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C. Case C:L-Order Filter with Arbitrary Intermediate Power Levels

Consider now� has diagonal elements which can take on arbitrary
power levels such thatf�1 � �2 � � � � � �L�1 � �Lg: It follows
from (13) that

�i

�i
=

1

0

d�

(1 + 2��i) j(III + 2��)j
(28)

where j � j is determinant operator. It can be easily shown that
�1 � �2 � � � � � �L; and the condition number of� is always
no greater than that of�
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�L
)

�1

�L
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�1

�L
) C(�) � C(�): (29)

In addition to this bound, a conjecture is also given which sets bounds
on the condition number of�: By fixing only the maximum and
minimum unnormalized eigenvalues while allowing the intermediate
eigenvalues to take on arbitrary values, this conjecture states that

C(�)f� =� ���=� �� g

� C(�)f� �� ����� �� g

� C(�)f� =� ���=� �� (30)

where the upper and lower bounds are the condition numbers defined
in the previous case. This conjecture has also been verified with exten-
sive computer simulations, which leads to an important observation:
given the same condition number of the LMS adaptation, the NLMS
algorithm can potentially converge much faster when the majority
of intermediate eigenvalues contain low power values. It should
be remembered that these interpretations are based onzero-mean
Gaussian distribution of input samples.

III. REMARKS

This paper has presented new interpretation on the relative con-
vergence rate performance of the NLMS adaptation to that of the
LMS algorithm, under the assumption that the input samples are
zero-mean Gaussian distributed. To apply these results for analyzing
existing neural models, the effect of sample bias remains an important
subject to be studied although simulation results suggest that the
improvement in convergence rate reduces as the bias increases and the
normalization term has less mean-squared fluctuation. The difference
in the convergence rate between the LMS and NLMS algorithms is
more pronounced for a smaller filter length and larger LMS condition
number. This paper has not studied the steady state convergence
performance both in mean and mean-squared cases although these
important aspects have been considered rigorously in [2] and [9].
However, in their work, the excessive mean-squared output error
was evaluated with respect to the unnormalized Wiener solution,
rather than the normalized one given in (8). It seems intuitive that the
misadjustment based on the minimum mean-squared solution would
yield a larger value as compared to that in the LMS case, without
regard to the fairness of such comparison.

REFERENCES

[1] P. E. An, M. Brown, and C. J. Harris, “A global gradient noise
covariance expression for stationary real Gaussian inputs,”IEEE Trans.
Neural Networks, vol. 6, pp. 1549–1551, Nov. 1995.

[2] N. Bershad, “Analysis of the normalized LMS algorithm with Gaussian
inputs,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34,
pp. 793–806, 1986.

[3] M. Brown and C. J. Harris,NeuroFuzzy Adaptive Modeling and Control,
Hemel Hempstead. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[4] S. Haykin, Adaptive Filter Theory, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1991.

[5] S. Kaczmarz, “Angenaherte Aufl¨osung von Systemen Linearer Gle-
ichugen,”Bull. Int. Acad. Pol. Sci. Lett., pp. 355–357, 1937 (in German).

[6] J. I. Nagumo and A. Noda, “A learning method for system identifica-
tion,” IEEE Trans. Automat. Contr., vol. AC-12, pp. 282–287, 1967.

[7] D. T. M. Slock, “On the convergence behavior of the LMS and the
normalized LMS algorithms,”IEEE Trans. Signal Processing, vol. 41,
pp. 2811–2825, 1993.

[8] M. R. Spiegel, Mathematical Handbook, Schaum’s Outline Series.
New York: McGraw-Hill, 1991.

[9] M. Tarrab and A. Feuer, “Convergence and performance analysis of
the normalized LMS algorithm with uncorrelated Gaussian data,”IEEE
Trans. Inform. Theory, vol. IT-34, pp. 680–691, 1988.

[10] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks:
Perceptron, Madaline, and backpropagation,”Proc. IEEE, vol. 78, no.
9, pp. 1415–1441, 1990.

On Competitive Learning

Lipo Wang

Abstract—We derive learning rates such that all training patterns are
equally important statistically and the learning outcome is independent
of the order in which training patterns are presented, if the competitive
neurons win the same sets of training patterns regardless the order
of presentation. We show that under these schemes, the learning rules
in the two different weight normalization approaches, i.e., the length-
constraint and the sum-constraint, yield practically the same results,
if the competitive neurons win the same sets of training patterns with
both constraints. These theoretical results are illustrated with computer
simulations.

I. INTRODUCTION

Competitive learning has been widely studied and applied [1].
Remarkable artificial neural-network models developed using com-
petitive learning include, for example, the von der Malsburg model
[2], the adaptive resonance theory (ART) [3], the self-organizing map
[4], the neocognitron [5], and the counterpropagation network ([1, p.
147]). Let us consider a simple competitive learning network [6]
consisting of a layer ofNn competitiveneuronsand a layer ofN
inputnodes,N being the dimension of input patterns. Suppose neuron
k receives inputs from an input pattern~x through a set of synaptic
weights ~wk connecting neuronk with all input nodes

hk =

N

j=1

wkjxj

= ~wk � ~x

= j~wkj � j~xj cos �k; (1)

where �k is the angle between the weight vector~wk and the
input pattern~x. Suppose neuroni has the largest total input, i.e.,
hi = max fhk; 1 � k � Nng. Neuroni wins the competition and
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becomes the sole neuron responding to the input pattern~x in winner-
take-all competitive learning. According to (1), if all weight vectors
are normalized to have the same length

j~wkj2 =
N

j=1

w
2

kj

=L
2
; for all k (2)

it is the neuron whose weight vector is the most similar to the input
pattern that wins the competition. During training, the winning neuron
adjusts its weight vector to become more similar to the input pattern
and this weight vector should then be renormalized

~wi(�i) =
~wi(�i � 1) + �(�i)~xi(�i)

j~wi(�i � 1) + �(�i)~xi(�i)j
� L (3)

where�i � 1 is the number of times neuroni has modified its weights
including the current update and�(�i) is the learning rate at that time.

Prior to the existence of thelength-constraint(2), von der Malsburg
[2] proposed the followingsum-constraintas a way to prevent
unlimited growth of the synaptic weights (see also, e.g., [3], [6],
and [7])

N

j=1

wkj = S; for all k: (4)

The equivalence between the sum-constraint and the length-constraint
is only approximate; however, the sum-constraint is believed to
be biologically more plausible and is computationally simpler in
comparison with the length-constraint. The sum-constraint (4) is
automatically satisfied during weight adaptations if all training vectors
are normalized according to the sum-constraint and

~wi(�i) = [1� �(�i)] ~wi(�i � 1) + �(�i)~x(�i): (5)

Recent work [8], [9] has criticized that the sum-constraint may not
be a good approximation of the length-constraint and may lead to
undesirable grouping of training patterns during learning [8].

Let us iterate (3) toward an earlier time step as shown in (6) at the
bottom of the page. We observe from (6) that in general, exchanging
~xi(�i) with ~xi(�i � 1) will yield a different ~wi(�i), because the
coefficients of~xi(�i) and~xi(�i � 1) may not be the same. Hence,
the effect of each training pattern on the synaptic weights of the
network, and therefore, the final outcome of learning, depends on
the order in which the training patterns are presented, even if the
competitive neurons win the same sets of training patterns regardless
the order of presentation. In fact, if the learning rate� does not
vary with time and is between zero and one [6], [8], (6) shows that
the training pattern presented later~xi(�i) carries a larger statistical
weight compared with the training pattern presented earlier~xi(�i�1),
because~wi(�i�2) is usuallyvery similar to~xi(�i�1) and therefore,
L�1j~wi(�i � 2) + �(�i � 1)~xi(�i � 1)j > L�1j~wi(�i � 2)j = 1.
This effect may provide a “forgetting” mechanism for some on-
line systems; however, it may not be desirable in other practical
applications.

The condition under which the training outcome isindependentof
the order of training presentation and each training pattern has the
same statistical importance can be readily obtained from (6)

�(�i) =
�(�i � 1)L

j~wi(�i � 2) + �(�i � 1)~xi(�i � 1)j : (7)

With (7) fulfilled for all �i and if the competitive neurons win the
same sets of training patterns regardless the order of presentation,
the weight vector under the length-constraint becomes a sum of all
contributing training vectors, apart from a multiplicative constant and
the weight initialization

~wi(�i) =

~wi(0) + �(1)

�

� =1

~x(� 0)

~wi(0) + �(1)

�

� =1

~x(� 0)

� L: (8)

Similar conclusions may be drawn for the sum-constraint, that is,
the statistical importance of each training pattern again depend on
the order in which training patterns are presented, and the following
learning rate assures equal statistical importance of all training
patterns and independence of presentation order in the case of the
sum-constraint

�(�i) =
�(�i � 1)

1 + �(�i � 1)

=
�(�i � 2)

1 + 2�(�i � 2)
= � � � = �(1)

1 + (�i � 1)�(1)
(9)

if the competitive neurons win the same sets of training patterns
regardless the order of presentation. Then the weight vector under
the sum-constraint again becomes a sum of all contributing train-
ing vectors, apart from a multiplicative constant and the weight
initialization

~wi(�i) =
1� �(1)

1 + (�i � 1)�(1)
~wi(0)

+
�(1)

1 + (�i � 1)�(1)

�

� =1

~x(�
0

): (10)

Thus, if we select learning rates according to (7) under the length-
constraint or (9) under the sum-constraint and if the competitive
neurons win the same sets of training patterns with both constraints,
the end results of learning are practically the same in both cases: a
sum of all contributing training patterns [(8) and (10)].

If we choose�(1) = 1, the learning rates given (9) are simply
�(�i) = 1=�i, and the final weight vector does not depend on
the weight initialization ~wi(0) and becomes anoverall average
of the contributing training patterns, according to (10),~wi(�i) =

(1=�i)
�

� =1
~x(� 0). The results in this special case are the same as

those derived by Wu and Fallside [10] for optimal vector quantization.
Furthermore, Mulier and Cherkassky [11] have proposed learning
rates which lead to equal weighting to all training patterns, for a
system with neighborhood updates such as the self-organizing map.

The following simple computer experiments have been carried out
to illustrate the above theoretical results. Ten images (11� 11 pixels
in size) shown in Fig. 1 were created as training patterns. Each
black pixel in Fig. 1 represents a value 1.0 and each white pixel
represents a value�1.0. Each pattern has 57 black pixels and 64
white pixels. These patterns satisfy both the sum-constraint [(4) with
S = 57�64 = �7] and the length-constraint [(2) withL =

p
121 =

11]. Three presentation sequences of the training patterns were used:
s1 � ft0t1t2t3t4x0x1x2x3x4g, s2 � fx4t1t4x0t3x1t2x2t0x3g, and
s3 � ft2x3x4t0t4x0x1t3x2t1g. Four learning paradigms were used:
1) length-constraint (3) with a constant learning rate 0.5; 2) sum-
constraint (5) with a constant learning rate 0.5; 3) length-constraint

~wi(�i) =
~wi(�i � 2) + �(�i � 1)~xi(�i � 1) + L�1j~wi(�i � 2) + �(�i � 1)~xi(�i � 1)j�(�i)~xi(�i)
j~wi(�i � 2) + �(�i � 1)~xi(�i � 1) + L�1j~wi(�i � 2) + �(�i � 1)~xi(�i � 1)j�(�i)~xi(�i)j

� L: (6)
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Fig. 1. Training patterns (11� 11 pixels in size).

with learning rate given by (7) and�(1) = 1:0; and 4) sum-constraint
with learning rate given by (9) and�(1) = 1:0. For each learning
paradigm and each training sequence, we used a network of 11� 11
input nodes and ten competitive neurons. Before training, we set 57
randomly selected synapses of each neuron to 1.0 and set the other 64
synapses to�1.0, thus both the sum- and the length-constraints were
satisfied by the synapses. After training, the synapses of theupdated
neurons were displayed in Fig. 2. Three types of pixels (black if
value is above 0.33, gray if between�0.33 and 0.33, white if below
�0.33) are sufficient to illustrate the differences between the learning
paradigms. The two assumptions under which our two claims are
made were true in every case: one of the neurons won for patterns
t0, t1, t2, t3, and t4, whereas, another neuron won for patternsx0,
x1, x2, x3, andx4, although which the two winning neurons were
depended on the training sequence used (e.g., with all four paradigms,
the first neuron won thet’s and the ninth neuron won thex’s for
sequences1, whereas, the fifth neuron won thet’s and the fourth
neuron won thex’s for sequences2, and so on). Fig. 2 illustrates the
two theoretical results under the assumptions: with the learning rates
given by (7) and (9), the training outcome does not depends on the
order in which the training patterns are presented, and the sum- and
length-constraints lead to practically the same results [Fig. 2(c) and
(d)]; however, with other learning rates, training results may vary
significantly with the presentation order of training patterns or the
type of weight normalization [Fig. 2(a) and (b)]. To clearly illustrate
our theoretical results, we have generated the training patterns shown
in Fig. 1 in such a way that the clusters in the training vectors are
obvious.

It is worth noting that there are other ways of weighting the training
vectors, in addition to equal weighting. For example, Andrew and
Palaniswami [12] have shown that for a vector quantizer, slightly
less weight should be given to the first few training patterns. Bauer
et al. [13] have recently demonstrated that by adjusting the learning
rates appropriately, the final distribution of the exemplars may be
altered to model the input probability distribution function raised to
an arbitrary power.

II. CONCLUSION

In summary, we have derived learning rates in competitive learning
such that all training patterns have equal statistical importance and the
final outcome of learning does not depend on the order in which the
training patterns are presented, if the competitive neurons win the
same sets of training patterns regardless the order of presentation.
We have proven that once these learning rates are used, practically
the same results are obtained with competitive learning algorithms
based on the weight length- and sum-constraints, if the competitive
neurons win the same sets of training patterns with both constraints.
These theoretic results are demonstrated with some simple computer
experiments. To what extend these assumptions may be relaxed and

(a) (b) (c) (d)

Fig. 2. Synapses of the winning neurons after training. Three presen-
tation sequences of the training patterns shown in Fig. 1 were used:
s1 � ft0t1t2t3t4x0x1x2x3x4g, s2 � fx4t1t4x0t3x1t2x2t0x3g, and
s3 � ft2x3x4t0t4x0x1t3x2t1g. Four learning paradigms were used: (a)
length-constraint 3 with a constant learning rate 0.5, (b) sum-constraint 5
with a constant learning rate 0.5, (c) length-constraint with learning rates
given by (7) and�(1) = 1:0, and (d) sum-constraint with learning rates
given by (9) and�(1) = 1:0.

applications of these learning rates to practical data will be the subject
of future studies.
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Comments on “A Training Rule which Guarantees
Finite-Region Stability for a Class of Closed-Loop

Neural-Network Control Systems”

Sangbong Park and Cheol Hoon Park

Abstract—In this letter, we show that the proof of Proposition 1 and
the proposed stability condition as training constraints are not correct
and therefore that the stability of the neural-network control system is
not quite right. We suggest a modified version of the proposition with its
proof and comment on another problem of the paper.

I. INTRODUCTION

In the above paper,1 a training method for a neural-network control
system which guarantees local closed-loop stability is proposed based
on a Lyapunov function and a modified standard backpropagation
(SBP) training rule. Proposition 1 of the paper is as follows.

Proposition 1: The equilibrium state of the control system con-
sisting of the system with neural-network controller is stable if there
exists a real (n � n) positive symmetric definite matrixPPP , a real
(n � p) matrix q, and a real (p � p) matrix � such that

A
T
PA � P = � qq

T
�Q (7a)

A
T
PBW2 + (W1)

T
= � q�

T (7b)

and

��
T
+W

T

2 B
T
PBW2 =2I (7c)

whereQ is a real (n � n) positive symmetric matrix andI is the
identity matrix of dimensionp.

Furthermore,

V = x(k)
T
Px(k) (8)

is a discrete Lyapunov function for the control system.
In order to prove the Proposition 1, the authors use the Lyapunov

candidate (8), and for allk � 0, after assuming the existence ofP ,
q, and�, which satisfy (7). They obtain the rate of decrease ofV

as follows:

�dV =V (k)� V (k + 1)

=x(k)
T
Px(k)� x(k + 1)

T
Px(k + 1):

The proof of the proposition in the above paper showed stability
of the neural-network control system by proving the existence of a
Lyapunov function which satisfies the Lyapunov stability for existing
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weights. However, from (7) in Proposition 1, since the matrixP is
highly dependent on weight matricesW1 andW2 and each weight
matrix is iteratively obtained at each time step, the matrixP itself
should be a function of time. The matrixP and otherQ, q, � at time
k are not the same with ones at timek+1. Therefore, the derivation
of a Lyapunov candidate function and its proof are not right.

With the following modification, we prove the proposition.
The equilibrium state of the control system with neural-network

controller is stable if there exist a real (n� p) matrix q(k), a (p� p)
matrix �(k), and an (n � n) positive definite symmetric bounded
matrix P (k), that is, 0 < c1I � P (k) � c2I for all k � 0 [1]
such that

A
T
P (k + 1)A� P (k)

= �q(k+ 1)q(k+ 1)

A
T
P (k + 1)BW2(k+ 1) +W1(k + 1)

T

= �q(k+ 1)�(k+ 1)
T

�(k+ 1)�(k+ 1)
T
+W2(k + 1)

T
B
T
P (k + 1)BW2(k+ 1)

= 2I for k � 0

whereQ(k) is a symmetric positive definite matrix, that is,Q(k) �
c3I > 0 for all k � 0.

Proof: The proof is straightforward [1], and similar to the proof
in the above paper. We use

V = x(k)
T
P (k)x(k) (8)

Lyapunov function candidate of the control system. The rate of
decrease ofV is

�dV =V (k)� V (k + 1)

=x(k)
T
P (k)x(k)� x(k + 1)

T
P (k + 1)x(k+ 1)

�x(k)
T
Q(k+ 1)x(k)� 2
kPk � kxk

2

� (c3kxk
2
� 2
kPk � kxk

2
)

= (c3 � 2c2
)kxk
2
; wheneverkxk � �:

Choosing
 < c3=2c2 ensures that the rate of increase ofV is
negative definite inkxk � �, and therefore it is concluded that the
equilibrium state of the control system is stable. Based on the above
modification, the constraints of the training algorithm of the paper
should be changed.

Another problem of the paper is that in order to guarantee the
stability of the system the authors should show the finite convergence
of the training algorithm at each stage, which is not considered in the
paper. Moreover, the number of minor-iterative processes for which
a solution should be found is problem dependent. So we think the
training algorithm suggested in the paper may not be very useful
in the real digital control system in spite of the above modification.
Consequently, the stability of the control system and its performance
with proposed algorithm in the above paper are still to be investigated.
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