Robust Control of Continuous Polymerization Reactor by Dynamically

Constructed Recurrent Fuzzy Neural Network

Y. Frayman and L. Wang
Deakin University, School of Computing and Mathematics,
662 Blackburn Road, Clayton, Victoria 3168, Australia
E-mail: yfraym@deakin.edu.au, lwang@deakin.edu.au

ABSTRACT

Improvements in control of the reactor temperature and the number-average molecular weight of the
polymer products have been motivated by increasing environmental, operational and energy restrictions.
Conventional control systems for continuous stirred tank polymerization reactor are based on the single-
input-single-output design principle. The polymerization process, however, is a typical multivariable system
with a highly nonlinear and highly interacting behavior. Consequently, a new design strategy is necessary
to overcome the problem of mutual interactions and is indispensable for the improvement of polymerization
reactor control. In order to solve this problem, we propose to use a recurrent fuzzy neural network
dynamically constructed from the process input-output data and a reference model for direct adaptive
control. The effectiveness of our approach is demonstrated by simulation results and is compared with the
performance of conventional PI controllers. Exploiting the advantage of multivariable nonlinear control,
our dynamically constructed FNN significantly increases the control robustness to disturbances and noise
compared to linear PI controllers.

Keywords: direct adaptive control, recurrent fuzzy neural networks, dynamic network construction,
continuous stirred tank polymerization reactor control

1. Introduction

Chemical processes are multivariable in nature, and
exhibit strongly nonlinear and time varying behav-
ior. There are also high mutual interactions between
process variables. Conventional control of chemical
processes uses simple linear or linearized models to
approximate the process behavior. For multi-input-
multi-output (MIMO) processes it is very difficult to
derive accurate models, due to complex nonlinear re-
lationships among variables, time dependent changes
in model parameters, and difficulties in accounting for
some physical phenomena. Thus, the severe nonlin-
earity and complexity of the process results in large
robustness margins, and in some cases, extremely
poor performance.

It is therefore necessary to develop solid control
methodologies that are capable of coping with both
nonlinearities and interactions, as well as time vary-
ing processes with a strong influence of disturbances
on the process behavior.

In addition, the nonlinear control schemes that em-
ploy more realistic and more complex nonlinear pro-
cess descriptions require process models in the form
of nonlinear differential equations [6]. This limits
its industrial application, since such first principles
models are not readily available in industrial practice
due to a chronic lack of detailed and extensive pro-
cess knowledge required for the development of these
models.

We are especially interested in control of the non-
linear MIMO processes in the presence of distur-
bances, such as the continuous stirred tank polymer-
ization reactor, with a minimum amount of human
intervention. Therefore, it is desirable to integrate
an intelligent component to increase control system
flexibility, e.g., to extract relations from the process,
and to change relations to improve control perfor-
mance. Adaptive intelligent controllers using process
input-output data with both structural and param-
eter tuning, such as fuzzy neural networks (FNNs),
would fulfill the above objectives.

Most of the existing research in neural or fuzzy
neural control has been concentrated on indirect con-
trol schemes where the neural network or the fuzzy
neural network is used to identify the process and a
controller is subsequently synthesized from this model
[14]. We follow an alternative approach of direct
model reference adaptive control (MRAC) where a
fuzzy neural network is the controller and no model of
the process is required. This method has already been
successfully applied to torsional vibration control of
tandem cold rolling mill spindles [8], and to backup
rolls eccentricity and thickness control in cold rolling
mills [9], [10].

Similarly to neural networks, FNNs require two
type of tuning: structural and parameter tuning.
Structural tuning concerns with the structure of the
rules: the number of input-output variables, partition
of each variable universe of discourse, the number of
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other existing recurrent FNN approaches (e.g., [11],
[12]) these selections are carried out on a trial-and-
error basis. Parameter tuning concerns with adjust-
ments of the position and the shape of membership
functions. While most of existing efforts are concen-
trated on parameter tuning, insufficient efforts have
been made concerning structural tuning, i.e., to find
the simplest network structure capable of achieving
an optimal performance.

A direct MRAC based on our dynamically con-
structed recurrent FNN offers a method for automatic
discovery of an efficient controller. Such an approach
is able to achieve good robustness in time varying
environments through continuous adaptation. Local
learning of our FNN is different from general and indi-
rect methods commonly used in neural control in that
our FNN controller learns from a direct evaluation of
accuracy with respect to the outputs of the process
rather than from the inputs and the outputs of the
controller.

The overall network is a nonlinear function approx-
imator which is linear in parameters with each com-
bination of input node, rule node and output node
acts as a linear approximator. A major advantage of
approximators that are linear in parameters is that
for square error types of cost functions, as the one we
use, there is a unique global minimum [7].

The paper is structured as follows. Section 2 de-
scribes the dynamically constructed recurrent FNN,
its learning algorithm, and the overall control sys-
tem structure. Section 3 describes the problem to
be studied - continuous stirred tank polymerization
reactor control. Section 4 presents the simulation
results using the dynamically constructed recurrent
FNN controller and PI controllers to control of the
reactor temperature and the number-average molec-
ular weight of the polymer product. Finally, section
5 summarizes the main findings of this paper.

2. Dynamically Constructed FNN for
Direct Adaptive Multivariable Con-
trol

A general MIMO nonlinear processes can be repre-
sented by the following state-space description

- -

E(k+1) = flE(k), a(k),d(k)] (1)

(k) = glz(k),n(k)] - (2)

vzhere @ (ur,u2, . um), ¥ (Y1,Y2,-,ym) and
d (di1,ds, .., dp) are the process input, output and dis-
turbance input vectors, respectively, Z (z1,x2, .., Tn)
is the process state vector, and 7@ (n1,n2,..,Ny) is
the measurement noise vector. Given that the vec-
tor maps f and ¢ are unknown, a dynamically con-
structed recurrent FNN can be used to control the
process by assuming only that the states and corre-

sponding outputs of the process are measurable.
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4 is used to designate the desired performance. The
desired output response iy is obtained from the out-
put of the reference model subject to disturbance sig-
nals d. The parameters of the model are determined
by the desired performance in terms of overshoot,
settling time, and steady-state error.

The learning algorithm is designed to obtain the
correct control signals i corresponding to the desired
outputs #y. The learning error £ defined as the differ-
ence between the desired responses i; and the mea-
sured process outputs ¥, is used as a learning crite-
rion. The learning error & asymptotically approaches
zero or a pre-specified small value > 0 as the iteration
number k increases. The objective is to minimize an
square error cost function.

The structure of our FNN is shown in Fig. 1 [9].
The network has an input layer, a input membership
functions layer, a rule layer, and an output layer.

Output Layer

Rule Layer

Input Membership
Function Layer

Input Layer

Fig. 1: The structure of our fuzzy neural network.

The input nodes represent input variables consist-
ing of the current network inputs (process states)
and the previous outputs of the process, rather than
the network. This recurrent structure provides the
possibility to include temporal information, i.e. the
network produces dynamic input-output mapping, in
contrast to static feedforward networks. The recur-
rency also speeds up the convergence of the network.
An important feature of the recurrent structure of
our FNN is that a convergence to a stable solution
is guaranteed, as there is no feedback path between
network outputs and inputs [15].

The input membership function nodes generate in-
put membership functions for numerical inputs. We
use piecewise-linear triangular membership functions.
This type of membership functions is simple to imple-
ment and is computationally efficient. The leftmost
and rightmost membership functions are shouldered.
Each input node is connected to all membership func-
tion nodes for this input. The input membership
functions act as fuzzy weights between the input layer
and the rule layer.

Rule layer nodes represent fuzzy rules using the
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Rule i: IF zyis A} and ...z, is A}

and y; (k — 1) is Azi;l and ... y,(k — ) is A;m (3)
THEN u; = w! , ..., upm =w!, ,

where w] (I = 1,2,..,m) is a real number. A} (¢ =
X1,y Tn> Y1y, -, Ym) 18 the membership function of
the antecedent part of rule ¢ for input node ¢, k is
the time, and z (z = 1,2, ...,r) is the delay. Each rule
node is connected to all input membership function
nodes and output nodes for this rule. The mem-
bership value u; of the premise of the i¢th rule, is
calculated as fuzzy AND using the product operator

pi = Apy (1) Ay (@) Ay (1) A () - (4)

The use of the product operator for fuzzy AND pro-
duces a smoother control surface, in contrast to com-
monly used fuzzy min operator. Links between the
rule layer, the output layer and the input membership
functions are adaptive during learning,.

In the output layer each node receives inputs from
all rule nodes connected to this output node and pro-
duces the actual output of the FNN. Output u; of the
FNN is obtained using the weighted average

_Ziﬂiwf
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Use of the weighted average allow us to avoid prob-
lems with the commonly used center of area (COA)
defuzzification that can produce unpredictable re-
sults.

A block diagram of the overall FNN control system
is presented in Fig. 2 [9].
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Fig. 2: Block diagram of the overall FNN control system.

The FNN structure generation and parameter tun-
ing algorithms are as follows. We generate the
training input-output data for the selected reference
model. We need to specify the allowable error thresh-
old € and/or the maximum number of rules (rule
nodes) N; for learning to stop.

Initially we add two equally spaced fully overlap-
ping shouldered input membership functions along
the operating range of each input variable. In
such a way these membership functions satisfy e-
completeness [9]. If the e-completeness is not sat-
isfied, there may be no rule applicable for a new data
input. The initial rule layer is created using Eq. (3).
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wi(k+1) = wj(k) —n (6)

A (k+1) = A (k) —n (7)
where 7 is the learning rate.

The learning rate n varies to improve the speed
of convergence, as well as the learning performance
(accuracy).

If the degree of overlapping of membership func-
tions is greater than a pre-specified threshold, we
combine those membership functions. We use the
following fuzzy similarity measure [5]

M(A;NA
E(Al,AQ) — M( 1 2)

(A U Az) 7 )

where N and U denote the intersection and the
union of two fuzzy sets A; and As, respectively, and
E(A1, As) is a degree of A1 = As. M(+) is the size
of a fuzzy set, and 0 < E(A;, As) < 1. We can thus
reduce the size of the rule base, which is necessary
in order to protect the network from the “curse of
dimensionality”.

If the accuracy of the FNN is satisfactory, the
algorithm stops. Otherwise, if the number of rule
nodes is less than the specified maximum, we add an
additional membership function for all inputs at the
point of the maximum system output error. In such
a way we are able to reduce the error more efficiently.
By firstly eliminating the errors whose deviation from
the target values is the greatest, we can speed up the
convergence of the network substantially. Next, the
rule base is updated and the process is repeated until
either we obtained a satisfactory performance, or the
maximum pre-specified size of the network (number
of rules) is exceeded.

3. Problem Description

Tight control of polymer properties is one of the ma-
jor problems in polymerization processes. In free-
radical polymerization processes, controlling both re-
actor temperature and the number-average molecular
weight is of primary importance. This is achieved by
manipulating the volumetric flow rates of the initiator
and the cooling water into the reactor.

Conventional control of polymerization reactors is
based on the single-input-single-output design princi-
ples. Until recently, control was implemented using
standard PI or PID controllers. The polymerization
process, however, is a typical multivariable system
with strong mutual interaction between process vari-
ables. A new design strategy is thus necessary to over-
come the problem of the mutual interaction and is im-
portant for the improvement of control accuracy and
robustness to disturbances and noise. As the chemi-
cal industry requires a better product quality under
constantly increasing environmental, operational and
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substantial interest to the industry. Consequently,
considerable industrial research effort [3], [4], [13] has
been devoted to finding the best possible solution.

The presence of the computer in control loops en-
ables us to investigate the use of more sophisticated
control methods such as fuzzy neural networks. We
propose to use a recurrent FNN controller dynami-
cally constructed from the process input-output data
and a reference model for direct MRAC. The per-
ceived benefits of using FNN include reductions in
commissioning time, better-tuned control over a di-
verse polymer product range, improved control over
changes of process characteristics during polymeriza-
tion, the ability to control nonlinear effects in control
loops, and robustness to process disturbances and
noise.

The continuous stirred tank polymerization reac-
tor (CSTR) is shown in Fig. 3 [3]. A free-radical
polymerization of methyl methacrylate (MMA) takes
place in the rector, with azo-bis-isobutyronitrile
(AIBN) as initiator and toluene as solvent. The reac-
tion is exotermic and a cooling jacket allows the heat
removal. The standard mechanism of free-radical
polymerization is assumed, together with the result-
ing rate laws [2].

The following assumptions were made: perfect mix-
ing of the reactor contents; constant density of the
reacting mixture (no volume shrinkage); gel effect is
absent (due to low monomer conversion); constant
reactor volume (constant volumetric flow rate of the
monomer stream); no polymer in the fluids in inlet
streams; constant heat capacity of the reacting mix-
ture; uniform coolant temperature in the jacket; in-
sulated reactor and cooling system; constant heat ca-
pacity of the coolant; negligible initiator solution flow
rate in comparison to that of the monomer stream;
negligible inhibition and chain transfer to solvent re-
actions; quasi-steady state and long-chain hypothesis.

The dynamic behaviour of the process is described
by the mass and energy balances as a set of ordi-
nary differential equations [2], [3]. Consult [3] for
the ordinary differential equations involved and the
kinetic data, physical parameters, and steady-state
values used.

The dimensionless state variables are defined as
follows: zy = Cp,xo = Cr,x3 = T,xq4 = Do, x5 =
Dy, z¢ = Tj (Fig. 3). The control of a polymerization
reactor requires the number-average molecular weight
(NAMW) y; = Dy/Dy and the reactor temperature
y2 = T to be regulated. This is achieved by manipu-
lating the inlet initiator volumetric flow rate u; = Ff
and the cooling water volumetric flow rate uy = Fry,.
The process disturbances are the molar concentration
of monomer in the inlet stream d; = C,,,;, and the
temperature of the inlet stream ds = Tj,.

Monomer + Solvent Initiator
FC ; Tin €. F
m;, - in in i Tl
Tj L
l ]
‘ FC, Dy
C,TD
Two m 0
— =
FC\N

Fig. 3: Continuous stirred tank polymerization reactor. Here
F' is the volumetric flow rate of the inlet and outlet streams,
Cm;, is the molar concentration of monomer in inlet stream,
T;n is temperature of the inlet streams, Cy, is the molar con-
centration of the initiator in inlet stream, F7 is the volumetric
flow rate of the inlet initiator stream, T3, is the temperature
of the inlet coolant stream, Fe, is the volumetric flow rate
of the cooling water, C; is the molar concentration of the
initiator, D; is the mass concentration of the dead polymer
chains, Cp, is the molar concentration of the monomer, 7' is
the reactor temperature, Do is the molar concentration of the
dead polymer chains, and T} is the cooling jacket temperature.

4. Simulation Results

The robustness to disturbances and noise of the dy-
namically constructed recurrent FNN was evaluated
by numerical simulations.

0.2 ‘
0.15 r
0.1t
0.05
0 il R
-0.05 |
-01 ¢ 1
-0.15 ¢ 1

-0.2 | | | |
0 200 400 600 800 1000
Time (samples)

T (normalized)

Fig. 4: Time responses for uncontrolled reactor temperature
(T) in the presence of molar concentration of monomer and the
temperature in inlet steam disturbances, and the measurement
noise.

We used as a reference model Butterworth’s [1]
characteristic equation for the 5th order system

8% + 3.24wy,s" + 5.24w?s® + 5.24w3 s + 3.24wk s + Wl
(9)
where w,, is a natural frequency of the system. This
form of characteristic equation gives us a damping ra-
tio £ = 0.71, and the settling time can be determined
through approximate relationship t; = 4/&w,,.
We used the input-output data generated using
above reference model to train our FNN. We have
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Fig. 5: Time responses for uncontrolled number-average molec-
ular weight (NAMW) in the presence of molar concentration
of monomer and the temperature in inlet steam disturbances,
and the measurement noise.
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Fig. 6: Time responses for reactor temperature (T) in the pres-
ence of molar concentration of monomer and the temperature
in inlet steam disturbances, and the measurement noise with
PI controllers.

generated 1000 input-output data tuples using fifth
order Runge-Kutta integrator [1] with a sampling
time h = 0.005 for the numerical integration of the set
of ordinary differential equations describing the pro-
cess. In order to prevent numerical ill-conditioning,
all equations were firstly appropriately normalized by
dividing the deviation of each variable from its nom-
inal operating value by its nominal operating value.
Thus we obtained variables values that are zero at
the nominal operating condition and have roughly
equivalent ranges. We applied 25% square wave dis-
turbance to the inlet monomer molar concentration
Cm,;, and 10% square wave disturbance to inlet tem-
perature T}, with a frequency 10 dimensionless units.
We also applied zero-mean white measurement noise
with a variance 0.006 and a sampling time 0.014. The
disturbances and noise were applied concurrently to
represent a real situation when the disturbances and
noise in the polymerization reactor are present at the
same time.

The FNN was trained using on-line learning us-
ing first 500 samples for training, the other 500 for
validation of network’s ability to generalize, and the
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Fig. 7: Time responses for the number-average molecular
weight (NAMW) in the presence of molar concentration of
monomer and the temperature in inlet steam disturbances, and
the measurement noise with PI controllers.
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Fig. 8: Time responses for reactor temperature (T) in presence
of molar concentration of monomer and the temperature in
inlet steam disturbances, and the measurement noise with the
FNN controller.

whole data for final testing of a resulted network. For
comparison two PI controllers were used for the same
process. The parameters of the PI controller, i. e., the
gain K, = 15 and the integral time constant 77 = 0.4,
were the same as used in [3].

Simulation results are presented in Fig. 4-9. While
rejecting the process disturbances and noise to some
extend, the performance of the PI controller is not
totally satisfactory (Fig. 6 and 7). On the contrary,
our FNN controller is able to reject the disturbances
and noise almost completely (Fig. 8 and 9).

A quantitative summary of the results is given in
Table 3.

RMSE
Uncontrolled PI FNN
D./D, 0.022981 0.011862 | 0.002755
T 0.055037 0.018452 | 0.002302

Table: 1: Root Mean Squared Error (RMSE) for the reactor
temperature and the number-average molecular weight for un-
controlled, PT and FNN controlled cases.
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Fig. 9: Time responses for the number-average molecu-
lar weight (NAMW) in presence of molar concentration of
monomer and the temperature in inlet steam disturbances, and
the measurement noise with the FNN controller.

5. Conclusion

In this work we have discussed the benefits of using
our dynamically constructed recurrent FNN for mul-
tivariable nonlinear control on a real-world example
of control of polymerization reactor. The effective-
ness of our approach was demonstrated by simula-
tion results and is compared with the performance
of the conventional PI controllers. Exploiting the
advantage of nonlinear control, our dynamically con-
structed FNN significantly increases the control ro-
bustness compared to linear PI controllers. We argue
that our dynamically constructed recurrent FNN with
both structure and parameter learning can provide a
computationally efficient solution to control of many
real-world nonlinear systems in presence of distur-
bances.
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