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Oscillatory and Chaotic Dynamics in Neural
Networks Under Varying Operating Conditions

Lipo Wang

Abstract—We study the effects of a time-dependent operating
environment on the dynamics of a neural network. In a previous
paper, we studied an exactly solvable model of a higher order
neural network [14]. We identified a bifurcation parameter for
the system, i.e., the rescaled noise level, which represents the
combined effects of incomplete connectivity, interference among
stored patterns, and additional stochastic noise. When this bifur-
cation parameter assumes different but static (time-independent)
values, the network shows a spectrum of dynamics ranging
from fixed points, to oscillations, to chaos. Here we show that
varying operating conditions described by the time-dependence
of the rescaled noise level give rise to many more interesting
dynamical behaviors, such as disappearances of fixed points and
transitions between periodic oscillations and deterministic chaos.
These results suggest that a varying environment, such as the one
studied in the present model, may be used to facilitate memory
retrieval if dynamic states are used for information storage in a
neural network.

I. INTRODUCTION

ECENT physiological experiments and theoretical stud-

ies have suggested [1], [2] that the brain may be using
dynamic attractors to store memory, rather than static states
as in most artificial neural networks (ANN’s) (e.g., [3]-[12]).
Investigations of dynamical networks may thus lead to the
discovery of powerful algorithms for information processing
with ANN’s, a prospect that has increased the research interest
in the area of dynamic behaviors in ANN’s (e.g., [13]-[23]). In
particular, several authors have used limit cycles [13], strange
attractors [18], [22], [23], and transient behaviors [25] to
represent associative memory. Dmitriev and co-workers have
effectively applied chaos for information processing in ANN’s
[15], [24]. Existing work on ANN’s focuses on those operating
under time-independent conditions, but little effort has been
invested in discussing how a varying environment may affect
the dynamics of an ANN. In this paper we investigate such
effects.

The effects of a dynamical environment have been dis-
cussed in areas other than ANN’s. May claimed that temporal
variations in the environment are a destabilizing influence
in ecology [26]. A time-dependent bifurcation parameter in
the logistic map was used to study natural populations under
varying growth conditions [27]. Many unexpected dynamics
were found, among them the noise-induced order, which was
discovered earlier in a different system by Matsumoto and
Tsuda [28] and which contradicts May’s conclusion [26]. Ott
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et al. [29] showed theoretically that one can convert a chaotic
attractor to any one of a large number of possible attract-
ing time-periodic motions by making small time-dependent
perturbations of a system parameter, thereby achieving con-
trol of chaos. Their prediction was subsequently observed
experimentally in an amorphous magnetoelastic ribbon [30].
The exponential sensitivity of a chaotic system to small
perturbations in system parameters was used to develop a
method to direct the system to a desired accessible state in
a short tume [31].

In a previous paper [14], we presented an ANN of Mc-
Culloch-Pitts two-state neurons connected by higher order
[8] Hebbian-type synapses [5], [32], [33]. Exact solutions are
derived for the network dynamics and a variety of dynamical
behaviors such as stable retrieving, oscillations, and chaos are
revealed. A rescaled noise level that represents the combined
effects of the random synaptic dilution, interference between
stored patterns, and additional background noise, is found to
be an important bifurcation parameter in our system and was
assumed to be independent of time in the previous work [14].

In the present paper, we study the effects of a dynamical
environment on an ANN by letting the rescaled noise level,
as a system parameter, vary with time. We show that a time-
varying environment brings about many interesting changes
to the original network dynamics under time-independent
conditions. Depending on the fashion in which the bifurcation
parameter varies with time, the dynamic environment may
stabilize or it may control a chaotic state; e.g., it may turn
a chaotic state of the network to an ordered state. It may
also destabilize an ordered state of the network and turn it
into chaos. The stable fixed points (period-one oscillations)
disappear completely under time-varying conditions.

II. THE NETWORK MODEL AND ITS ANALYSIS

A. Under Time-Independent Operating Conditions

The artificial neurons used in the present network model
are McCulloch-Pitts two-state neurons. They are connected
by both first-order and second-order Hebbian-type rules. Ex-
plicitly, the state of the ith neuron is

S;(t + At) = sign[h;(t)] (N

where sign(z) = -1 for negative z and sign(z) = +1
otherwise. The total input for the sth neuron is

N N
hi(t) =m Zﬂ’j%(ﬂ + 72 Z TijiS;()Sk(t) +mi (D)
j=1 Jk=1
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where

P P
Ty =Cyy SIS, Tiyp=Ciyny SESISE  (3)
p=1 p=1

are the modified Hebbian synaptic efficacies, Sk is the uth
stored pattern, and p is the number of patterns stored. The co-
efficients «y; and 2 measure the relative strengths of first-order
and second-order interactions. We have introduced random
asymmetric dilution in the efficacies 7;; and 7}, by choosing
random variables Cj; and Cjj, as follows: Cj; takes the
value one with a probability (C/N) and the value zero
with a probability (1 — C/N), and C;;), takes the value
one with a probability (2C/N?) and the value zero with a
probability (1 — 2C/N?). Synaptic dilution is essential in
both modeling the observed incomplete connectivity in real
neurophysiological systems and assuring an exact solution
[14], [33]. Although the synaptic disruptions are randomly
carried out, information (patterns 5"“, p=1---p) can still be
stored with the remaining Hebbian synapses. We also include
in (2) a backgound random Gaussian noise 7; with an average
zero and a standard deviation o, in order to take into account
the presence of noise (temperature).

For parallel network dynamics where all neurons are up-
dated simultaneously (for effects of updating synchronicity,
see [17]), it can be shown [14] that the network obeys the
following dynamical equation:

nm(t) + ye[m(t)]?

Vo

Here m(t) = (1/N)S"' - S(t)} is the average overlap between
the state of the system at time ¢ and S, the memory state that
is closest to the initial condition of the system

Y 2
erf(y) = %/{; e " dx 5

is the standard error function and o is the rescaled noise
deviation

m(t + 1) = erf{ } = F [m(t),0].

o=4/(7f +B)p-1)/C+ (0,/C)>. (©)

If v = 1 and v2 = —1, the positive attractors m of
the network can be obtained by iterating (4) for many time
steps (see [14] for discussions of other «; and - values).
As shown in Fig. 1, when ¢ > 0.8 and for any positive initial
overlap m(0) > 0, the only nonnegative fixed points are zeros.
For 0.8 > o > 0.2, the system converges to a single branch of
stable positive fixed points with any positive initial overlap.
This corresponds to static retrievals. As o decreases below 0.2,
oscillations start to appear and the network dynamics becomes
chaotic through a sequence of period-doubling bifurcations as
o is further reduced. Amidst the largely chaotic behaviors,
there are small “windows” of ¢ values in which the network
dynamics exhibits periodic oscillations, for example, a period-
3 oscillation [34]. We shall discuss this period-3 oscillatory
region further below.
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Fig. 1. Fixed points of m, the overlap between the network state and the
initial attracting memory, as a function of the rescaled noise level o under
time-independent operating conditions.

B. Under Time-Dependent Operating Conditions

In the above discussions [14], the bifurcation parameter o
has been assumed to be a constant of time. This is analogous to
the brain working in a time-invariant environment. However,
the environment often changes with time. For instance, when
one is listening to a piece of music, the temporal tones of
the music give rise to varying conditions in the brain. As an
initial effort to explore the effects of such varying conditions,
we let o vary with time in our neural-network model, which
resembles the study of varying growth conditions with a time-
dependent bifurcation parameter in a logistic map [27] and
work on chaos control with time-dependent perturbations to
various system parameters [29]-[31].

A simple choice of the time-dependence of o is that o
alternates periodically between two values, for example, o =
A at odd time steps and o = B at even time steps. Fig. 2(a)
and (b) show the bifurcation diagrams for B = 0.61A4 and
B = 0.25A, respectively. Compared with the constant o case
where A = B (Fig. 1), we find that positive (period-1) fixed
points disappear completely and the most ordered cases are
period-2 oscillations. The noise threshold at which the average
final overlap m = 0, the onsetting threshold at which chaos
first appears, and the amplitudes of period-2 oscillations all
increase as the difference between A and B increases.

Lyapunov exponents, which measure the randomness of the
network dynamics, are calculated as a function of (4, B)

N+t,

1 dm(t +1)
A== ! _— 7
t=t,
where t, = 103 is a transient interval before the network

dynamics stabilizes and N = 10% is a time-window in which
the Lyapunov exponent is calculated.

In addition to the simple periodic variation of the rescaled
noise level o between two parameters (A, B) as discussed
above, we consider a more general form of variation described
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Fig. 2. Fixed points of m, the overlap between the network state and the
initial attracting memory, as a function of the average rescaled noise level
o = (A + B)/2, when the rescaled noise level o alternates periodically
between A and D. (a) B = 0.61A. (b) B = 0.25A.

by the Cowley parameter [35], [27]
_ Ppja
Py

where P4 is the probability for ¢ = A and Ppg4 is the
conditional probability for ¢ = B under the condition that
o = A in the previous time step. Since Py P4 p = PePp|a
and Py + Pp = Pqp + P44 = Ppja + P = 1, we have

Pyja=Pgip=(1+~)/2 )
Pup =Ppja=(1-79)/2 (10)

y=1 )
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Fig. 3. The signs of the Lyapunov exponents A given by (7) when the
rescaled noise level o alternates periodically between A and B. i.e., when the
Cowley parameter 7y = —1. Black dots represent positive Lyapunov exponents
(chaos) and white dots represent negative Lyapunov exponents (order). The
case where A = B or o does not vary with time (Fig. 1) is represented by
the diagonal line OD. OD’ represents B = 0.61.4 [Fig. 2(a)] and OD"
represents B = 0.25A [Fig. 2(b)].

if we let Py = Pp = 0.5, which we shall assume in our
subsequent discussion. Equations (9) and (10) indicate that
the Cowley parameter -y serves as a measure of randomness
for ¢ to switch between values (A4, B) in any two adjacent
time steps. For example, when +y is close to but less than one,
(9) and (10) show that switching between A and B is unlikely,
hence the sequence {---o(t — 1)o(t)o(t + 1)---} looks like
{- AAAAAABBBBBDB---}. Conversely, when v is close
to but greater than —1, (9) and (10) show that switching
between A and B is extremely likely, which corresponds to
the discussed case where o alternates periodically between A
and B. The case where v = 0 corresponds to the completely
random situation where P44 = Ppip = Pajs = PB4 = 0.5.

The results for the Lyapunov exponent are presented in
Figs. 3 and 4.

In Fig. 3, the black and white dots represent positive
(chaotic) and negative (ordered) Lyapunov exponents at
the corresponding (A, B), respectively, for the case where

= —1, i.e., a periodic o. The diagonal line OD represents
the case where A = I3 or o does not change with time.
Fig. 2(a) is represented by OD', where B = 0.614. OD”
represents B = 0.254 and passes through a larger black
region, which supports the fact that chaos is more dominant in
Fig. 2(b) compared to Fig. 2(a). In these situations, the time-
dependence of ¢ promotes chaos or disorder, as concluded
by May [26].

Fig. 3 shows only the signs of the Lyapunov exponents.
The actual values of the Lyapunov exponents are important in
studying trends of changes between order and chaos. Due to
the complexity of chaotic structures, a three-dimensional plot
is not meaningful. We represent in Fig. 4(a)-(h) the values
of the Lyapunov exponents by vivid colors. We are able to
illustrate the enormous information content of the chaotic



WANG: OSCILLATORY AND CHAOTIC DYNAMICS 1385

Fig. 4. Lyapunov exponents A given by (7), when the rescaled noise level o alternates between A and B according to (8) with various choices of the
Cowley parameter . Positive Lyapunov exponents indicate chaos and negative Lyapunov exponents indicate order. (a) v = —1 (o alternates periodically),
0.03 < A,B < 0.8. The figure is asymmetric with respect to the diagonal line. (b) the region with 0.03 < A, B < 0.2 in (a) enlarged. (c) the
region with 0.086 < A, B < 0.098 in (b) enlarged (the period-3 island). (d) v = —0.98 (o alternates slightly randomly), 0.03 < A, B < 0.8. The
figure is symmetric with respect to the diagonal line, in contrast to (a).
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Fig. 4. (Continued.) Lyapunov exponents A given by (7), when the rescaled noise level ¢ alternates between 4 and B according to (8) with various choices of
the Cowley parameter ~. Positive Lyapunov exponents indicate chaos and negative Lyapunov exponents indicate order. (e) The region with 0.03 < 4, B < 0.2
in (d) enlarged. (f) The region with 0.086 < A. B < 0.098 in () enlarged (the period-3 island). (g) Period-3 island with v = 0 (o varies completely randomly
between A and B),0.086 < A. B < 0.098. (h) Period-3 island with v = 0.99 (¢ hardly varies between 4 and B).(.086 < A B <0.098.
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structures in the present model. This suggests that chaos in
neural networks may be used to store even more information
than conventional static storage prescriptions [3]-[12].

Fig. 4(a)-(c) shows the values of Lyapunov exponents A
when the rescaled noise level o alternates periodically between
A and B, ie., when the Cowley parameter v = —1. The
asymmetry of these figures with respect to the diagonals shows
the sensitivity of the network dynamics to the order in which
o assumes the values A and . In contrast, Fig. 4(d)—(h) are
symmetric with respect to the diagonals when o assumes the
values A and B with certain randomness.

By comparing Fig. 4(c), (f), (g), and (h), which illustrate the
period-3 “island” (green in color) for different choices of the
Cowley parameter -y, we observe that the period-3 island has
the smallest area for v = 0, when o switches between A and
B completely randomly. Hence the randomness in sequence
o(t) seems to promote chaotic behaviors in the network.

In Fig. 4(b) and (c), for example, there are off-diagonal
green (ordered) regions with the corresponding portion of the
diagonal line (time-independent o) passing through a yellow-
red (chaotic) region. This implies the following. Suppose the
network dynamics is chaotic if ¢ is kept constant at one
or both of two values, e.g., (A1, B;). For some (A1, B1),
the network dynamics can become ordered when o alternates
between (A1, B1). In these cases, the time-dependence of ¢
controls or suppresses chaos and promotes order [27]-[31].

The results presented in this paper are primarily theoretical;
however, we have concluded that a varying environment can
induce transitions from ordered states to chaotic states and
vice versa. If dynamical behaviors are used to efficiently store
memory, as suggested by recent physiological and theoretical
studies (e.g., [1], [2], [13], [15], and [22]-[25]), a varying
environment can be used to facilitate information processing,
such as memory retrieval, by inducing transitions between
various dynamic network states, which will be a subject of
future investigations.
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