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Noise Injection into Inputs in Sparsely Connected
Hopfield and Winner-Take-All Neural Networks

Lipo Wang

Abstract—In this paper, we show that noise injection into inputs inun-
supervised learningneural networks does not improvetheir performance as
it does in supervised learningneural networks. Specifically, we show that
training noise degrades the classification ability of a sparsely connected
version of the Hopfield neural network, whereas the performance of a
sparsely connected winner-take-all neural network does not depend on
the injected training noise.

I. INTRODUCTION

One of the most useful properties of artificial neural networks
(NN’s) is their ability to generalize; for instance, to classify patterns
that have not been presented during training. It has been established
recently that the performance ofsupervised learningNN’s can be
improved by introducing noise into the training patterns, which
is called noise injection. In the case of the back-propagation NN,
experimental evidences [1]–[6] appeared first in the literature, which
was followed by extensive theoretical analysis [7], [8]. Similar
conclusions have been reached for Hopfield-like recurrent NN’s that
use perceptron learning algorithms [9]–[12].

The work mentioned above relates tosupervised learningNN’s.
Will noise injection into unsupervised learningNN’s also have
a constructive impact on their performance? It is the purpose of
the present Correspondence to provide an answer to this question.
Specifically, we will study the effects of training noise on two
popular types of unsupervised learning NN’s: a sparsely connected
version [13] of the Hopfield NN [14] (Section II) and a sparsely
connected winner-take-all NN that we shall propose (Section III). We
will show that noise injection in these unsupervised learning NN’s
does not improve their performance as it does in supervised learning
NN’s. Thus noise injection should not be adopted when unsupervised
learning NN’s are used in practical applications.

II. NOISE INJECTION INTO INPUTS IN A

SPARSELY-CONNECTED HOPFIELD NEURAL NETWORK

The Hopfield NN [14] consists ofN binary neurons that are either
active or quiescent, i.e.,Si(t) = �1, whereSi(t) is the state of
neuroni at time t and i = 1; . . . ; N . Each neuron receives signals
from other neurons in the network, and the signals are affected by
synaptic weightsTij . The neuron then either fires if the total input
hi exceeds a threshold, or remains quiescent otherwise. The Hopfield
NN, though crude compared to biological neural systems, has been
widely studied and applied (e.g., [15]–[18]).

Specifically, the neurons update their states according to

Si(t+�t) = sign[hi(t)] (1)
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wheresign(x) = �1 for negativex and sign(x) = +1 for positive
x; and the total input signalhi for neuroni at time t is given by

hi(t) =

N

j=1

TijSj(t) + �i (2)

where�i represents the noise in neuronal signals due to probabilistic
releases of synaptic vesicles that account for the spontaneous firing of
a neuron [19]. We assume�i is Gaussian-distributed with an average
zero and a standard deviation�o.

The original Hopfield model is fully connected and the synapses
are formed in the spirit of Hebbian learning [20], anunsupervised
learning rule

T
H
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p

�=1

S
�
i S

�
j (3)

where ~S� is the�th stored pattern, andp is the number of patterns
stored. For our present investigation, we also assume that patterns
~S� are randomly generated.

In a sparsely connected version of the Hopfield NN [13], the
synapses are randomly cut off to model the asymmetric and sparse
connectivity in biological NN’s. We choose to study the sparsely
connected Hopfield NN here because it is possible to derive an
exact dynamical equation for the network’s evolution from its initial
condition, i.e., an analytical description on the dynamical response
of the network to an input pattern.

We generalize the Hebbian rule given by (3) to incorporate noise
in the training patterns (noise injection)

T
0

ij =
Cij

q1q2

q

� =1

q

� =1

p

�=1

S
��
i S

��
j (4)

where ~S�� and ~S�� are the noisy training patterns. Equation
(4) reduces to the original Hopfield prescription equation (3) if
~S�� = ~S�� = ~S� for all �, �1, and�2. The random numbersCij

assume1 with probabilityC=N and0 with probability (1� C=N),
wherec < N . Thus onlyC of N synapses remain for each neuron.
The noisy training patterns are

S
��
i = S

�
i + �

��
i ; a = 1; 2 (5)

where we assume that the difference between the noisy pattern and
the “clean” pattern, i.e.,���i , which may take values0;�2, is a
random number with a zero average and a standard deviation�a, i.e.,

�
��
i = 0 (6)

and

�
��
i � �

��
i

2

= �
��
i

2

= �
2

a (7)

wherea = 1; 2. For instance,�21 = 1 and�2 = 0 indicate that~S��

is the same as the corresponding clean pattern~S� and�21=4 = 25%
of the bits in ~S�� are randomly chosen and flipped, since each bit
flipped gives a(���i )

2
= 4. Thereafter we assume that�21 < 0:5

and�22 < 0:5 so that despite the noise in the training patterns,~S��

is more similar to~S�� than any ~S� � is to ~S�� for any set of
(�; �0; �00

) if � 6= �0. Thus the noisy training pattern form broadened
bands around the clean patterns~S�, with band gaps greater than
0:25N bits.
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We now derive and analyze the dynamical equation that describes
how the sparsely connected Hopfield NN evolves from its initial
condition, in other words, how the network responds to an input
pattern, after the network is trained with noisy patterns and is then
presented with an input for recognition. Let us evaluate the similarity
between the state of the network and a stored pattern~S�, that is, the
overlap or the normalized dot product

m
�
(t) =

1

N
~S
� � ~S(t) = 1

N

N

j=1

S
�
j Sj(t): (8)

Suppose the input pattern, which is represented by the initial state
of the network, is most similar to one of the stored pattern~S1, i.e.,
m1

(0) = maxfm�
(0) j � = 1; 2; . . . ; pg. Substituting (4) and (5)

into (2) and isolating the terms related to~S1, we obtain
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where
j

covers the remaining synapses after the random synaptic
disruption. The first term [13] in the right hand side of (9) represents
the signal, which drives the system toward the memory state~S1,
and the rest represents noise that interferes with this converging
process. Although the noise terms are random, the correlations among
them prevents us from getting an exact solution when the network is
fully connected. The disruption process eliminates correlations among
neurons and noise terms becomeindependentrandom variables [13].
Thus the sum of these terms are Gaussian-distributed whenN is
large, according to the central limit theorem.

The overlap between the state of the network and the attracting
pattern ~S1 at the next time stept + 1 can now be easily obtained
by substituting the updating (1) into the definition for overlap given
by (8). For parallel updating, i.e., when the states of all neurons are
updated simultaneously, the dynamics of the network is governed by

m(t+ 1) = erf[
m(t)p
2�

] (10)

wherem(t) is a statistical average of the overlapm1
(t). The total

standard deviation of the noise terms is
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which includes the effects of random synaptic disruption, interference
between the stored patterns, noise in the training patterns, and signal
transmission noise. In (10),erf(y) = (2=

p
�)

y

0
e�x dx is the

standard error function.
Starting from any initial condition(t = 0) the overlap thereafter

can be calculated from (10) iteratively. After a few iterations, the
network reaches equilibrium characterized by the “fixed point” of the
dynamical equation,m, or the “final overlap.” Fixed points of the
system can be obtained from (10) by lettingm(t+1) = m(t) = m,
as a function of the number of stored patternsp and the results are
given in Fig. 1 for various choices of training noise. For simplicity, in

Fig. 1. The average final overlapm (fixed points) as a function of the ratio
between the number of stored patternsp and the average number of synapses
per neuronC, according to dynamical equations (10)–(12) for the sparsely
connected Hopfield neural network. (a)�H = 0; (b) �2H = �2

1
= 0:25;

�2 = 0; and (c) �2H = 0:563.

Fig. 1 we neglect the background noise or the spontaneous neuronal
activities, i.e.,�o = 0. Fig. 1 shows that the final overlapm, which
measures the networks ability of converging to the correct memory
pattern, decreases as noise in training patterns�H increases, where

�
2

H � �21
q1

+
�22
q2

+
�21�

2

2

q1q2
(12)

measures the combined effects of the training noise. The performance
is best when�H vanishes, or both�1 and�2 vanish. The total noise
deviation is now simply written as� = p=C 1 + �2H , since
usually p � 1.

None-zero fixed points exist if� < �c � 2=�. In particular,
m = 1 for � = 0, andm decreases monotonously as� increases.
For � � �c; m = 0, so the network loses its ability to perform as a
classifier for� � �c. The maximum number of patterns that can be
stored in and retrieved from the system (the memory capacity of the
network),P , is obtained by letting� = 2=�

P =
2C

� 1 + �2H
; or

P

C
=

0:637

1 + �2H
: (13)

It is clear from (12) and (13) that in the absence of noise in
training patterns, i.e.,�21 = �22 = �2H = 0, the memory capacity
P reaches maximum, which is0:637C, and decreases monotonically
as �2H increases. For instance, if�21 = �22 = 0:25 andq1 = q2 = 1,
we have�2H = 0:563, the memory capacity is0:407C, according to
(13)—a 36% reduction. The basis of attraction of any non-negative
fixed point is always0 < m(t = 0) � 1, which is independent of
training noise�H .

III. N OISE INJECTION INTO A SPARSELY

CONNECTED WINNER-TAKE-ALL NEURAL NETWORK

In the section, we study another unsupervised NN-a NN that
uses competitive learning. Many authors have discussed competitive
learning [21]–[27]. For the present analysis we shall propose a new
sparsely connected winner-take-all NN instead of using an existing
competitive learning NN, since our sparsely connected winner-take-
all NN is easier to study analytically than others and yet it captures
the essence of competitive learning.
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Our sparsely connected winner-take-all NN consists ofp binary
neurons andN input nodes. Each neuron is connected to a randomly
chosen group ofC input nodes(C < N). Thus the total input to
neuron i is

hi(t) =
j

TijIj(t) (14)

whereIj denotes the signal at input nodej. Only the neuron with
the largest total input wins the competition and responds to the input
pattern. Equation (14) implies that the neuron whose synapses are
most similar to the input pattern wins the competition.

The synaptic updating algorithm for the present system is a
modified version of the algorithm first proposed by von der Malsburg
[22] and used in the Rumelhart–Zipser model [26]. At the�ith
modification of the synapses of neuroni, we let the synapses give
up some portion, i.e.,1=�i, of its weights and these weights are then
distributed among the synapses in proportion to the training input
pattern. Following Grossberg [28], we do not normalize the sum of
the synapses to 1. Hence the updated synapses are

Tij(�i) =
1

�i

�

� =1

Ijk(�
0)

= 1�
1

�i
Tij +

1

�i
Ijk(�) (15)

which implies that the synapse vector is anoverall average of
the contributing training patterns [29] and all contributing training
patterns—independent of the temporal order in which the training
patterns are presented—contributeequally to learning.

After the network is trained with the noisy patterns given by (5),
the synapses of neuron� are, according (15)

T�j = S
�
j + (q1 + q2)

�1

q +q

�=1

�
��
j + �

��
j : (16)

Thus the synapses of the participating neurons “cluster” around the
clean patternsf~S�g, the differences being Gaussian-distributed and
having standard deviations

�
2

D = �
2
=(q1 + q2): (17)

Since (q1 + q2) � 1 and we have assumed that�2 < 0:5, we
have�2D < 0:5. Thus the cluster exemplars stored in the synapses
differ from each other by at least 25% of theN bits and the present
sparsely connected winner-take-all NN ofp neurons can successfully
classifyp classes of randomly generated patterns after being trained
with noisy patterns. It is also clear from the above analysis that the
performance of the present system does not depend on noise injection
into the training inputs.

IV. SUMMARY AND CONCLUSION

In summary, effects of training noise on the performance of a
sparsely connected Hopfield NN and a sparsely connected winner-
take-all NN are discussed. By deriving and solving an exact dy-
namical equation, we show that the training noise degrades the
classification abilities of the sparsely connected Hopfield NN. We
have also proposed a simple sparsely connected winner-take-all NN.
By analytically calculating the synaptic efficacies after training with
noisy patterns, we show that the performance of the system does
not depend on the training noise. We thus conclude that noise
injection into the training inputs does not improve the performances
of unsupervised learningNN’s such as the typical ones presented
here, in contrast tosupervised learningNN’s.
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