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parallel computation. The neural network is greatly suitable for
implementation on a digital machine.
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Discrete-Time Convergence Theory and Updating Rules
for Neural Networks with Energy Functions

Lipo Wang

Abstract—We present convergence theorems for neural networks with
arbitrary energy functionsand discrete-time dynamicsfor both discrete
and continuous neuronal input–output functions. We discuss systematically
how the neuronal updating rule should be extracted once an energy
function is constructed for a given application, in order to guarantee the
descent and minimization of the energy function as the network updates.
We explain why the existing theory may lead to inaccurate results and
oscillatory behaviors in the convergence process. We also point out the
reason for and the side effects of using hysteresis neurons to suppress
these oscillatory behaviors.

I. INTRODUCTION

Since Hopfield and Tank [1] first applied their neural network to
the traveling salesman problem, neural networks have been shown
to provide powerful approaches for a wide variety of combinato-
rial optimization problems. In particular, Takefuji and coworkers
have obtained remarkable solutions for many practical optimization
problems using neural networks (e.g., [2] and [3]) and they found
discreteneurons computationally more efficient in comparison with
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continuousneurons. Furthermore,discrete-time dynamicsis usually
much easier to implement compared tocontinuous-time dynamics
which is described by differential equations. The basic idea behind
these applications is the following. An optimization problem is first
mapped onto a neural network in such a way that the network
configurations correspond to possible solutions to the problem. A
function of neuronal states, called the energy function, is constructed
and this energy function is proportional to the cost function of the
problem. The dynamics of the network is determined so that the
energy function (therefore the cost function) is minimized as the
neurons update.

Despite the large body of work in this area, the followingfunda-
mentalquestion has not been adequately answered: fordiscrete-time
dynamics, how the neuronal updating rule should be extracted once
an energy function is constructed for a given application, in order
to guarantee the descent and minimization of the energy function
as the network updates? Adequately answering this question is
clearly important from both theoretical and practical points of view,
since incorrect updating algorithms will lead to inaccurate results in
theoretical investigations and practical applications. As we will point
out below, the existing results are error-prone.

Let us first review the existing results. Consider a network of
N neurons. Suppose the output (or the state)Vi of neuron i at
time t + �t is determined by the inputUi to neuroni at time t;

through a nonincreasing input–output response function,Vi(t+�t) =

f(Ui(t)): Takefuji and Lee [2] showed that if the following updating
rule is used:

dUi=dt = �@E=@Vi (1)

then the energy functionE is a nonincreasingfunction of time

dE=dt � 0: (2)

It has been pointed out later [3], [4] that (2) holds for the updating rule
given by (1) only if the input–output functionf is alsocontinuous,
like the sigmoid function,Vi = (1+tanh(�Ui))=2 � g(�Ui); where
� is the gain of the input–output function. An example was given in
[4] to show that adiscrete input–output functionf may not guarantee
(2) if (1) is used as the updating rule.

Lee and Takefuji [3] considered two discrete input–output func-
tions: 1) the McCulloch–Pitts neuron

Vi(t+�t) =
1 if Ui(t)> 0

0 otherwise

and 2) the hysteresis McCulloch–Pitts neuron

Vi(t+�t) =

1 if Ui(t)> UTP (upper trip point)
Vi(t) if LTP � Ui(t) � UTP
0 if Ui(t)< LTP (lower trip point).

We regard the neuronal hysteresispositive (negative)if LTP � 0 �

UTP (if UTP � 0 � LTP), excluding UTP= LTP = 0. Lee and
Takefuji [3] proposed that if neurons are updated according to

�Ui=�t = ��Ei=�Vi (3)

where

�Vi(t) �Vi(t+�t)� Vi(t); and

�Ei(t) �E[V1(t); � � � ; (Vi(t) + �Vi(t)); � � � ; VN(t)]

� E[V1(t); � � � ; Vi(t); � � � ; VN(t)]
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then the energy functiondoes not increase

�Ei=�t � 0: (4)

Nevertheless Takefuji and coworkers have used (1) instead of (3) in
their applications of networks of discrete neurons (see, e.g., [2] and
[3]).

The drawbacks of the convergence theory and updating rules given
by (1)–(4) are summarized below and will be illustrated subsequently.
First, Lee and Takefuji [3] found undesirable oscillatory behaviors in
the convergence process, which can be suppressed by introducing
neuronal hysteresis [3], [5]; however, a convincing explanation for
these phenomena has not been provided and will be provided in
this paper. Second, the condition whethertime is continuous or
discrete was not explicitly spelled out. This formulation seems to
imply that time is continuous when the input–output function is
continuous [(1), (2)] and that time is discrete when the input–output
function is discrete [(3), (4)]. However, whether the input–output
function is discrete should beindependentof whether the time is
discrete. Third, the updating rule for discrete neurons given by (3)
provides�Ui instead ofUi itself and differs from Hopfield’s original
updating rule [6] in the case of binary Hopfield network. Equation
(3) is computationally inefficient, since a neuron may not be able to
update its state until it has accumulated enough input during several
evaluations of (3). Fourth, [4] suggests that (1) should be used when
the input–output function is continuous but the time is discrete. We
will show that this is incorrect for a large class of energy functions,
including the ones used in [1]–[4]. In the next section we present
updating rules and convergence theorems without these problems,
thereby firmly establishing the starting point for solving optimization
problems using discrete-time neural networks. Two examples and
discussions will be presented in Section III.

II. DISCRETE-TIME CONVERGENCE THEOREMS

Theorem 1 (discrete Input–Output Neuronal Response Functions):
For a network of neurons with regular McCulloch–Pitts or hysteresis
McCulloch–Pitts input–output functions, for any nonzero change of
state in any neuroni; i.e., �Vi 6= 0; the energy is guaranteed to
decrease

�Ei(t)< 0 (5)

if LTP � 0, UTP� 0, and the network is updated according to the
following rules.

1) The network is updatedasynchronously, that is, only one
neuroni is selected for updating at timet.

2) The input to neuroni is calculated as follows. Suppose a
“virtual” energy change�E0

i(t) is the result of a “virtual”
change of state�V 0

i (t) in neuron i at time t: The input to
neuroni at time t is

Ui(t) = �!�E
0
i(t)=�V

0
i (t) (6)

where!> 0 is the updating rate.

Proof: A change of state occurs if and only if one of the
following occurs:

1) Vi(t) = 1 and Ui(t)< LTP; thus Vi(t + �t) = 0 and
�Vi(t) = �1 or

2) Vi(t) = 0 and Ui(t)>UTP; thus Vi(t + �t) = 1 and
�Vi(t) = 1:

In both cases

Ui(t)�Vi(t)> 0: (7)

Thus (5) holds, according to (6) and (7). Q.E.D.

The energy and state changes in (6) are “virtual” for two reasons.
First, the input toeveryneuron can be calculated using these “virtual”
changesat any time, but only the change associated with the particular
neuron selected for updating may be realized. Second, only the state
changes thatdecreasethe energy may be realized during updating,
as shown in the above proof.

Corollary 1: The necessary and sufficient condition under which
(6) is equivalent to

Ui(t) = �!@E=@Vi (8)

is that one of the following holds.

1) The energy functionE(V1; V2; � � � ; VN) is in the form

�s T
(s)

fi i ���i gV
k

1
V

k

2
� � � V

k

N ; where k(s)i = 0 or 1,
for all neurons(i) and all interacting neuronal sets(s) or

2) There are no self-interactions in any neuron.

Proof: 1) means that the energy is a linear function ofVi; i =

1; 2; � � � ; N; thoughE may contain terms such asTijkViVjVk for
higher order interactions. In this case (6) and (8) are equivalent. Self-
interactions in neuroni correspond to energy terms that are nonlinear
in Vi: Hence 2) is equivalent to 1). Q.E.D.

Theorem 2 (continuous Input–Output Neuronal Response Func-
tions): For a network of neurons with continuous input–output
neuronal response functions, for any change of state in any neuroni;

the energy is guaranteed todecrease(5), if f is a monotonously
increasing function and the network is updated according to the
following rules.

1) The network is updatedasynchronouslyand
2) If the following equations have nonzero solutions for�Vi and

�Ui

Vi +�Vi = f(Ui +�Ui); (9a)

�Ui(t) =�!�Ei(t)=�Vi(t) (9b)

the state of neuroni is updated; it remains unchanged other-
wise.

Proof: Becausef is a continuous and monotonously increasing
function, for any�Vi 6= 0; we have, instead of (7)

�Ui(t)�Vi(t)> 0: (10)

Thus (5) holds according to (9b) and (10). Q.E.D.
Despite the resemblance between our (9b) and Takefuji and Lee’s

(3) [3], they are quite different: (9b) is forcontinuous input–output
functions only, whereas (3) is forbinary input–output functions only.

Corollary 2: The necessary and sufficient condition under which
(9a) and (9b) are equivalent to

�Ui(t) = �!@E=@Vi (11)

is that one of the two conditions in Corollary 1 holds.
Proof: (Similar to the proof of Corollary 1—omitted) In this

case, there is no need to solve (9a) and (9b), since (9b) no longer
depends on�Vi:

III. EXAMPLES AND DISCUSSIONS

First, we consider the well-known energy function [6], which
satisfies the conditions in Corollaries 1 and 2

Eh(t) � �

i;j

TijVi(t)Vj(t)=2 (12)

whereTij = Tji and Tii = 0:

In the case ofdiscrete neurons, the updating rule should be,
according to Theorem 1 (6) or Corollary 1 (8)

Ui(t) = !

j 6=i

TijVj(t) (13)
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which is the original Hopfield formula [6] if we choose! = 1: In
contrast, the formulation of Lee and Takefuji (3) gives an inefficient
result:�Ui(t) = �j 6=i TijVj(t):

In the case ofcontinuoussigmoid neurons with an energy function
given by (12), will Eh(t) monotonously decrease as the network
updates asynchronously according to (13) iftime is discrete? The
answer is negative. For instance, consider a network of this type with
two neurons connected by symmetric weightsT12 = T21 = T > 0

and T11 = T22 = 0: At t = 0; let V1 = V2 = v; where v

satisfiesg(�Tv)<v< 1 (If g(�Tvo) = vo has a positive solution,
let vo<v< 1: Otherwise let0<v< 1:) Suppose neuron 1 is selected
to update at the next time stept = 1; U1 = Tv according to
(13), V1(1) = g(�Tv)<v; and V2(1) = v (not updated). Thus
Eh(1) = �Tvg(�Tv)>Eh(0) = �Tv

2: In fact, if (13) is used in
the case of a continuous input–output function, a different function
is minimized [7]–[9] and this function may deviate signifcantly from
(12) for a low gain (small�) [7].

How should the neurons be updated if an optimization application
requires that the energy function given by (12) must be minimized in
the case of continuous neuronal response function and discrete-time
dynamics? According to our Theorem 2 (9b) or Corollary 2 (11), we
should adopt�Ui(t) = !�j 6=i TijVj(t); instead of (13). For the
two-neuron network considered above,�U1 = !Tv andU1(1) =
U1(0) + �U1 >U1(0): HenceV1(1) = g(�U1(1))>g(�U1(0)) =

V1(0) and Eh(1)<Eh(0); for any !> 0: If ! � 1; V1(1) =

V2(2) = 1; Eh(2) = �T; i.e., the system rapidly reaches the energy
minimum. There is no need to solve (9a) and (9b) in this case.

Now let us consider the energy function used in [4], which includes
neuronal self-interaction terms and therefore does not satisfy the
conditions in Corollaries 1 and 2

E(t) � 2[V1(t)� 1]
2

+ 2[V2(t)� 1]
2

+ V1(t)V2(t):

In the case of binary neurons, Tateishi and Tamura [4] showed
that Takefuji and Lee’s (1) does not guarantee the descent of this
energy function. However, Tateishi and Tamura [4] did not provide
any updating algorithm that always decreases the energy and they
expected that (1) would guarantee the decrease if continuous sigmoid
neurons are used instead of binary neurons. This isfalse, as we will
now show. In the case of continuous neurons, the sole minimum of
this energy functionEmin = 0:8 is at V1 = V2 = 0:8: Suppose at
t = 0; the network is atV1 = 0:8; V2 = 0:7; andE = 0:82: It is
straightforward to verify the following. For a large gain�; the energy
increases toE = 0:88 if (1) is used to update neuron 2 toV2 = 1: In
contrast, the solutions of our (9a) and (9b) do give reduced energy. In
the case of binary neurons, our (6) must be used as the updating rule
to guarantee energy minimization for this type of energy function.

Energy functions that includeV 2

i terms account for a large number
of energy functions used in optimization problems (e.g., [1]–[3])
and these terms correspond tonegativeneuronal self-interactions.
We attribute the undesirable oscillatory behaviors in the convergence
process found by Takefuji and coworkers (e.g., [2] and [3]) to the
fact that they have used (1) as their updating rules, which can
lead to increases in energy when the conditions in Corollaries 1
and 2 are not satisfied, as shown in the second example. Neuronal
hysteresis is equivalent to apositive neuronal self-interaction [5],
can thus suppress these oscillatory behaviors. However, introduction
of hysteresis effectively changes the energy function and may lead
to different outcomes. Hence, to efficiently obtain accurate results
in optimization problems, one should use thecorrect updating rules
presented in this paper. Practical applications of the present results
are the subject of future work.
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