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parallel computation. The neural network is greatly suitable faontinuousneurons. Furthermoraliscrete-time dynamics usually

implementation on a digital machine. much easier to implement compared d¢ontinuous-time dynamics
which is described by differential equations. The basic idea behind
REFERENCES these applications is the following. An optimization problem is first

) . o mapped onto a neural network in such a way that the network
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dU;/dt = —QE IV 1)
then the energy functio&’ is a nonincreasingfunction of time

dE/dt < 0. )
Discrete-Time Convergence Theory and Updating Rules

for Neural Networks with Energy Functions It has been pointed out later [3], [4] that (2) holds for the updating rule

given by (1) only if the input—output functioff is alsocontinuous
Lipo Wang like the sigmoid functionV; = (1+tanh(AU;))/2 = g(AU;), where
A is the gain of the input—output function. An example was given in
[4] to show that aiscrete input—output functiofi may not guarantee
Abstract—We present convergence theorems for neural networks with (2) if (1) is used as the updating rule.

arbitrary energy functionsand discrete-time dynamicdor both discrete Lee and Takefuiji [3] considered two discrete input—output func-
and continuous neuronal input—output functionsWe discuss systematically tions: 1) the McCulloch—Pitts neuron

how the neuronal updating rule should be extracted once an energy

function is constructed for a given application, in order to guarantee the . , _ 1 ifU(t)>0

descent and minimization of the energy function as the network updates. Vi(t+ At) = { 0 otherWise

We explain why the existing theory may lead to inaccurate results and

oscillatory behaviors in the convergence process. We also point out the and 2) the hysteresis McCulloch—Pitts neuron

reason for and the side effects of using hysteresis neurons to suppress

these oscillatory behaviors. 1 if U;(t)> UTP (upper trip point)

Vi(t+ At) = { Vi(t) if LTP < Ui(t) < UTP

I. INTRODUCTION 0 if U;(t)< LTP (lower trip point).

Since Hopfield and Tank [1] first applied their neural network tdVe regard the neuronal hysterepissitive (negative)f LTP < 0 <
the traveling salesman problem, neural networks have been shdWhP (if UTP < 0 < LTP), excluding UTP= LTP = 0. Lee and
to provide powerful approaches for a wide variety of combinatoFakefuiji [3] proposed that if neurons are updated according to
rial optimization problems. In particular, Takefuji and coworkers
have obtained remarkable solutions for many practical optimization
problems using neural networks (e.g., [2] and [3]) and they fou%lhere
discreteneurons computationally more efficient in comparison with

AU /At = —AE; /AV; 3)

. ) . AVi(t) =Vi(t + At) — Vi(t), and
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then the energy functiodoes not increase The energy and state changes in (6) are “virtual” for two reasons.
AL JAE <0 4 First, the input teeveryneuron can be calculated using these “virtual”
AE:/At £ 0. “) changest any time but only the change associated with the particular

Nevertheless Takefuji and coworkers have used (1) instead of (3)fauron selected for updating may be realized. Second, only the state

their applications of networks of discrete neurons (see, e.g., [2] af@nges thatlecreasethe energy may be realized during updating,

13]). as shown in the above proof.

The drawbacks of the convergence theory and updating rules giverq:prollary 1: The necessary and sufficient condition under which
by (1)~(4) are summarized below and will be illustrated subsequentf§) iS equivalent to
First, Lee and Takefuji [3] found undesirable oscillatory behaviors in U;(t) = —wdE/dV; 8)
the convergence process, which can be suppressed by introducin
neuronal hysteresis [3], [5]; however, a convincing explanation 16
these phenomena has not been provided and will be provided int) The energy fungionligﬂ,Vz,(-s->-,V\r) is in the form
this paper. Second, the condition whethéne is continuous or Y. T{(f); vy ...VCN . where 2 = 0 or 1,
discrete was not explicitly spelled out. This formulation seems to  or all ﬁézuroﬁs(i) and all interacting neuronal sets) or
imply that time is continuous when the input-output function is 2) There are no self-interactions in any neuron.
contipuogs [(;), (2)] and that time is discrete when the'input—output Proof: 1) means that the energy is a linear functiontofi =
funct!on is d_lscrete [(3), (4)]._ However, whether the |npl_Jt—ogtpLit’2’___7N7 though E may contain terms such &&;V:V;Vi for
function is discrete should bdependenbf whether the time IS igper order interactions. In this case (6) and (8) are equivalent. Self-

discr.ete. Tr]ir_d, the upd:";tt_ing rule for discrete neurons give_n_by (fﬂteractions in neuroh correspond to energy terms that are nonlinear
providesAU; instead ofU; itself and differs from Hopfield's original in V. Hence 2) is equivalent to 1) QED

upd‘ating rule [6,3] in thg case of bi.nary Hopfield network. Equation Theorem 2 (continuous Input—Output Neuronal Response Func-
(3) is computationally inefficient, since a neuron may not be able fﬁ)ns): For a network of neurons with continuous input—output

update _its state until it has accumulated enough input during severa|, - response functions, for any change of state in any néuron
evaluations of (3). Fourth, [4] suggests that (1) should be used w energy is guaranteed tiecrease(5), if f is a monotonously

the input—output function is continuous but the time is discrete. VYﬁcreasing function and the network is updated according to the
will show that this is incorrect for a large class of energy f“nCtion?ollowing rules

including the ones used in [1]-[4]. In the next section we present .

updating rules and convergence theorems without these problems;) mﬁ nftl\;vork IS upda;_tedsyhnchronouslpnd lutions foF”. and

thereby firmly establishing the starting point for solving optimization ) AUe oflowing equations have nonzero solutions o an

problems using discrete-time neural networks. Two examples and ~°

discussions will be presented in Section III. Vi+ AV, = f(U: + AU;), (9a)
AUi(t) = —wAE; (1) /AV;(t) (9b)

the state of neuron is updated; it remains unchanged other-
Theorem 1 (discrete Input—Output Neuronal Response Functions):  wise.

For a network of neurons with regular McCulloch—Pitts or hysteresis  prgq- Becausef is a continuous and monotonously increasing

McCulloch—Pitts input—output functions, for any nonzero change ﬂjnction, for anyAV; # 0, we have, instead of (7)

state in any neuron, i.e., AV; # 0, the energy is guaranteed to Atf-(t)Ai/’v (£)>0 (10)

decrease
Thus (5) holds according to (9b) and (10). Q.E.D.
Despite the resemblance between our (9b) and Takefuji and Lee’s
if LTP < 0, UTP > 0, and the network is updated according to th€3) [3], they are quite different: (9b) is farontinuous input-output
following rules. functions only whereas (3) is fobinary input—output functions only
1) The network is updatedsynchronously that is, only one Corollary 2: The necessary and sufficient condition under which
neuron: is selected for updating at time (92) and (9b) are equivalent to
2) The input to neuron is calculated as follows. Suppose a AU;i(t) = —wdE/0V; (11)
“virtual” energy changeAFE!(t) is the result of a “virtual”
change of state\V;(¢) in neuron: at time ¢. The input to
neuroni at timet is

(l]nat one of the following holds.

Il. DISCRETETIME CONVERGENCE THEOREMS

AE(H) <0 ®)

is that one of the two conditions in Corollary 1 holds.

Proof: (Similar to the proof of Corollary 1—omitted) In this
case, there is no need to solve (9a) and (9b), since (9b) no longer
U;(t) = —wAE;(t)/AV] (1) (6) depends omAV;.

wherew > 0 is the updating rate. m

Proof: A change of state occurs if and only if one of the
following occurs:

1) Vi(t) = 1 and Ui(t) <LTP, thus Vi(t + At) = 0 and

. EXAMPLES AND DISCUSSIONS

First, we consider the well-known energy function [6], which
satisfies the conditions in Corollaries 1 and 2

AVA() = —1 o En(t)= =Y Ty Vi(t)V;(1)/2 12
2) Vi(t) = 0 and U;(t) >UTP, thus V;(t + At) = 1 and h
Ali(t) = 1. whereT;; = T}, andT;; = 0.

In the case ofdiscrete neurons, the updating rule should be,
according to Theorem 1 (6) or Corollary 1 (8)
Ui(t) =w Yy T Vi(h) (13)
Thus (5) holds, according to (6) and (7). Q.E.D. 77

In both cases

Ui()AV;(t) > 0. 7
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which is the original Hopfield formula [6] if we choose = 1. In
contrast, the formulation of Lee and Takefuji (3) gives an inefficient
result: AU; (f) = X% T;;V;(t).
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In the case otontinuoussigmoid neurons with an energy functionsuggestions.

given by (12), will E,(¢) monotonously decrease as the network
updates asynchronously according to (13}iffe is discretg8 The
answer is negative. For instance, consider a network of this type with
two neurons connected by symmetric weiglits = 751 = T >0 1]
andTy; = Toe = 0. At ¢t = 0, let V; = Vo, = v, wherew
satisfiesg(ATv) <v < 1 (If g(ATwv,) = v, has a positive solution, [2]
letv, < v < 1. Otherwise let) < v < 1.) Suppose neuron 1 is selected
to update at the next time step= 1,U; Twv according to
(13), Vi(1) = g(ATwv)<w, and V(1) = v (not updated). Thus
E,(1) = =Tvg(A\Tv) > E;,(0) = —=Tv*. In fact, if (13) is used in
the case of a continuous input—output function, a different function?l
is minimized [7]-[9] and this function may deviate signifcantly from
(12) for a low gain (small\) [7].

How should the neurons be updated if an optimization applicatiof]
requires that the energy function given by (12) must be minimized in
the case of continuous neuronal response function and discrete-tirfgi
dynamics? According to our Theorem 2 (9b) or Corollary 2 (11), we
should adoptAU;(t) = wX;» T;;V;(t), instead of (13). For the
two-neuron network considered abow®{’; = wT'v andU;(1) =
U1(0) + AU; > U1(0). HenceVi(1) = g(AU1(1)) > g(AUL(0)) =
Vi(0) and E,(1) < Exr(0), for any w>0. If w > 1,Vi(1) =
V2(2) =1, E,(2) = —T, i.e., the system rapidly reaches the energy
minimum. There is no need to solve (9a) and (9b) in this case.

Now let us consider the energy function used in [4], which included®]
neuronal self-interaction terms and therefore does not satisfy the
conditions in Corollaries 1 and 2

(3]

(7]

(8]

E(t) = 2[Vi(t) — 11> + 2[Va(t) — 1> + Vi(£)Va(t).

In the case of binary neurons, Tateishi and Tamura [4] showed
that Takefuji and Lee’s (1) does not guarantee the descent of this
energy function. However, Tateishi and Tamura [4] did not provide
any updating algorithm that always decreases the energy and they
expected that (1) would guarantee the decrease if continuous sigmoid
neurons are used instead of binary neurons. Thialsg as we will
now show. In the case of continuous neurons, the sole minimum of
this energy functionF,,,;, = 0.8 is atV; = V5 = 0.8. Suppose at
t = 0, the network is att; = 0.8,V. = 0.7, and E = 0.82. It is
straightforward to verify the following. For a large gainthe energy
increases t& = 0.88 if (1) is used to update neuron 216 = 1. In
contrast, the solutions of our (9a) and (9b) do give reduced energy. In
the case of binary neurons, our (6) must be used as the updating rule
to guarantee energy minimization for this type of energy function.
Energy functions that includg? terms account for a large number
of energy functions used in optimization problems (e.g., [1]-[3])
and these terms correspond egative neuronal self-interactions.
We attribute the undesirable oscillatory behaviors in the convergence
process found by Takefuji and coworkers (e.g., [2] and [3]) to the
fact that they have used (1) as their updating rules, which can
lead to increases in energy when the conditions in Corollaries 1
and 2 are not satisfied, as shown in the second example. Neuronal
hysteresis is equivalent to positive neuronal self-interaction [5],
can thus suppress these oscillatory behaviors. However, introduction
of hysteresis effectively changes the energy function and may lead
to different outcomes. Hence, to efficiently obtain accurate results
in optimization problems, one should use ttw@rect updating rules
presented in this paper. Practical applications of the present results
are the subject of future work.
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