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ABSTRACT 
 

Various approaches of incorporating chaos into artificial neural 
networks have recently been proposed, and used successfully 
to solve combinatorial optimisation problems. This paper 
investigates three such approaches: 1) Chen & Aihara's 
transiently chaotic neural network with chaotic simulated 
annealing, which has a gradually decaying negative self-
coupling term; 2) Wang & Smith's chaotic simulated annealing, 
which employs a gradually decreasing time-step; 3) Hayakawa 
et al's method of adding chaotic noise to a Hopfield network. 
The N-Queen problem is used as an application to test and 
compare the performance and robustness of the three methods. 
The traditional simulated annealing is also included for 
comparison in order to contrast the effectiveness of the various 
approaches. 
 
Keywords: chaos, chaotic neural networks, combinatorial 
optimisation, Hopfield network, N-Queen, constraint 
satisfaction problems. 
 
 

1. INTRODUCTION 
 

Since Hopfield & Tank proposed using artificial neural 
networks [1]-[3] to solve combinatorial optimisation problems, 
many extensions and modifications to the original formulation 
were suggested, e.g. Boltzmann, Cauchy machine, etc. [4]. 
These models were designed mainly to overcome the problem 
of being trapped in local minima which are often encountered 
when the Hopfield & Tank model, being a steepest descent  
method, is used to solve combinatorial optimisation problems. 
With the discovery of chaos theory and the subsequent novel 
applications in engineering [5]-[7], it was also found that chaos 
plays important roles in information processing in the 
biological brain [8].  Based on chaotic properties of biological 
neurons, Aihara et al [9] proposed a chaotic neural network 
(CNN) which includes some conventional neural network 
models as special cases. Using this model, Yamada et al [10] 
solved the Travelling Salesman Problem (TSP) which is a NP-
hard problem. They found that relative refractoriness in the 
model improves optimisation by escaping from local minima. 
By using Euler's method to discretise the Hopfield network 
having negative self-feedback connections, Nozawa [11] 
compared it to Aihara et al's CNN and then transformed it to a 

globally coupled map (GCM) formulation. With this approach, 
he solved the TSP more efficiently than other neural networks 
with probabilistic search, and the chaotic search of the model 
was able to escape from local minima. Using the same method, 
Ohta et al [12] found that it significantly outperforms a 
random-walk approach in solving larger TSP problems, which 
further showed the inherent ability of the CNN to escape from 
local minima. To explore the optimisation characteristics of the 
CNN, Hasegawa et al [13] used a CNN with two internal 
states, namely refractoriness and mutual interaction, to solve 
the TSP. By adjusting the decay parameters of the two internal 
states, they concluded that the network has the highest 
optimisation capability at the edge of chaos, which exists 
between the ordered phase and disordered phase. For TSP, N-
Queen, and similar problems having a common form of 
constraints, Ishii and Sato [14],[15] developed the chaotic Potts 
spin (CPS) network, which can effectively obtain optimal 
solutions for the TSP with better performance than some CNN 
models and other spin annealing techniques.  
 
Another approach is to add chaotic noise to the conventional 
Hopfield network [16],[17]. The purpose is to help the network 
escaping from local minima more efficiently than mere white 
noise, and the structure of the chaotic noise was found to be 
useful in finding the global minimum of the TSP. 
 
In order to introduce convergence properties into CNNs, some 
developments make use of the transient process of gradually 
tuning a neural network from a chaotic to a non-chaotic state, 
which is analogous to lowering the temperature in the 
traditional simulated annealing algorithm. Kasahara & 
Nakagawa [18] employed exponentially decaying functions to 
decrease various parameters in their CNN for convergent 
purpose. Unfavourable trappings at certain spurious states are 
avoided in solving the TSP and memory association problems. 
Chen & Aihara [19] proposed chaotic simulated annealing 
(CSA) to illustrate the features and effectiveness of a 
transiently chaotic neural network (TCNN) in solving 
optimisation problems. Based on a previous CNN model [9], 
the self-feedback connection weight or refractory strength is 
gradually decreased to achieve a transiently chaotic annealing 
process. They found that the chaotic behaviour provides a more 
efficient search for the global minimum while escaping from 
local minima. As the annealing parameter gradually decreases, 
the network becomes non-chaotic through a reverse bifurcation 
process, and approaches a network similar to the Hopfield 



neural network which has convergence properties [1]-[3].  The 
TSP and a maintenance-scheduling problem were solved and 
the chaotic annealing process was shown to be effective in 
avoiding local minima. Conditions for convergence to a fixed 
point and the existence of chaotic structures, as observed in 
TCNN and discrete-time recurrent neural networks in general, 
were subsequently proved [20].  
 
Another chaotic annealing approach was proposed by Wang & 
Smith [24]. They used Euler’s method on the continuous 
Hopfield neural network model to construct a chaotic annealing 
scheme. By tuning the time- step, the network can exhibit 
chaotic behaviour as well as approaching a Hopfield network. 
A transiently chaotic version of the aforementioned CPS 
network was also devised by Ishii & Sato [15], which has even 
better performance than the original CPS.  
 
In section 2, three different ways of integrating chaos into the 
Hopfield network to solve combinatorial optimisation problems 
are described in relation to the model, convergence criteria, 
chaotic properties, and respective implementations to solve the 
N-Queen problem. A brief introduction of using simulated 
annealing to solve the N-Queen problem is also included. In 
section 3, computer simulation results of solving the N-Queen 
problem with various approaches are presented. Comparisons 
of solution quality, optimisation performance, etc. are 
discussed in section 4. 
 
 

2. THREE APPROACHES TO 
INCORPORATE CHAOS INTO THE 

HOPFIELD NETWORK 
 
In this section, chaotic simulated annealing using a decaying 
self-feedback term is described, followed by an alternative 
CSA scheme with a decreasing time-step, and then a Hopfield 
network with added chaotic noise. A brief account of using 
simulated annealing to solve the N-Queen problem is also 
included. 
 
 
2.1 Chaotic Simulated Annealing with Decaying Self-

coupling 

TCNN with CSA as formulated by Chen & Aihara [19] 
involves adding a large negative self-feedback term into a 
Hopfield-like network, and its magnitude is then gradually 
decreased with time. As t → ∞ , this self- coupling term would 
tend to zero, thus approaching a Hopfield-like network which 
converges to a fixed point [20], and minimises the energy 
function in the process. The formulation is as follows: 
 

                              x t
ei y ti

( ) ( ) /=
+ −

1
1 ε

 (1)  

 

( )y t ky t w x t I z t x t Ii i ij j i
j

N

i( ) ( ) ( ) ( ) ( )+ = + +








 − −

=
∑1

1
0

 (2)  

 
                               z t z t( ) ( ) ( )+ = −1 1 β  (3)  

 
where i ,  j = 1,...,N., and    
xi  = output of neuron i 

yi  = internal state of neuron i 

α  = positive scaling input parameter  
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z t( ) = self -feedback connection weight (refractory  
strength) ≥ 0 

β   = damping factor of z t( ) . 0 1≤ ≤β  

I i   = input threshold of neuron i 

I 0   = positive parameter 
 
It is the self-feedback parameter, z t( ) , that contributes to the 
decaying negative self-coupling term in Eq. (2) [19]. Chaotic 
simulated annealing is achieved by evaluating Eq. (1) to (3) 
iteratively, starting with an initial z( )0  which is large enough 

for the network to be chaotic, and then gradually decreasing 

z t( )  according to Eq. (3). The speed of this annealing process 

is determined by β . When the self-coupling term is small 

enough, the network would become stable and converge to a 
fixed point, depending on some stability criteria described in 
the next part. 
 
 Stability Criteria: For asynchronous updating of Eq. 
(2), and with a symmetric weight matrix, the network 
asymptotically converges to a fixed point if one of the 
followings is satisfied [20]: 

1. ( )1
3 0 4 1≥ ≥ − > −k k wii, min{ }ε α , or 

2. 1 81
3≥ ≥ > −k k wii, min{ }ε α , or 

3. k wii> > −1 8, min{ }ε α . (4) 

Furthermore, a state x  is asymptotically stable for Eq. (1) and 
(2) if and only if the state is at least a local minimum of E for 
0 1≤ ≤xi , for i = 1..N. Chen & Aihara [20] also found the 

conditions for determining which of the local minimum of the 
energy function is an attractor (theorem 3.4, 3.5 of [20]). Most 
importantly, they also proved the existence of chaos in TCNN 
(theorem 4.2 of [20]), and the fact that TCNN has only one 
bounded fixed point when the absolute value of the self-

feedback weight, wii , is sufficiently large (theorem 4.1 of 

[20]). 
 
 N-Queen Problem Formulation: The N-queen 
problem is the problem of how to place N queens onto an N by 

N chessboard without attacking each other. xij =1 means a 

queen is placed on row i , column j . This is a constraint 

satisfaction problem and the constraints are: 

• Each row can only have one queen. 
• Each column can only have one queen. 
• Each diagonal (there are many) can only have one queen. 
• There are exactly N queens on the chessboard.   

Related researches on solving the N-queen problem using 
neural networks are, for example, using Cauchy machines [21], 
Gaussian machines [22], and Hopfield network [23].  
 
In order to satisfy the N-queen constraints mentioned above, a 
cost function is constructed such that its value is increased if a 
constraint is violated: (A, B, C, D are positive parameters)  
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 (5)  

neglecting the term CN 2 2/ , this becomes the function to be 
minimized using the CSA, which has the same form of energy 
function as the Hopfield network: 
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and, 

 I CNij =  (8)  
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with N × N neurons, the following equations are evaluated 
iteratively, 
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                               z t z t( ) ( ) ( )+ = −1 1 β  (12) 

For good optimisation ability, the main parameters needed to 
be adjusted are α , β and ( )z 0 . 

 
 
2.2 Chaotic Simulated Annealing with Decreasing Time-

step 
Noticing that the Chen-Aihara system converges to a Hopfield-
like network [19] rather than an exact Hopfield network, Wang 
& Smith [24] devised an alternative approach for CSA. 
Considering the Euler approximation of the continuous 
Hopfield network, 
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In their approach, CSA is achieved by using a large initial 
time-step ( )∆ t 0 , and then gradually decrease it as the network 

iterates, for example, by using the exponential decaying rule, 

                               ( ) ( ) ( )∆ ∆t t t t+ = −1 1 β  (14) 

where 0 1< <β . This causes the network to go through a 

reverse bifurcation process as it starts with a chaotic state and 
ends with a stable convergent state. As ∆ t → 0 , the network 
becomes the continuous Hopfield network, which is convergent 
and minimises the energy function E . Overall, there are fewer 
parameters in this approach when compared to Chen & 
Aihara's system. 
 
 Stability Criteria: [24] For an asynchronous 
updating of Eq. (13), together with a symmetric w , τ >0, and 
an increasing function with a maximum slope of µmax

for the 

activation function, the network stabi lises if the following 
conditions are all satisfied:  

1. ∆ t ≤ τ , 

2. ∆ t
wii

<
−

2
1

τ
µmax

, and 

3. wii ≤ 0 . (15) 

The existence of chaos is guaranteed by the violation of 
condition 2 above [24]. 

 

N-Queen Implementation: Since the same energy 
function E  is minimised, the formulation with the same 

weight matrix wijkl  and Iij  as in section 2.1 are used. The 

main parameters to be adjusted are ( )∆ t 0 ,τ and β . 

 
 
2.3 Hopfield Network with Chaotic Noise  

Hayakawa et al [16] investigated adding chaotic noise to the 
discretised continuous Hopfield network to solve the TSP. 
Because of the chaotic noise, this technique has hill-climbing 
features to escape from local minima. The better optimisation 
ability of a chaotic noise source over a non-chaotic or random 
one has been observed by Asai et al [17] and Hayakawa et al 
[16]. Chaotic time series with different initial values is 
associated with each neuron, which can be generated from the 
logistic map [15] 

        ( ) ( ) ( )( )x n a x n x n+ = −1 1 . (16) 

A normalised series can be obtained as follows, 
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where σ x is the standard deviation of the series x  over time. 

A time series of  normalised chaotic noise, ( )ηi t , is then added 

to the network as follows, 

            ( ) ( ) ( )( )x t f y t A ti i i= + η  (18) 

where f is the sigmoidal activation function in Eq. (1), and A  

is a positive parameter. yi  is the internal state of the Hopfield 

network, and is updated according to Eq. (13) with a default 
τ value of 1. 
 
The use of other mappings and strange attractors as chaotic 
noise were investigated by Zhou et al [26] and Asai et al [17]. 
 



N-Queen Implementation: Since the Hopfield 
network with chaotic noise does not converge, a sufficiently 
large number of iterations should be pre-determined for the 
network to seek the global minima. To determine the solution 
feasibility at each iteration, a discretised state variable is 
introduced, 

xij
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< ==
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A corresponding discretised energy Ed is then calculated 
according to Eq. (9) to determine the feasibility of the solution. 
Parameters to be adjusted are the logistic map parameter a  in 
Eq. (16), and the amplification factor A  in Eq. (18). 
 
 
2.4 Simulated Annealing and N-Queen Implementation 

Simulated annealing is a well-known algorithm developed by 
Kirkpartick et al [27]. It minimises the objective function by a 
stochastic annealing scheme with guaranteed convergence 
[27],[28]. A decreasing temperature parameter T  controls the 
cooling schedule which allows the system to jump out of local 
minima with decreasing likelihood as time goes on.  
 
To solve the N-Queen problem, an initial N × N identity matrix 
is used to ensure that only 1 queen is placed in each row and 
column, and that there are exactly N queens. Any new state is 
obtained by randomly choosing 2 rows and swap. The cost to 
be minimised is constructed such that its value increases if any 
queen can attack another diagonally, which can just be the last 
term in Eq. (9). Note that we have discrete states updating for 
this formul ation while the neural network approaches 
mentioned above iterate with continuous states. 
 
The following parameters should be carefully adjusted to 
improve optimisation performance: Markov chain length L , 
initial temperature T0 , and cooling rate r . 

 
 

3. RESULTS 
 

A 10-Queen problem is solved by computer simulation of each 
of the neural networks described above, followed by simulated 
annealing. For each method, 10 sets of different randomised 
initial states with values centered around the unit hyper-cube 
are used. A feasibility measure of 0/10 means no global 
minimum is found with the 10 sets of initial states, and 10/10 
means global minimum is obtained in every case. For networks 
with convergent properties, the average number of iterations 
required to converge to a stable state (within a tolerance of 
5 × 10-5) is used to measure performance. In this study, we only 
consider asynchronous cyclic updating for the neural network 
models. 
 
Unless otherwise stated, these values as in Eq. (9) are used:  
A = B = C = D = 1. 
 
Focus of the simulations is on the optimisation performance 
(feasibility measure) and efficiency (average number of 
iterations) with various values of the parameters.  
 
 
3.1 CSA with Decaying Self-coupling 
Chen & Aihara's CSA scheme mentioned in section 2.1 is 
employed. Note that k = −1 α is used [11]. Parameters that 
require adjustments are α , β , and ( )z 0 . Table 1 & 2 shows 

the feasibility and performance variation when different 
parameter values are used. Fig. 1 & 2 shows a typical time 

evolution of the neuron states and the energy function 
respectively. 
 

TABLE 1 
 Feasibility variation with α and ( )z 0  

( β =0.001, I0 = 0.65; ε = 0.004) 

( )z 0   
Feasibility 

 0.0799 0.0800 0.0810 

0.010 10/10 10/10 10/10 α
 0.015 7/10 4/10 7/10 

 
TABLE 2 

Feasibility and performance variation with β  

(α =0.01, ( )z 0 =0.08, I0 = 0.65; ε = 0.004) 

 Feasibility Average no. of Iterations 

0.01 5/10 789 β
 0.001 10/10 ~ 4000 

 

Fig. 1. Neuron states against the number of iterations, t. The 
top three are chosen to show neurons having a final state of 
zero, and the rest are 10 states giving a converged value of 1 

Fig. 2. The corresponding energy function to Fig. 1 
 
 
3.2 CSA with Decreasing Time-step 

To implement Wang & Smith's decreasing time-step CSA 
described in section 2.2 with an exponential decay rule as Eq. 
(14), the initial time-step ( )∆ t 0  and the annealing factor β  

should be adjusted carefully. According to the stability criteria 
(15) in section 2.2, τ should be close to but less than ( )∆ t 0  to 

start the network with chaotic dynamics.  
 
Table 3 & 4 shows the feasibility and performance variation 
with different initial time- steps and annealing factors.  
 
Fig. 3 & 4 respectively shows the time evolution of the energy 
function and a typical neuron state corresponding to an optimal 
solution. 



TABLE 3 
Feasibility variation with initial time -step and β  

( τ = 0 5.  and ε = 001. ) 

β   
Feasibility 

0.001 0.005 0.01 

1.0 10/10 1/10 4/10 ( )∆ t 0
 1.2 8/10 1/10 2/10 

 
 

TABLE 4 
Performance variation with initial time-step and β  

( τ = 0 5.  and ε = 001. ) 

β  Average no. 
of Iterations 0.001 0.005 0.01 

1.0 965 222 130 ( )∆ t 0
 1.2 1129 240 134 

 
 

Fig. 3. Energy plotted against t 
 

Fig. 4.  Neuron state x2 1,  plotted against t  

 
 
3.3 Hopfield Network with Chaotic Noise 

To add chaotic noise to the Hopfield network to solve the 10-
Queen problem, the normalised logistic map in Eq. (16)-(18) in 
section 2.3 is employed. Since the network is no longer 
convergent, the feasibility measure (Table 5) is now a count of 
runs which encounter the optimal solution at least once  from 
iteration 1000 to 2000. Iterations less than 1000 correspond to 
the transient period, and 2000 is chosen to be the maximum 
number of iterations. The average fr equency of arriving at 
optimal solutions is also counted after the transient period 
(Table 6).  
 
The discretised energy function is shown in Fig. 5, and a 
typical neuron state is shown in Fig. 6.  
 
The logistic map parameter a  is chosen to be 3.81 and 3.93 
since they belong to the chaotic region of the logistic map and 
were found to have good optimisation ability on the TSP by 
Hayakawa et al [16]. Amplification parameter A  determines 
the relative magnitude of the noise. 

TABLE 5 
Feasibility variation with a  and A  

( ε =0.1, ∆ t =0.1) 

A   
Feasibility 

0.05 0.5 5.0 

3.81 0/10 3/10 0/10 
a  

3.93 0/10 7/10 0/10 

 
 

TABLE 6 
Optimisation ability variation with a  and A  

( ε =0.1, ∆ t =0.1) 

A  No. of 
Iterations with 

Global 
Minima  

0.5 0.7 1.0 

3.81 981 24 1 
a  

3.93 960 13 1 

 
 

Fig. 5. Discretised energy versus t 
 

Fig. 6. Neuron state x7 1,  plotted against t  

 
 
3.4 Simulated Annealing 
Since simulated annealing is very different from neural 
network approaches, it is included in the present study only to 
give us a rough idea of how well the neural networks with 
chaos can be compared to a widely used and robust heuristics 
in terms of overall performance. For this reason, a set of well 
tuned parameters are chosen for this method to maximise its 
ability.  
 

TABLE 7 
Results of simulated annealing 

Initial temperature 3 

Cooling rate 0.9 

Markov chain length 200 

Average number of Markov chains 11 

Feasibility 10/10 
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4. DISCUSSION 
 

In this section, we illustrate the properties and optimisation 
ability of chaos in neural networks by analysing the results 
obtained by solving the 10-Queen problem.  
 
With Chen & Aihara's method of CSA with decaying self-
coupling, we obtain a typical time evolution picture of neuron 
states in Fig. 1, which corresponds to an evolution towards an 
optimal solution. One noticeable feature happens at around t = 
750, where the neuron states transit into a seemingly chaotic 
region from a metastable state with values close to 0. The 
unstable wandering of the states ceases when they are  
sufficiently close to 1, which later converge to a stable and 
optimal solution. The state transition from the inherent 
instability to order has the effect of chaotic wandering in search 
of the global minima. This effect has also been observed by 
Hasegawa et al [13] in solving the TSP. When the self-
coupling term is eliminated by setting z(t) = 0 for all t, no 
optimal solution is found. This reinforces the role of disorder-
order transition in seeking the global minima. Although a more 
convincing evidence of the existence of chaos could be 
obtained by calculating the Lyapunov exponent, the above 
characteristic transition from disorder to order, together with 
the proof of the existence of chaos in this CSA scheme by 
Chen & Aihara [20], strongly suggest a chaotic role in the 
process. As expected for any method capable of escaping from 
local minima, uphill moves of the energy can be observed in 
Fig. 2, which occurs in the same unstable region described 
above. From Eq. (9), a global minimum would have E = -50, 
as in Fig. 2. 
 
From Table 1, a feasibility of 10/10 is obtained for some 
combinations of the parameters, which is rather sensitive to the  
value of α . In Table 2, we find that better feasibility is 
obtained with a smaller β , which corresponds to a slower 

annealing schedule. This can be interpreted as a prolonged 
chaotic search due to a lengthened region of instability. 
However, the tradeoff is the increased number of iterations 
required for convergence. This compromise is analogous to the 
determination of an efficient cooling schedule in simulated 
annealing.  
 
Note than with α =0.015 and β ≈ 0.001, Chen & Aihara [19] 

obtained a much higher feasibility for the 10-city TSP, 
compared to around 40% found in Table 1 for our solution to 
the 10-Queen problem. This may suggest an inadequate 
robustness of the method. However, more initial value sets 
should be used in our investigation for a more convincing 
conclusion. 
 
Fig. 3 and 4 are the results of obtaining an optimal solution 
using Wang & Smith's CSA with decreasing time-step. Fig. 4 
shows how a neuron state follows its path contributing to an 
optimal solution. Initially it oscillates between 0 and 1, but 
starts to visits intermediate values when t is between 400 and 
600. The two branches finally merge together towards 1, which 
corresponds to a global minimum. The network is proved to be 
chaotic before the merging of the two branches by using the 
criterion mentioned in section 2.2. The result suggests a search 
of the global minimum through chaotic dynamics. The 
corresponding wandering of the energy among local minima 
can be observed in Fig. 3.  
 
In terms of feasibility (Table 3), very good results are obtained 
with β = 0.001. But it has a sensitive dependence on β .  

Increasing β  (a faster annealing) does not necessarily decrease 

feasibility as shown in Table 3. This is clearly different from 

the case of Chen & Aihara's method in which a slower 
annealing is preferable for good feasibility. This illustrates the 
fact that decaying the time-step (an inherent quantity to the 
network) is fundamentally different from decaying the self-
coupling term (an externally introduced quantity). On the other 
hand, this method is more efficient probably by the same 
reason. Table 4 shows that an optimal solution with 10/10 
feasibility can be obtained with ~1000 iterations. In general, 
this method requires fewer parameters to be adjusted, but the 
difficulty arises when choosing an effective annealing rate. 
Future work could investigate whether the same optimal 
annealing rate applies to other combinatorial problems of 
various sizes. 
 
Since the Hopfield network with chaotic noise, i.e. the third 
approach in this study, is not convergent, no single stable state 
is attained by the neuron states. A typical neuron state iteration 
corresponding to an optimal solution is illustrated in Fig. 6. 
Although noisy, the state tends to have a denser distribution 
around the value of 1, except at the beginning where 0 is often 
visited. The final state of this neuron is 1 according to Eq. (19). 
The energy diagram is shown in Fig. 5. Because of the noisy 
nature of the network, a discretised energy is used, as explained 
in section 2.3. In Fig. 5, a transient region exists for t < 1000 
where the energy attains non-optimal values. When t > 1000, 
the energy dramatically drops to a global minimum and stays 
around that value with occasional jumps to a local minimum. 
The ability of a network with chaotic noise to have a persistent 
attraction towards an optimal state is also reported by 
Hayakawa et al [16]. They also found that such a behaviour is 
absent if white noise is used instead. This feature may be 
described as a quasi-convergent behaviour, although the 
network is never converged.  
 
Two values of the logistic parameter a  found to have high 
optimisation ability by Hayakawa et al [16] are used, which 
yield a maximum of 7/10 feasibility as shown in Table 5. This 
is comparatively low against the other methods discussed so 
far. Also in Table 5 is the existence of an optimal value (or 
range of values) for the amplification factor A  for better 
feasibility. This can be explained by the fact that when A  is 
too large, it becomes too noisy for the network to be attracted 
to an optimal point; when A  is too small, the dynamics of the 
network would be dominated by the steepest-descent 
mechanism of the Hopfield network, which is unlikely to give 
optimal solutions. The effect of increasing the noise amplitude 
can be found in Table 6, where the increasing A  causes the 
global minimum to be visited less frequently. 
 
In terms of efficiency, this method is comparable to Wang & 
Smith's CSA. This method requires fewer parameters to be 
adjusted, and in fact good values of a  can be expected to 
perform as well on other problems. However, the feasibility is 
lowest among other networks in this study. Improvements may 
be resulted if an annealing scheme is employed to this model, 
for example, by decaying A  gradually. Also, the question 
remains as to whether different chaotic noise sources affect the 
optimisation ability of the network. 
 
For the case of simulated annealing, good feasibility is 
obtained with the well-chosen parameters shown in Table 7. 
There are three parameters to be chosen for each optimisation 
problem, which is comparable to Chen & Aihara's method. It is 
inappropriate to compare the number of iterations of this 
method to other methods in this investigation because it is a 
method of entirely different nature. For practical purpose, the 
actual run time on a computer for this method is comparable to 
all others discussed above. A bigger and more complicated 
problem would be expected to make a difference.  



Future works to investigate the use of chaos in neural networks 
for combinatorial optimisation should include:  

• How the range of optimal parameters varies with problem 
size; 

• The effect of synchronous updating on the chaotic dynamics; 
• The effect of using discrete activation functions; 
• Generalisation to other optimisation problems.  
 
 

5. CONCLUSIONS 
 

In this paper, we have investigated three methods of 
incorporating chaos into the Hopfield network for 
combinatorial optimisation. Two such methods, namely Chen 
& Aihara's CSA with a decaying self- coupling term and Wang 
& Smith's CSA with decaying time- steps, make use of chaotic 
annealing schemes analogous to the traditional simulated 
annealing. Both have features like chaotic wandering and 
transitions from instability to a stable state, which are found to 
have a novel ability to improve the optimisation performance 
of the network. Existence of chaos and convergence to a stable 
solution in both methods are well established by the respective 
proofs. Wang & Smith's method is more efficient, requires 
fewer parameters, but solution optimality depends sensitively 
on the annealing rate, while Chen & Aihara's method allows 
better solution with a slower annealing rate. The Hopfield 
network with chaotic noise has the least number of adjustable 
parameters and is relatively efficient, but lacks convergence 
properties and is the least capable of reaching for an optimal 
solution. All models in this study are comparable to, in some 
cases better than, the traditional simulated annealing in terms 
of optimisation efficiency, solution quality and ease of 
choosing parameters. 
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