 
pattern is to the stored CS patch pattern, the stronger 
the patch responds. The most excited patch shunts all 
others and transmits the signal as the output. The 
output  of a Dystal neuron equals the product of the 
UCS value of the most excited patch and the similarity 
of the CS input to the CS patch pattern in the most 
excited patch. 

For  more detailed mathematical  descriptions on the 
Dystal design, learning rules, and applications, we 
refer the reader to references (8) and (12). 

In the next section, we present a system that incor- 
porates time delays, comparator  units, and a parallel 
array of DNNs.  This system is capable of learning and 
recognizing temporal -spat ia l  sequences. 

3. DESIGN AND OPERATION OF THE PROPOSED 
SYSTEM FOR TEMPORAL PROCESSING 

The desired system should learn a number of tem- 
poral-spat ia l  sequences after repeated presentations 
of these sequences or  some variations, e.g., noisy 
versions, of these sequences. After learning is complet- 
ed, the system should recall an entire sequence when 
presented only with a small port ion of that sequence 
which may also be obscured by noise. Temporal-spatial  
sequences refer to spatial patterns that occur in sequ- 
ence that can be referenced to successive time intervals. 
Figure 5 shows twenty examples of such sequences, 

I nth UCS 
Input, UCS n 

CS Input vector 

Find subset, {Pk}, of I {PI} 
patches, {PI }, such .: 
that UCSn = Ukn. 

{Pk} 

] Compare CS and all Patches, I 
---~ {Pi}. Measure Similarity, Si, 

usfng Pearson's R. , 9 

~ IP k, Sk} 

Find patch, Pm, of'set 
{PId (with matching 
UC$) whose S k is 
greatest. 

; 
p = p [ 

m mo l -- ~.=.--- ....................... 
. . . . . . . . .  

'm÷'mo 
T L T H 

Memory 

{PI} [ 

~ {Pj, Sj } Neuron n 
r 

Find patch, Pmo, of set 
{P j} whose Sj]s 
greatest. 

IPm} 

® 
S m N=Srn*Um 

Output 

Fig. 4. An overview of the Dystal algorithm, which is executed independently for each output unit (the nth 
output unit is shown). A patch consists of the patch vector andthe component of the UCS vector that is 
assigned to that output unit. Thus, the number of components in the UCS vector and the number of output 
units is the same. The incoming CS input pattern is compared to the patch vector of every patch stored in 
the output unit. pi is the ith patch vector and S i is the similarity of that CS input to the ith patch. At the 
present time, Pearson's R is used as the similarity measure; a normalized dot product would also be suitable. 
The patch with the greatest S, independent of the value of the UCS, is designated Pmo. The patch with the 
greatest S and with a sufficiently similar UCS is designated P,~ with similarity Sin. If Sm exceeds 7", then that 
patch is updated by a running average; if S, is less than T L a new patch is created. If Sm lies between T L and 

T n then a new patch is created only if P,. is not the same patch as Pmo. 
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(i) ABCDEF 

(2) 123456 

(3) JKLJMN 

(4) QRSTUS 

(5) VWXYWZ 

(6) 7F8790 

GHI 

, ° . ° • ° 

J O P  

Output l :  

(COMPARATOR UNIT:~ 

I 

Feedback 

CS Input 

t T I , ¸DYs L2 

I UCS Input 

(7) 1!{I 7\ ~ ~1 ]\ ]~ ...... 

(8) # ~, Jt 9 ~, ~ ...... 

(9) t t ~  I-#~ • ..... 

(10) ~ ~ ~ ]--" 7J- ~ . . . . . .  

Fig. 6. Architectural design of the proposed system for tem- 
poral processing. The system consists of three parts: (1) com- 
parator units, (2) a parallel array of Dystal neural networks 
(DNN), and (3) feedback lines with time delays from the 
output of the system to the DNN layer. The system has two 
input channels: the CS and the UCS channels. During train- 
ing, pairs of sequences of spatial patterns are presented to the 
CS and the UCS channels simultaneously. After training, a 
test pattern, which is presented to the CS channel only, will 
cause the system to output images in a sequence that has been 

learned. 

(11 )  E ~ q q  E ~ - P  . . . . . .  

(12 )  ~ ~i '~ ~ A '-J" . . . . . .  

( i 3 )  ~7 ± ~ ~/~k E . . . . . .  

(14 )  ~ ~  . . . . . .  

( i 5 )  T ~ ~ ' : F  . . . . . .  

(16) ~ , ] ~ - ~  . . . . . .  

(i7) ) L ~ q ~ T z  . . . . . .  

(18) 1~ ~ ~ )~ :p ,,9 . . . . . .  

(i9) 2 - -I:; ~ ~. ~ . . . . . .  

(20 )  E j~ ~z ~ j~ + . . . . . .  

Fig. 5. Twenty sequences used to train the system before 
testing. Some of the testing results are presented in Fig. 7. 
Each . . . .  represents repetitions from the beginning of the 

sequence. 

which consist of spatial images of English alphanumer-  
als and Chinese characters. 

Figure 6 shows schematically the architecture of 
our  model for temporal processing that is able to 
achieve the above goal. It consists of three parts: (1) 
the comparator  units, (2) the D N N  layer, and (3) the 

time delays. Let there be NL DNNs in the network 
layer, N neurons in each DNN,  and N comparator  
units in the system. The time delay associated with 
the / - th  D N N  delays the signal by l time steps with 
respect to the current time, where l =  1, 2 . . . .  , NL. The 
system has two input channels: the CS and the UCS 
channels, which are analogous to classical condition- 
ing and the DNN. There are two stages of operations: 
training and testing. During training, pairs of sequ- 
ences of spatial patterns are presented to the CS 
and the UCS input channels simultaneously, whereas 
during testing sequences are presented only to the CS 
input channel. 

Each comparator  unit carries out a weighted aver- 
age over the outputs of the corresponding neurons in 
all the DNNs that carry signals, i.e., Si(t) = tp[~, 'atO,(t) /  
Z'a t ] ,  i =  1, 2 . . . . .  N. Here St(t) is the state of the i-th 
comparator  unit of the system, O,{t)  is the state of the 
i-th neuron in the/-th DNN, Z '  means a sum over only 
signal-carrying DNNs,  and the function q~(x) rounds 
up x to the nearest gray shade value. The coefficients 
that measure the relative importance, i.e., {at, l < l < 
NL}, are assumed in the present paper to be fixed and 
do not change during training. There are no particular 
requirements on how these coefficients should be chosen. 
The following rules for coefficient determination are, 
however, reasonable: (i) All DNNs are equally impor- 
tant, i.e., all coefficients are the same. (ii) The coefficients 
decrease monotonically for DNNs with larger delays, 
i.e., the earlier the events the less influence they have 
on the present processes. (iii) More excited, i.e., better 
matched, DNNs have larger coefficients. It is essential 
to use more than one D N N  and time delay in the 
system when there are common spatial patterns among 
different sequences or when a spatial pattern appears 
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more than once in a sequence (higher order sequence), 
such as the cases shown in Fig, 5 where pattern 'T', 
which is the same as pattern "1", appears in both 
sequences (1) and (2), "J'" appears more than once in 
sequence (3), and "7" appears more .than once in sequ- 
ence (6) .... The larger the number of DNNs in the 
network layer, the better the performance, and of course, 
the more computationally intensive the system will 
be. We emphasize that the feedback signals through 
the time delays do not perform any error minimization 
functions. 

During testing, if an unknown or ambiguous se- 
quence is presented to the system, the DNNs in the 
system output conflicting or "don't know" answers. A 
threshold, which may vary from task to task depending 
on the acceptable level of conflict or ambiguity, may be 
applied to allow a "don't know" answer for the present 
system so as to reduce the overall error rate. For 
example, if more than one-third of the signal-carrying 
DNNs in the system output "don't know" or con- 
flicting answers, the comparator units also output a 
"don't know" answer and the sequence is unclassified 
by the system. 

During training, paired sequences are presented to 
the system through the two input channels and learn- 
ing is achieved through the hetero-associations in the 
embedded DNNs. One of the two sequences in each 
training pair, the "CS sequence", is fed into the "CS 
input" channel. The UCS sequence in the pair, the 
expected output of the system corresponding to the 
signal sequence, is fed into the "UCS input" channel. 
The two sequences in each training pair may be the 
same, or one may be a variation, e.g., a noisy or 
distorted version, of the other. Thus each training pair 
represents one temporal sequence to be stored in the 
system. After training, each DNN in the network layer 
has learned the correlations among pairs of patterns 
corresponding to different time steps and thereby the 
system has learned the temporal sequence. 

During testing, a small piece of stored sequence, 
that need not be contiguous but may include gaps in 
the sequence, and which may or may not be obscured 
by noise, is presented to the system through the CS 
input channels, while the UCS input channels are not 
used during testing. The output will be the corre- 
sponding expected output sequence in a successful 
retrieval. The learning and recalling mechanisms of the 
system can be more clearly demonstrated through the 
following explicit examples. 

We use three DNNs (NL ---- 3) and choose the same 
connections between the comparator units of the sys- 
tem and the DNNs (al = a2 - =  aa = 1). We also choose 
both dimensions of the CS and UCS patterns to be 
N = 11 x 11. We train the system to store twenty seq- 
uences given in Fig. 5 and then test the system. 

During training, sequence (1) is presented simul- 
taneously to the CS input and UCS input channels. 
At time t = l, the output of the system is pattern A. 
The UCS input for the first DNN is also A, however, 
learning does not occur at t = l, since there are no CS 

inputs to any of the three DNNs from the delayed 
feedback. At time t = 2, the output of the system and 
the UCS input for the first DNN are both pattern B. 
The CS input to this DNN from the delayed feedback 
is the output of the system at the previous time step, 
which is pattern A. Hence the first DNN learns the 
association between the CS A and the UCS B at t = 2. 
The second and the third DNNs do not learn at t = 2. 
Similarly, at time t = 3, the first DNN learns the asso- 
ciation between the CS B and the UCS C, the second 
DNN learns the association between the CS A and the 
UCS C, while the third DNN remains inactive. At 
t = 4, the UCS D is associated with C by the first DNN, 
with B by the second DNN, and with A by the third 
DNN...Sequence (1) is thus stored into the system. 
The system learns sequences (2) through (20) in the 
same way. 

To illustrate how the system operates at the testing 
stage, let us consider the examples given in Fig. 7. 

I f " -  . . . . . .  A , which denotes a noisy A , is presented to 
the system at time t = 1 [Fig. 7(a)], the system outputs 
an "A", at time t = 1. At t = 2, the CS input for the first 
DNN is the output of the system 1 time step before, 
which is "A". Since the UCS corresponding to an "A" 
in the training stage is "B" and the amount of noise in 

is shown to be tolerable by the DNN, the output 
vector of the first DNN is a "B". We notice that at time 
t = 2 other DNNs do not respond since they do not 
receive any input. Hence the output of the system at 
time t = 2 is "B". At time t = 3 the input to the first 
DNN is the output of the system at time t = 2, which 
is "B". Hence the output of the first DNN is "C". 
Similarly the output of the second DNN is also "C" 
after receiving a CS input of "A". There are still no 
inputs for the third DNN. Therefore the output of the 
system is "C" at time t = 3. We see that the system 
outputs sequence (1) when presented with a noisy 
pattern "A". We observe that all retrieved images i n  
sequence (1) are noise-free, whereas some retrieved 
images, i.e., "E" and "F", are imperfect in Fukushima's 
system. 12o~ 

When an image "D" [Fig. 7(b)] is presented to 
Fukushima's system, the retrieval of sequence (1) be- 
comes very difficult: it takes many iterations and many 
retrieved images are imperfect. 12°1 This is because 
Fukushima uses a Hebbian-type (dot-product) learning 
rule which imposes strict orthogonality requirement 
on all images in stored sequences. 12°1 To facili- 
tate a performance comparison, we have used the 
same two sequences used by Fukushima t2°) as our 
sequences (1) and (2), where pattern "1" is the same as 
pattern "I". 

When an unknown sequence, e.g., "DCB" [Fig. 7(c)], 
is presented to the above trained system, the first, the 
second, and the third DNNs output "C", "E", and "G", 
respectively. Since less than two-thirds of the DNNs 
give the same output at a given time step, the eompara- 
tor units halt the feedback operation and output a 
"don't know" answer. Fukushima's system was not 
tested in this type of situation, but can be expected to 
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Training Sequences 

,,, ,'~, Ei: C:: D E F -  G H I (a) 

(b) 

(c) 

Testing Input System Output 

;,:~, --- Ei: '.D E:' E F -  

~: , - . -  E F,::Z-; H I 
Z" : f l  | ' °-"  '-~.[ E ! :  - -  Don' l  Know 

(2) " - - °  " ° 1  i ~ l  I ,...., ,,:-i: .4_ = -  .... 
| ,  i°~1 ° 

{d) "'1 ~ ~ Don t  Know 

<e, ~':, (7-; "'i" ' "  '-~ " ~  
. ~ o  , ~ o  

r__--: ..... , j :  .: • 
d) ,.-_=.) ~ . ~ .  

,~, ..I t::::: L 3 f',,,,,'l N .I  D F:' <9, 1::,;.:1 - -  r,,,l ..I N F : '  ..:[ 
,, , , , , , . . . .  ........ ,,,.-...y. . . . . .  . , .... . ..... , , - .  

<~' ,., , l  X I Ii'~1 (h) " ' . . . . . .  i I ~ P 1 1" :  I I~ l~ ' "  .- , • o" o 

i"ll 
,7, M ;', ~ .  f i . . " , ~  

, , , ,  ~ E ]  
• " - r -  - - I -  - ' - ' -  - - I - -  

Ik) -~  _ _~= ~ - - - _ + =  .-.~'_ - - ,  

Fig. 7. Examples of the training and testing sequences, together with responses of the system to various 
input signals after training with the sequences shown in Fig. 5. Each sequence used in the computer 
experiment consists of a number of individual spatial patterns (English and Chinese characters) that are 
11 x 11 pixels in size. Note that pattern "I", which is the same as pattern "1", appears in both sequences 1 
and 2, and "J" appears more than once in sequence 3 (higher order sequence). All other sequences used in 
training, including sequences 5, 7, 13 and 19 shown in Fig. 7, are higher order sequences. The testing responses 
are as follows: (a) a noisy pattern "A" retrieves sequence (1); (b) a noisy pattern "I" is insufficient to make a 
retrieval; (c) more information is required in (b) and leads to a successful retrieval; (d) reponse to a 
non-orthogonal pattern "D"; (e) response to an unknown sequence; (f) response to input with missing images; 

(g) (k) retrievals of high order sequences consisting of English and Chinese characters. 

yield meaningless output  since it is unable to give a 
"don' t  know" answer. 

If initially at time t = 1 a "1" (a noisy "1" note that 
" I"  is the same as "1") is presented to the system, D N N  
1 becomes "confused" and outputs an "average" of"2"  
and "A", which is also the system output  at t = 2. At 
t = 3, D N N  1 outputs "don' t  know", since its input, an 
"average" o f"2"  and "A ", is not recognized by the first 
DNN.  At t = 3, D N N  2 outputs an "average" of "3" 
and "B", since its input is a "1". The system outputs a 
"don' t  know" since one out of two signal-carrying 
D N N s  outputs "don' t  know" [Fig. 7(d)]. The ability 
of outputt ing a "don' t  know" answer often can signi- 
ficantly reduce error rate in practical applications. We 
note that Fukushima's  system outputs a meaningless 
sequence in this kind of situation/2°~ 

If a longer piece of the sequence, e.g., "561", is 
presented to the system instead of a "1" alone, how- 
ever, the system is able to recognize the sequence and 

retrieve sequence (2) in the following way. The system 
outputs "5", "6", "1", at t = 1,2,3, respectively. At 
t = 4, the output of D N N  I is an "average" o f "2"  and 
"A", however, the outputs of D N N s  2 and 3 are both 
"2". Hence the system outputs a "2" at time t = 4, etc. 
[Fig. 7(e)]. Similarly, when "GHI'" is presented to 
the system instead of a "[" alone, the retrieval is 
Sequence (1). 

Figure 7(f) shows an example of the proposed sys- 
tem's response, i.e., successful retrieval of sequence 2, 
when two frames of input sequence are missing. Figure 
7(g) shows that the high order sequence learned during 
training is successfully retrieved when presented with 
a noisy M. Figure 7(h)-(k) show learning and recalling 
of higher order sequence consisting of other English 
letters and Chinese characters. 

The other seventeen sequences stored in the system 
were also successfully retrieved. 



1274 L. WANG and D. L. ALKON 

4. SUMMARY AND DISCUSSION 

We have proposed a system that can learn, recognize, 
and generate temporal-spat ial  sequences. After tra- 
ining with temporal sequences, the DNN system is 
able to recognize and generate the whole sequence 
after being presented with a small piece, which may or 
may not be obscured by noise and may or may not 
contain gaps, of a stored sequence. Or equivalently, 
after training and when a sequence of events is presented 
to the system, the system predicts the sequence of 
events in the future. Compared to the Fukushima 12°} 
and Hopfield-type neural network temporal processing 
systems (22-251, the novel features of the present temporal 
processing system include: fast and accurate training 
and response, noniterative function, few constraints on 
individual spatial images in sequences, and minimal 
saturation. Compared with back-propagation sys- 
tems, {3°) the DNN system is free from the problems of 
convergence and long training time. Compared with 
the system proposed by Guyon et al., t29}, the DNN 
system does not require analytical expressions of all 
training sequences and does not require reconstruc- 
tion of the entire synaptic connectivity when addi- 
tional training sequences are presented to the system. 
These properties domonstrated by the present system 
are very desirable for practical applications such as 
real time speech processing. 

In some practical applications, signal patterns such 
as words occur at different rates. Existing temporal 
systems handle this problem with difficulty. To apply 
the present system for speech processing, we plan to 
preprocess the speech signals so that the signals are 
presented to the system at a pre-determined rate. We 
plan to address the rate-independence problem by 
incorporating the present system in a subsequent 
implementation with (1) x~ariable time. delays and (2) 
temporally persistent responses of biologically realistic 
neuronal elements. ~s) 

The biologically-based artificial neural network 
Dystal (DNN) is an important component of the pre- 
sent temporal processing system. As discussed briefly 
in Section 2, the compartmental features in the DNN 
and associated non-Hebbian learning rules that were 
derived directly from biological networks, have been 
shown by Alkon et al. (1990) and Blackwell et al. (1992) 
to be computational efficient in static pattern proces- 
sing. We show in the present work that this compart- 
mental model and learning algorithm, together with a 
novel design of a comparator layer and a parallel array 
of neural networks, are also powerful in temporal seq- 
uence processing. The design of the present system is 
not necessary, in a mathematical sense, for any form 
of temporal processing, although it provides very favo- 
rable functional properties compared with other exisit- 
ing approaches, e.g., those using simple two-state 
neurons. 

Although the model for temporal processing presen- 
ted here did not saturate after learning twenty seq- 
uences, it should on a theoretical basis store many 

more sequences with minimal saturation. This is 
due to the fact that DNNs within the present model 
create memory "patches" as they learn new associa- 
tions, ts'~2) The theoretical memory capacity, i.e., the 
maximum total number of different spatial images in 
all stored sequences, is 2 N, N being the number of 
neurons, whereas the memory capacities of systems 
using Hebbian-type learning rules 12°'22-25) are on the 
order of N. There are no additional limits on the 
number of sequences and the length of a sequence that 
can be stored. Since back-propagation systems (BPSs) ~3°) 
do not create new memories as they are trained, they 
saturate quickly, though conclusive investigations on 
memory capacities of BPSs are still lacking. 

Although the artificial Dystal neurons are more 
complex compared to conventional artificial neurons, 
e.g., two-state neurons, the structural and computa- 
tional complexities of a Dystal network are not higher 
than those of conventional artificial neural networks, 
since there are no recurrent interactions among Dystal 
neurons and the complexity of the Dystal neuron is 
more than offset by decreased complexity of con- 
nectivity among neurons thereby achieving substantial 
savings in software and hardware implementation. 
Compared to the Hopfield network, for example, the 
recurrent N 2 synapses among neurons are absent in 
the DNN (detailed discussions are the subject of 
another work). 

When the DNNs in the present system are replaced 
by other kinds of hetero-associative neural network, 
e.g., a back-propagation network, the system, with a 
comparator layer and a parallel array of neural net- 
works, can still process complex sequences, e.g., the 
ones shown in Fig. 5 where one image may occur in 
more than one stored sequences or one image may 
occur more than once in a stored sequence. However, 
other computational advantages originated from the 
DNN, such as minimal saturation, fast and accurate 
training and testing, are lost. 
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