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Two major “categories” of unsupervised learning rules are used in artificial neural networks: (i)
competitive learning, which is used in the adaptive resonance theory (ART), the self-organizing map,
and the neocognitron; and (ii) Hebbian learning without lateral inhibition, which is used in the
Hopfield network. Since the competitive learning is essentially Hebbian learning in the presence of
lateral inhibition, the author attempts here to discuss general properties of these unsupervised learning
rules in a unified paradigm. As a first effort, this paper presents analytical studies of a performance
comparison between a competitive learning neural network (CLNN) and the Hopfield neural network
(HNN). Specifically, it discusses their abilities as classifiers after they are trained with noisy patterns.
First, the HNN is generalized 1o perform pattern classification in addition to its well-known capability
for pattern completion. The Hopfield formulation of the Hebbian learning rule is generalized to allow
the existence of noise in training patterns. It is shown that the performance of the generalized HNN as
a classifier decreases as noise in training patterns increases. A parallel study is then carried out for a
CLNN. First, a simple CLNN is developed with the same components used by the generalized HNN
and features used in existing CLNNs. In contrast, this simple CLNN is shown to be robust with respect
to noise in training patterns. These discussions suggest that the reason for this difference in
performance between the two types of networks is that in the CLNN each synapse is devoted to only
one memory, whereas in the HNN each synapse is responsible for many memories. It is concluded
that competitive learning, which leads to localized memory, is superior to Hebbian learning withowt
lateral inhibition, which leads to distributed memory, at tolerating noise in training patterns.
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L. INTRODUCTION

One of the most fascinating features of neural systems,
no matter whether biological or artificial, is their ability
to learn from experience. As a result of intensive
research activity in recent decades, especially during
the last few years, a large body of work on learning
theory has been produced. Supervised learning algor-
ithms, such as the least-mean-square learning' and the
back-error-propagation learning® rules, are widely dis-
cussed and applied; however, they are computationally
expensive and it is unlikely that the brain could use
these adaptive algorithms.
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In contrast, unsupervised learning rules, which use
focal or synaptic level criteria rather than some global
constraints, are more biologically realistic and are often
more computationally efficient. Unsupervised learning
algorithms have been discussed mainly under two
“categories™: competitive learning and Hebbian learn-
ing without lateral inhibition.

From a computational point of view, Hebbian
learning’ is that if cell A consistently takes part in firing
cell B, or fires simultaneously with cell B, the synaptic
strength from cell A to cell B increases. Thus learning
occurs with coincidence in neuronal activities. There
have been many implementations of the Hebbian learn-
ing rule (see Ref. 4 for a review). Perhaps the most
well-known implementation is the Hopfield neural
network (HNN),*® which has been largely credited as
one of the main reasons for the recent resurgence of
neural-network research,

Much work has been carried out using learning rules
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in a seemingly different category, i.e. competitive
learning, which includes a competition among some or
all neurons.” Grossberg® von der Malsberg,’
Kohonen," and Fukushima'' are among the best-
known pioneers, and have developed remarkable artifi-
cial neural-network models using competitive learning,
for example, the adaptive resonance theory (ART),* "
the self-organizing map,” and the neocognitron.”

In fact, competitive learning is essentially Hebbian
coincidence learning in the presence of lateral inhibi-
tion. Depending on the strength and distribution of
lateral inhibition, there should be a continuum of
adaptive neural systems. At one extreme of the conti-
nuum is the Hopfield prescription of Hebbian learning,
where no lateral inhibition exists; whereas at the other
extreme are, for instance, the ARTY? and the
Rumelhart—Zipser model,” which use the “winner-
take-all” rule facilitated by maximum lateral inhibition.
Kohonen's self-organizing map is an example that is in
between these two extremes and uses lateral inhibition
of limited range and strength.

As a first effort to discuss the general properties,
such as the computational advantages and disadvan-
tages, of these unsupervised learning rules in a unified
paradigm, this paper presents analytical studies on a
performance comparison between a competitive learn-
ing neural network (CLNN) and the Hopfield neural
network (HNN). Specifically, it discusses the capability
of these two types of neural networks as classifiers after
they are trained with noisy patterns.

The structure of the paper is as follows. First, the
HNN? is generalized to perform pattern classification in
addition to its well-known capability for pattern com-
pletion. The Hopfield formulation of the Hebbian
learning rule is generalized to allow for noise in training
patterns. The memory capacity of the HNN, which is
the total number of pattern categories the network is
able to store and classify, is calculated analytically. It is
shown that the performance of the generalized HNN as
a classifier decreases as the noise in the training pat-
terns increases.

A parallel study is then carried out for a CLNN.
First, a simple CLNN is developed, with the same
components as those used in the generalized HNN and
features of some existing CLNNs, that is, a learning
rule proposed by von der Malsburg® and algorithms
used in the ART model” and the Rumelhart-Zipser
model.” The reason for developing this CLNN rather
than directly discussing an existing neural network
model is three-fold; (i) it is desired to isolate the effects
of the maximum lateral inhibition or the winner-take-
all rule; (ii) the intention is to discuss a neural-network
model with exactly the same degree of structural and
computational complexity as the HNN, so that the
performance comparison is a fair one; (iii) the objective
of this work is to carry out analytical discussions, rather
than relying on numerical simulations of limited gener-
ality. As will be demonstrated later, the CLNN, in

contrast, is robust with respect to noise in training
patterns.

These discussions suggest that the reason for this
difference in performance between the two types of
networks is that, in the CLNN, each synapse is devoted
to only one memory, whereas in the HNN each synapse
is responsible for many memories. It can thus be
concluded that competitive learning, which leads to
synaptically localized memory, is superior to Hebbian
learning without lateral inhibition, which leads to
synaptically distributed memory, at tolerating noise in
training patterns.

2. TRAINING THE GENERALIZED HOPFIELD
NEURAL NETWORK WITH NOISY PATTERNS

2.1. The Hopfield neural network

Recently there have been numerous studies of
Hopfield-type artificial neural networks.”®'™* This
paper presents an introduction to the HNN, and estab-
lishes a basis for the subsequent discussions.

The neural-network model discussed by Hopfield®
consists of N McCulloch-Pitts neurons™ that have two
states: firing and quiescent, or, §,=*1, where i=
1, ..., N. Each neuron receives signals from its neigh-
boring neurons, and the signals are transmitted through
synaptic weights T,. The neuron then either fires if the
total input h, exceeds a threshold, or remains quiescent.
These model systems, though crude compared to biolo-
gical neural systems, already display intriguing
features, such as a form of learning and recall of
associative memory. Another property that makes
Hopfield-type models interesting is that one can treat
them mathematically, and make analytic statements
about them without relying heavily on computer simu-
lations.

Quantitatively, the ith neuron obeys the following
response rule:

St + Ay =sign [h(1)], (1)

where sign(x)=4+1, for >0 and sign(x}=-—1, for
x=0; and the total input A, that the ith neuron receives
at time ¢ is given by:

h{(O)= T,5,(t)+m, 2)

n, models the noise in neuronal signals due to the
probabilistic release of synaptic vesicles and neuro-
transmitters that accounts for the spontaneous firing of
a neuron." "% It is assumed that 5, has an average zero
and a standard deviation ;.

Hopfield’ studied a fully connected network in which
neurons are updated sequentially, and synaptic connec-
tions are chosen to be:

r
TH=N"' sist, (3)
u=1
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Fig. 1. Architectural structure for the gencralized Hopfield neural
network (HNN). The lower half represents the original Hopficld
network. The upper half represents the newly-added linear classifica-
tion unit and its connections,

according to the Hebbian rule,’ ¥ ={S$% 8%, ..., S4}is
the uth stored binary pattern, and p is the number of
stored patterns. Patterns {$*} are randomly generated
so that they are (quasi-)orthogonal. The architecture of
a Hopfield network is shown in the lower half of Fig. 1.
An energy function can be defined as a function of
neuronal states, and is shown to decrease monotoni-
cally as neurons are updated when &,=0. Since the
energy is finite, and the stored patterns are shown to be
energy minima, neurons in the HNN update until an
energy minimum (a memory) is reached. This unique
property makes the HNN suitable for tasks such as
pattern completion™ and combinatorial optimization 2
e.g. for solving the travelling salesman problem (TSP).
In the TSP, a network is designed such that the energy
function of the system is equal to the total cost of travel
and the network is able to find a low-cost travel route
after a certain relaxation time. In the case of pattern
completion, p random patterns can be stored in the
HNN by using the Hebbian learning rule given in
equation (3). When the network is presented with a
noisy input, the initial state $(r=0) is set to be the same
as this input pattern. If this input pattern is most similar
to one of the stored patterns, neurons in the network
will update recurrently according 1o the neuronal res-
ponse rule given by equations (1) and (2), until the
network stabilizes itself at this stored pattern and the
input pattern is considered to have been completed.
The equilibrium properties of the HNN have been
studied'™'" using powerful tools in statistical physics,
and the system is shown to make a transition to a
disordered (no-memory) state if the number of stored
patterns p and the standard deviation of the noise in
signal transmission {d,) exceed certain critical values,
For instance, when o, =0, the network has the highest
memory capacity, i.e. the maximum number of random
patterns that can be stored by the network is P=
0.138N, where N is the total number of neurons in the
network. When g,#0, the memory capacity P of the
HNN is determined’ by solving the following coupled

equations at a critical P/N where nontrivial solutions
(m>0) disappear:

_(dz 0 Varz+m s
m= VR tan T ) 4
_fdz b Varz+m 5
g= T tan — ) (5)
r= gl — T '+gT . (6)

Here a=P/N; m=8-8N is the overlap between the
state of the network and a memory pattern. The “tem-
perature™ T is related to the standard deviation o, of y
simply by:"

0g=V2UrxT=0.798T. (7)

Note that the temperature 7' in equations (4)~(7) is
actually twice the temperature introduced by Little. ™ "
These results will be used in the subsequent analysis.

2.2. A generalized HNN that performs pattern classifi-
cation

As stated above, the HNN performs pattern com-
pletion and the HNN by itself cannot serve as a classi-
fier: it outputs one of the stored patterns when pre-
sented with an input, and one extra step is needed to
classify this output. One possible method to do so could
be as follows. After the HNN reaches a memory state,
all N neurons are connected to a linear output device
through N output synapses, which form a vector
A={A, A, ..., Ay} (sce the upper half of Fig. 1). A is
chosen in such a way that the output of the added linear
device is " if the HNN reaches the memory state §*',
le. A8 =y’ for all ’'. The following design fulfils
this requirement:

P
A=N"'Y us, (8)

=1

if {$*} are orthogonal. The HNN has thus been genera-
lized to perform pattern-classification tasks by the addi-
tion of an output device and N output synapses to the
original HNN,

2.3. A generalized Hebbian learning rule for noisy
training patterns

If training patterns deviate from the standard
memories {$¢} that need to be stored, the Hebbian rule
given by equation (3) is generalized as follows:

P4
Ty=(gN)™' > > sese, (9)

u=1 v=1
where {8“|u=12,... piv=12,...,9} are the
training patterns. Equation (9) reduces to the original
Hopfield prescription equation (3) if §** =8 for all v
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and g. For the analysis undertaken here, the following
form of noise in the training patterns is chosen:

SE = SE+ 6%, (10)

where it is assumed that the differences between the
training patterns and the standard patterns, {0/},
which may take values 0, £2, are independent random
numbers with a zero average and a standard deviation

4, i.e.

? 1.7
Ory=S X o= or=0. (i)
u=1 j=1
and similarly,
(85" = (H =((81)) =6 (11b)

For instance, 6>=1 indicate that 6%4 =25% of the bits
in 8 are randomly chosen and flipped, since each bit
flipped gives (0")’=4. Thereafter it is assumed that
0?<20.5 so that despite the noise in the training pat-
terns, $**' is more similar to $** than " is to §* for
any set of (v, v', »") if w#u'. Thus the noisy training
pattens form broadened bands around the standard
patterns {S*}, with band gaps on the order of 0.25N
bits.

2.4, Training the generalized HNN with noisy patterns

Substituting equations (9) and (10) into equation (2)
yields

m() =2, TS0+ (gN)” {2 2 Z S105"8,(0)

+y i 5: AT )
-3

In equation (12) the terms in the curly brackets on the
right-hand side represent the effects of noise in the
training patterns. According to equation (11), it is
known that they have zero averages and a total
standard deviation:

—
=

s q

D 6:“6:*”3,-(:)} n,

1 -1 r-1

(12)

},=—(2c§ +6%). (13)
The memory capacity P of the HNN trained with noise
patterns, which is the number of patterns the network is
able to store and classify, is then determined by equa-
tions (4)—(7), with o, in equation (7) replaced by gy
given in equation (13). Figure 2 shows P plotted against
&2, The numerical solution of these equations indicates
that in the absence of noise in training patterns, i.e.
6?=0, the memory capacity P reaches a maximum,
which is 0.138N, and decreases monotonically as §°

1.0 |
0.14%

CLNN

0.13
0.12
0.11

P/N
010

0.08

0.08 1 i L A J
0.1 0.2 0.3 0.4 0.5

Fig. 2. Comparison of performance (memory capacity P) between
the simple competitive learning neural network and the generalized
Hopfield neural netwark, in tcrms of noisc in training patterns 62, for

q=1.

increases. For instance, if 6°=0.45 and g=1, the
memory capacity is 0.09N, a 35% reduction.

From equation (3), the Hopfield prescription of
Hebbian learning rule, it can be observed that cach
synapse is responsible for many memories. From the
nature of Hebbian coincidence learning,’ this property
is not restricted to the Hopfield prescription, but is
universal for all mathematical implementations:*
Hebbian learning without lateral inhibition leads to
synaptically distributed memory.

3. TRAINING WITH NOISY PATTERNS IN A
COMPETITIVE LEARNING NEURAL NETWORK

In order to isolate the effects of lateral inhibition, it is
necessary to discuss a neural-network model with a
very simple architecture. To carry out a fair perfor-
mance comparison with the generalized HNN, it is
essential to make sure that the CLLNN being discussed
has exactly the same degree of structural and computa-
tional complexity compared to the generalized HNN.
Furthermore, to avoid relying on numerical simula-
tions, which usually have limited generality, the CLNN
should be analytically tractable. For these reasons a
simple CLNN will now be developed, rather than using
an existing CLNN.

The new CLNN has exactly the same set of compo-
nents as the generalized HNN classifier: a layer of N
McCulloch-Pitts neurons and one linear output device
(see Fig. 3). Each neuron has N input synapses that can
be modified during learning. The input synapses of the
linear output device are connected to the outputs of the
neurons.

The crucial difference between the present CLNN
and the generalized HNN classifier discussed in the
previous section is that there exists maximum lateral
inhibition among the N neurons. That is, for any given
system input, the lateral inhibition is so strong that only
the most strongly responding neuron has an output,
and other neurons remain quiescent. This “winner-
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Fig. 3. Architectural structure for the simple competitive learning
neural network. The lower half represents a “winner-take-all” com-
petitive learning network. The upper half represents a lincar classifi-
cation unit and its connections.

take-all” rule has been used in the ART"Y and the
Rumelhart-Zipser model. "

Before proceeding, observe that the total signal that
a neuron receives, i.e. the first term in equation (2), is
in fact a dot-product between the input pattern S and
the vector formed by the synapses of the ith neuron, T,.
The better matched the input pattern is with the
synapses, the larger the signal. Therefore, from a
computational point of view, an artificial neuron des-
cribed by equation (2) is essentially a template-
matcher, its excitation reflecting a good match between
the input and its synapses. The neuron whose synapses
are most similar to the input will be the most excited
neuron, and this neuron will win the competition by
shunting all the other neurons. Thus coiricidence learn-
ing only occurs at the best matched neuron.

The learning algorithm used here is such that the set
of synapses for each neuron represents a cluster of
training patterns that are sufficiently similar to each
other. This resembles the sequential leader clustering
algorithm described by Hartigan.”?® The detailed
algorithm for the present CLNN is stated as follows.

The first input is assigned to the synapses of a neuron
as the exemplar for the first cluster. The subsequent
input patterns are compared to the synapses of the
neurons for the existing cluster exemplar(s). If an input
is sufficiently similar to the best matched exemplar, i.e.
from a vigilance test," the synapses of the most excited
neuron are updated, that is, the cluster exemplar is
modified. Otherwise the input is assigned to the
synapses of another neuron and a new cluster is
created.

The synapse modification rule that will be used for
the present CLNN was first proposed by von der
Malsburg,’ and was later used in the Rumelhart-Zipser
model.” At the 7,th updating of the synapses of the ith
neuron, suppose the input pattern is I, the synapses
are allowed to give up some portion, i.e. U/z;, of its
weights and the weights are then distributed among the
synapses in proportion to the training input pattern.
Following Grossberg,” the sum of the synapses will not

be normalized to 1, since the synaptic normalization is
not necessary to achieve the desired learning proper-
tics, Explicitly, the updated synapses are:

1 1 1 & ,
Ti)={1-2 ) Tn— D+ he=- Y L(x'),  (14)

=1

which implies that the synapse vector is an overall
average of the contributing training patterns, and all
contributing training patterns, independent of the tem-
poral order in which the training patterns are pre-
sented, contribute equally to learning.

Using equation (14) and the noisy training patterns
described in the previous section, i.e. equation (10),
gives an analytical expression of the synapses after
training (with a vigilance threshold for cluster creation
equivalent to a mismatch of 0.25N bits):

4
T,=Sitq™'> o, (15)
v=1

where u=1,2, ..., p. Hence p neurons are used in the
learning process, i.e. p clusters are created and modi-
fied during training.

It is required that, as in the generalized HNN classi-
fier discussed in the previous section, the output of the
linear device is " if the input pattern is classified as 8.
Since only one neuron carries an output for any given
input pattern, this requirement can be fulfilled by
letting:

(16)

where #'=12,...,p, and A, is the synapse that
connects the output of the u'th neuron to the linear
output device of the present CLNN (see Fig. 3).

From equation (15} it can be observed that after
training with noisy patterns, the synapses of the partici-
pating neuron consist of the standard memorics {S$#}
and noise terms with a standard deviation:

05 =198%g.

A, =pn',

(17)

Since g1 and it has been assumed that 6%<<0.5,
05<0.5. Hence the cluster examplars stored in the
synapses differ from each other by at least 25% of the N
bits, and the present CLNN can classify P= N patterns
after training with noisy patterns. Therefore, the
memory capacity of the CLNN is larger than the gener-
alized HNN classifier trained by patterns with or with-
out noise. Furthermore, the noise in the training pat-
terns does not decrease the memory capacity of the
CLNN, whereas any amount of noise in the training
patterns will decrease the memory capacity of the
HNN, as shown in Fig. 2.

Equation (15) shows that in the CLLNN, each neuren,
as well as each synapse within a neuron, is responsible
for only one memory. From the analysis presented in
this section, it can be seen that the winner-take-all
competitive learning facilitated by maximum lateral
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inhibition leads to synapfically localized memory, in
contrast with Hebbian learning without lateral inhibi-
tion, which leads to synaptically distributed memory, as
pointed out in the previous section. The discussions
presented in this paper suggest that the difference in
the abilities to tolerate noise in training patterns is a
result of the difference in memory distribution in neural
networks.

4. SUMMARY AND DISCUSSIONS

This paper presents analytical studies of a perfor-
mance comparison between a competitive learning
neural network (CLNN) and the Hopfield neural
network (HNN), which uses Hebbian learning without
lateral inhibition. Specifically, it studies how their abili-
ties as pattern classifiers are influenced by noise in
training patterns. The HNN is first generalized to
perform pattern classification in addition to its known
capability for pattern completion. The Hopfield formu-
lation of the Hebbian learning rule is generalized to
allow for the existence of noise in training patterns and
the memory capacity of the HNN is calculated analyti-
cally. It is shown that the performance of the genera-
lized HNN as a classifier decreases as the noise in the
training patterns increases. A parallel study is then
carried out for a simple CLNN with the same compo-
nents used by the generalized HNN and features used
in existing CLNNs, In contrast, this simple CLNN is
shown to be robust with respect to noise in training
patterns, i.e. the CLNN is able to store and classify
more patterns than the HNN in the presence or absence
of training noise. This analysis suggests that the reason
for this difference in performance between the two
types of networks is that in the CLNN each synapse is
devoted to only one memory, whereas in the HNN each
synapse is responsible for many memories. It is con-
cluded that competitive learning, which leads to loca-
lized memory, is superior to Hebbian learning without
lateral inhibition, which leads to distributed memory,
at tolerating noise in training patterns.

This paper represents a first effort to discuss the
general properties of unsupervised learning rules in a
unified paradigm. Other general properties, such as the
computational advantages and disadvantages of various
forms of lateral inhibition will be investigated in the
present framework, and work will continue towards
obtaining an optimal learning algorithm.
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