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Fig. 5. Current transfer and input current-to-voltage characteristics.

on linear approximation of the -V characteristics, and the class-AB
current mirror allows to do the linear approximation for relatively
large signal current swing. This leads to the reduction of the harmonic
distortion due to the nonlinearity of the I-V characteristics.

IV. CONCLUSIONS

This brief describes the property of the high-precision class-AB
current mirror, The complementary current transfer nature allows us
to reduce the bias current compared to the signal current, and this
property leads to the reduction of the mismatch sensitivity to the
current offset error. The basic idea of this class-AB current-mirror
can be also applied to switched-current signal processing circuits.
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Suppressing Chaos with Hysteresis
in a Higher Order Neural Network

Lipo Wang

Artificial neural networks (ANN’s) attempt to mimic various
features of a most powerful computational system—the human brain.
Since ANN’s consist of a large number of parallel array of simple
processing elments (neurons), they are naturally suited for today’s
fast-developing VLSI technology. For instance, Linares-Barranco
et al: [1] designed a programmable analog neural oscillator with
hysteresis appropriate for monolithic integrated circuits. Dynamic
systems have many applications; however, stability is often desired.
We show analytically that hysteresis at the single neuron level can
provide a simple means to preserve stability in an ANN even when
the nature of the system is chaotic.

Wang and Ross [2] studied static retrieval performance of a
network of binary hysteretic neurons in the presence of random noise.
They showed that neuronal hysteresis, which results in a tendency
for each neuron to remain in its current state, helps the neurons to
resist random signals and avoid random response, thereby improving
the overall retrieval ability of the network. Through numerical
simulations to solve an optimization problem, Takefuji and Lee [3]
used binary hysteretic neurons to accelerate the convergence to the
global minimum by suppressing oscillatory behaviors encountered
during the convergence process. However, these oscillatory behaviors
should be considered numerical artifacts, since the dynamics in neural
networks used for these optimization problems are nonoscillatory and
the convergence process represents a descent on a Lyapnov energy
surface.

In this brief we consider N binary hysteretic neurons with the
following updating rule (Fig. 1) (see (1) at the top of the next page)
where S;(t) represents the state of neuron i at time ¢ and « is the
half-width of the bistable region. The total input for neuron ¢ is
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are the modified first- and second-order Hebbian synaptic efficacies,
S* is the pth stored pattern, and p is the number of patterns stored.
The coefficients y; and > measure the relative strengths of first- and
second-order interactions. We have introduced synaptic disruptions
in the efficacies T;; and T;;x by choosing random. variables C.;
and Cjji as follows: Cj; is 1 with a probability (C/N), Cijx is 1
with a probability (2C/N?), C,; and C;ji are zero otherwise. We
also include in (2) a background Gaussian noise 7; with a standard
deviation o, in order to take .into account the presence of signal
transmission noise.

In the absence of neurconal hysteresis (a = 0), the above higher-
order system was discussed by Wang, Pichler, and Ross [4]. The
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Fig. 1. - Input-output response functions for a binary artificial neuron with
hysteresis. - i

network dynamics in the presence of neuronal lysteresis can be
obtained analytically in a similar fashion

m(t+ 1)
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where o/ = «/C, m(t) = (S(t) - S'Y/N is a. statistical
average of the overlap bétwcen the statc of the network and
the stored pattern to which the network is initially close. ¢ =
VR +93)(p = 1)/C+ (0,/C)2 is a rescaled noise level that
represents the combined effects of the random. synaptic disruption,
interference between stored patterns, and additional background
noise.

Fig. 2 shows iterative solutions of the dynamic equation (4) for
various widths of the bistable region in-the neuronal hysteresis
in the case where v1 = 1 and v, = —1. Fig. 2(a) shows the
case without neuronal hysteresis, where abundant  oscillatory and
chaotic activities are evident. When a small amount of neuronal
hysteresis is introduced; chaos is first suppressed [Fig. 2(b)]. As the
hysteretic width'increases, chaos disappears and periodic oscillations
also become suppressed [Fig. 2(c)]. The system becomes completely
stable for o > 0.1,
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Fig: 2. Solutions (fixed points) of m given by dynamic equation .(4), the
overlap between the 'state of the network and the initial attracting memory
pattern, as -a. function of the rescaled noise level .o(d) in the absence of
hysteresis, i.e., & = 0. (b) &' = 0.01, incomplete bifurcation and suppressed
chaotic region. (¢) & = 0.02 reduction of chaos to oscillations with periods
no greater than 4. (d) o = 0.1 disappearances of beth chaos and periodic
oscillations.
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