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Abstract - We model the nonlinear dynamics of 

ditions by letting a system parameter vary periodi- 
cally with time in a higher order neural network. We 
demonstrate explicitly that the varying operating en- 
vironment can cause transitions between periodically 
oscillatory states and chaotic states. We discuss these 
results in relation to information processing in such 
systems. 
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1. INTRODUCTION 

Most existing research efforts on artificial neural 
networks (ANNs) focus on ANNs operating under 
time-independent conditions (e.g., (21 (111). Effects of 
a varying environment should be investigated, since 
the brain and man-made systems are functioning in 
an ever-changing world. Markus et  a1 (41 studied nat- 
ural populations under varying growth conditions by 
introducing temporal perturbation in a bifurcation pa- 
rameter. Ott e t  d[6] showed that chaos can be con- 
trolled by time-dependent perturbation of a system 
parameter. This method has been used to induce pe- 
riodic oscillations in a nonlinear oscillator model [7] 
and a 9 x 9 network of oscillators (81. We [lo] studied 
effects of a temporal perturbation on a large network 
consisting of McCulloch-Pitts neurons [5], by calculat- 
ing Lyapunov exponents in various parameter spaces 
and for various forms of varying environments. In the 
present paper, we demonstrate explicitly the tempo- 
ral dynamics of the network and transitions between 
dynamic states under periodic operating conditions. 

The present work is based on an exactly solvable 

In this system, both first and second order synapses 
are disconnected randomly at  one time to model the 
sparse connectivity observed in real neural systems. 
Exact solutions are derived for the network dynamics 
and a variety of dynamical behaviors such as stable re- 
trieving, oscillations, and chaos are revealed. Explic- 
itly, we consider N binary neurons with the following 
updating rule: 

highcr ordcr ANN which n-s propoocd cwlicr (191. 

where Sj(t) represents the state of neuron i at  time t 
and the total input for neuron i is 

P P 

p= 1 jl=l 

are the modified Hebbian synaptic efficacies, ,!?' is the 
p-th stored pattern, and p is the number of patterns 
stored. The coefficients y1 and 7 2  measure the relative 
strengths of first order and second order interactions. 
We have introduced synaptic disruptions in the effi- 
cacies Tij and T i j k  by choosing random variables Cij 

and C i j k  as follows: Cij is 1 with a probability (GIN), 
c i j k  is 1 with a probability (2C/N2),  Cij and Cijk  are 
zero otherwise. We also include in eq.(2) a background 
random Gaussian noise vi with a standard deviation 
ca. 
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When all neurons are updated simultaneously, the 
network obeys the following dynamic equation [12]: 

Here m(t) is the average overlap between the state of 
the system at time t and the initial attracting memory 
state. erf(y) = 5 e -xadx  is the standard error 
function. c is the rescaled noise deviation that rep- 
resents the combined effects of the random synaptic 
disruption, interference between stored patterns, and 
additional background noise: 

When (T > 0.8 and for any positive initial over- 
lap m(0) > 0, the only non-negative fixed points are 
zeros. For 0.8 > D > 0.2, the system converges to 
a stable positive fixed point with any positive initial 
overlap. For example, the top panel of Fig.1 shows 
such a stable state at (T = 0.3. This corresponds to 
static retrievals. As o decreases below 0.2, oscilla- 
tions starts to appear and the network dynamics be- 
comes chaotic through a sequence of period-doubling 
bifurcations as o is further reduced. The second panel 
in Fig.1 shows a periodic oscillation with a period 2 
at B = 0.14, whereas the third panel of Fig.1 shows 
chaos at = 0.12. Amidst the largely chaotic behav- 
iors, there are small “windows” of values in which 
the network dynamics exhibits periodic oscillations, 
for example, a pem’od-3 oscillation shown in the bot- 
tom panel of Fig.1. The bifurcation parameter (T is 
iisslllrl(:tl to  be independent  of t2711e in Fig. 1. 

2. PERIODIC OPERATING CONDITIONS 

We now model a dynamic operating environment 
with a t ime-dependent  system parameter 0. A simple 
choice of the time-dependence of ~7 is that B alternates 
periodically between two values, for example, (T = A 
at odd time steps and ff = B at even time steps. The 
following interesting behaviors emerge as a result. 

The top two panels of Fig.:! show chaotic dynam- 
ics of the network when r~ is a cons tant  of t ime ,  that 
is, D = A = 0.0893 for all t in the top panel and 
~7 = B = 0.0879 for all t in the second panel. How- 
ever, when we let alternates periodically between 
A = 0.0893 and B = 0.0879, the network exhibits a 
periodic oscillation, as shown in the bottom panel of 
Fig.2. This demonstrates that temporal variations of 
the system parameter can induce order from chaotic 
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Figure 1: The overlap m between the state of the net- 
work and the initial attracting memory pattern plot- 
ted as a function of time t ,  for various choices of the 
rrsc:alrd noise level cr. The 1)ifiirc:atioii parameter 0 is 
indepexideut of time. 

behaviors, which is similar to the “noise-induced or- 
der” discussed by Matsumoto and Tsuda [3] in a physi- 
cal system, as well as work on control of chaos by other 
authors (61, [7], [SI in various other systems. 

The opposite process is also possible. The top panel 
of Fig.3 shows the temporal dynamics of the network, 
i.e., a period-3 oscillation, when U is a constant  of 
t ime ,  that is, U = A = 0.0946 for all t. Similarly, the 
network oscillates with a period 6 when the bifurcation 
parameter is kept at ~7 = B = 0.0907 all the time 
(see the second panel of Fig.3). However, when we 
let Q alternates periodically between A = 0.0946 and 
B = 0.0907, the network exhibits chaotic behavior as 
shown in the bottom panel of Fig.3. 

Time-dependent operating conditions can therefore 
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Figure 2: Transition from chaotic to periodic states 
under periodic operating conditions. The overlap m 
between the state of the network and the initial at- 
tracting memory pattern plotted as a function of time 
t, for various choices of the rescaled noise level U .  The 
bifurcation parameter (T is independent of time in the 
top panel (a = A = 0.0893) and the second panel 
((T = B = 0.0879), whereas (T alternates periodically 
between two values A = 0.0893 and B = 0.0879. 

induce transitions from ordered states to chaotic states 
and vice versa. (Similar transitions between chaotic 
and periodic states were also observed in the study 
of natural populations under time-dependent growth 
conditions [4].) If dynamical behaviors are used to 
efficiently store memory, as suggested by recent phys- 
iological and theoretical studies [9], [l], [13], a vary- 
ing environment can be used to facilitate information 
processing, e.g., memory retrieving, by inducing tran- 
sitions between various dynamic network states, which 
will be a subject of future investigations. 
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Figure 3: Transition from periodic to chaotic states 
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(0 = B = 0.0907), whereas 0 alternates periodically 
between two values A = 0.0946 and B = 0.0907. 
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