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ABSTRACT

Improvements in control of the reactor temperature and the number�average molecular weight of the
polymer products have been motivated by increasing environmental� operational and energy restrictions�
Conventional control systems for continuous stirred tank polymerization reactor are based on the single�
input�single�output design principle� The polymerization process� however� is a typical multivariable system
with a highly nonlinear and highly interacting behavior� Consequently� a new design strategy is necessary
to overcome the problem of mutual interactions and is indispensable for the improvement of polymerization
reactor control� In order to solve this problem� we propose to use a recurrent fuzzy neural network
dynamically constructed from the process input�output data and a reference model for direct adaptive
control� The e�ectiveness of our approach is demonstrated by simulation results and is compared with the
performance of conventional PI controllers� Exploiting the advantage of multivariable nonlinear control�
our dynamically constructed FNN signi�cantly increases the control robustness to disturbances and noise
compared to linear PI controllers�

Keywords� direct adaptive control� recurrent fuzzy neural networks� dynamic network construction�
continuous stirred tank polymerization reactor control

�� Introduction

Chemical processes are multivariable in nature� and
exhibit strongly nonlinear and time varying behav�
ior� There are also high mutual interactions between
process variables� Conventional control of chemical
processes uses simple linear or linearized models to
approximate the process behavior� For multi�input�
multi�output �MIMO	 processes it is very di
cult to
derive accurate models� due to complex nonlinear re�
lationships among variables� time dependent changes
in model parameters� and di
culties in accounting for
some physical phenomena� Thus� the severe nonlin�
earity and complexity of the process results in large
robustness margins� and in some cases� extremely
poor performance�

It is therefore necessary to develop solid control
methodologies that are capable of coping with both
nonlinearities and interactions� as well as time vary�
ing processes with a strong in�uence of disturbances
on the process behavior�

In addition� the nonlinear control schemes that em�
ploy more realistic and more complex nonlinear pro�
cess descriptions require process models in the form
of nonlinear di�erential equations ��� This limits
its industrial application� since such �rst principles
models are not readily available in industrial practice
due to a chronic lack of detailed and extensive pro�
cess knowledge required for the development of these
models�

We are especially interested in control of the non�
linear MIMO processes in the presence of distur�
bances� such as the continuous stirred tank polymer�
ization reactor� with a minimum amount of human
intervention� Therefore� it is desirable to integrate
an intelligent component to increase control system
�exibility� e�g�� to extract relations from the process�
and to change relations to improve control perfor�
mance� Adaptive intelligent controllers using process
input�output data with both structural and param�
eter tuning� such as fuzzy neural networks �FNNs	�
would ful�ll the above objectives�

Most of the existing research in neural or fuzzy
neural control has been concentrated on indirect con�
trol schemes where the neural network or the fuzzy
neural network is used to identify the process and a
controller is subsequently synthesized from this model
����� We follow an alternative approach of direct
model reference adaptive control �MRAC	 where a
fuzzy neural network is the controller and no model of
the process is required� This method has already been
successfully applied to torsional vibration control of
tandem cold rolling mill spindles ���� and to backup
rolls eccentricity and thickness control in cold rolling
mills ���� �����

Similarly to neural networks� FNNs require two
type of tuning� structural and parameter tuning�
Structural tuning concerns with the structure of the
rules� the number of input�output variables� partition
of each variable universe of discourse� the number of



rules� and the logical operation to compose rules� In
other existing recurrent FNN approaches �e�g�� �����
����	 these selections are carried out on a trial�and�
error basis� Parameter tuning concerns with adjust�
ments of the position and the shape of membership
functions� While most of existing e�orts are concen�
trated on parameter tuning� insu
cient e�orts have
been made concerning structural tuning� i�e�� to �nd
the simplest network structure capable of achieving
an optimal performance�
A direct MRAC based on our dynamically con�

structed recurrent FNN o�ers a method for automatic
discovery of an e
cient controller� Such an approach
is able to achieve good robustness in time varying
environments through continuous adaptation� Local
learning of our FNN is di�erent from general and indi�
rect methods commonly used in neural control in that
our FNN controller learns from a direct evaluation of
accuracy with respect to the outputs of the process
rather than from the inputs and the outputs of the
controller�
The overall network is a nonlinear function approx�

imator which is linear in parameters with each com�
bination of input node� rule node and output node
acts as a linear approximator� A major advantage of
approximators that are linear in parameters is that
for square error types of cost functions� as the one we
use� there is a unique global minimum ����
The paper is structured as follows� Section � de�

scribes the dynamically constructed recurrent FNN�
its learning algorithm� and the overall control sys�
tem structure� Section � describes the problem to
be studied � continuous stirred tank polymerization
reactor control� Section � presents the simulation
results using the dynamically constructed recurrent
FNN controller and PI controllers to control of the
reactor temperature and the number�average molec�
ular weight of the polymer product� Finally� section
� summarizes the main �ndings of this paper�

�� Dynamically Constructed FNN for

Direct Adaptive Multivariable Con�

trol

A general MIMO nonlinear processes can be repre�
sented by the following state�space description

�x�k � �	 � �f ��x�k	� �u�k	� �d�k	� � ��	

�y�k	 � �g��x�k	� n�k	� � ��	

where �u �u�� u�� ��� um	� �y �y�� y�� ��� ym	 and
�d �d�� d�� ��� dp	 are the process input� output and dis�
turbance input vectors� respectively� �x �x�� x�� ��� xn	
is the process state vector� and �n �n�� n�� ��� nm	 is
the measurement noise vector� Given that the vec�
tor maps �f and �g are unknown� a dynamically con�
structed recurrent FNN can be used to control the
process by assuming only that the states and corre�
sponding outputs of the process are measurable�

A reference model with input x and desired output
�yd is used to designate the desired performance� The
desired output response �yd is obtained from the out�
put of the reference model subject to disturbance sig�
nals �d� The parameters of the model are determined
by the desired performance in terms of overshoot�
settling time� and steady�state error�

The learning algorithm is designed to obtain the
correct control signals �u corresponding to the desired
outputs �yd� The learning error �� de�ned as the di�er�
ence between the desired responses �yd and the mea�
sured process outputs �y� is used as a learning crite�
rion� The learning error �� asymptotically approaches
zero or a pre�speci�ed small value � � as the iteration
number k increases� The objective is to minimize an
square error cost function�

The structure of our FNN is shown in Fig� � ����
The network has an input layer� a input membership
functions layer� a rule layer� and an output layer�
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Fig� �� The structure of our fuzzy neural network�

The input nodes represent input variables consist�
ing of the current network inputs �process states	
and the previous outputs of the process� rather than
the network� This recurrent structure provides the
possibility to include temporal information� i�e� the
network produces dynamic input�output mapping� in
contrast to static feedforward networks� The recur�
rency also speeds up the convergence of the network�
An important feature of the recurrent structure of
our FNN is that a convergence to a stable solution
is guaranteed� as there is no feedback path between
network outputs and inputs �����

The input membership function nodes generate in�
put membership functions for numerical inputs� We
use piecewise�linear triangular membership functions�
This type of membership functions is simple to imple�
ment and is computationally e
cient� The leftmost
and rightmost membership functions are shouldered�
Each input node is connected to all membership func�
tion nodes for this input� The input membership
functions act as fuzzy weights between the input layer
and the rule layer�

Rule layer nodes represent fuzzy rules using the



following form for rule i�

Rule i � IF x� is A
i
x�
and ��� xn is A

i
xn

and y��k � �	 is A
i
y�
and ��� ym�k � r	 is Ai

ym
��	

THEN u� � wi
�
� ��� � um � wi

m �

where wi
l �l � �� �� ���m	 is a real number� Ai

q �q �
x�� � ��� xn� y�� � ��� ym	 is the membership function of
the antecedent part of rule i for input node q� k is
the time� and z �z � �� �� ���� r	 is the delay� Each rule
node is connected to all input membership function
nodes and output nodes for this rule� The mem�
bership value �i of the premise of the ith rule� is
calculated as fuzzy AND using the product operator

�i � Ai
x��x�	�����A

i
xn�xn	�A

i
y��y�	�����A

i
ym�ym	 � ��	

The use of the product operator for fuzzy AND pro�
duces a smoother control surface� in contrast to com�
monly used fuzzy min operator� Links between the
rule layer� the output layer and the input membership
functions are adaptive during learning�
In the output layer each node receives inputs from

all rule nodes connected to this output node and pro�
duces the actual output of the FNN� Output ul of the
FNN is obtained using the weighted average

ul �

P
i �iw

i
lP

i �i
� ��	

Use of the weighted average allow us to avoid prob�
lems with the commonly used center of area �COA	
defuzzi�cation that can produce unpredictable re�
sults�
A block diagram of the overall FNN control system

is presented in Fig� � ����
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Fig� �� Block diagram of the overall FNN control system�

The FNN structure generation and parameter tun�
ing algorithms are as follows� We generate the
training input�output data for the selected reference
model� We need to specify the allowable error thresh�
old � and�or the maximum number of rules �rule
nodes	 Ni for learning to stop�
Initially we add two equally spaced fully overlap�

ping shouldered input membership functions along
the operating range of each input variable� In
such a way these membership functions satisfy ��
completeness ���� If the ��completeness is not sat�
is�ed� there may be no rule applicable for a new data
input� The initial rule layer is created using Eq� ��	�

The network is trained using the following learning
rules

wi
l�k � �	 � wi

l�k	� �
	�l
	wi

l

� �	

Ai
q�k � �	 � Ai

q�k	� �
	�l
	Ai

q

� ��	

where � is the learning rate�
The learning rate � varies to improve the speed

of convergence� as well as the learning performance
�accuracy	�
If the degree of overlapping of membership func�

tions is greater than a pre�speci�ed threshold� we
combine those membership functions� We use the
following fuzzy similarity measure ���

E�A�� A�	 �
M�A� � A�	

M�A� � A�	
� ��	

where � and � denote the intersection and the
union of two fuzzy sets A� and A�� respectively� and
E�A�� A�	 is a degree of A� � A�� M��	 is the size
of a fuzzy set� and � � E�A�� A�	 � �� We can thus
reduce the size of the rule base� which is necessary
in order to protect the network from the �curse of
dimensionality��
If the accuracy of the FNN is satisfactory� the

algorithm stops� Otherwise� if the number of rule
nodes is less than the speci�ed maximum� we add an
additional membership function for all inputs at the
point of the maximum system output error� In such
a way we are able to reduce the error more e
ciently�
By �rstly eliminating the errors whose deviation from
the target values is the greatest� we can speed up the
convergence of the network substantially� Next� the
rule base is updated and the process is repeated until
either we obtained a satisfactory performance� or the
maximum pre�speci�ed size of the network �number
of rules	 is exceeded�

�� Problem Description

Tight control of polymer properties is one of the ma�
jor problems in polymerization processes� In free�
radical polymerization processes� controlling both re�
actor temperature and the number�average molecular
weight is of primary importance� This is achieved by
manipulating the volumetric �ow rates of the initiator
and the cooling water into the reactor�
Conventional control of polymerization reactors is

based on the single�input�single�output design princi�
ples� Until recently� control was implemented using
standard PI or PID controllers� The polymerization
process� however� is a typical multivariable system
with strong mutual interaction between process vari�
ables� A new design strategy is thus necessary to over�
come the problem of the mutual interaction and is im�
portant for the improvement of control accuracy and
robustness to disturbances and noise� As the chemi�
cal industry requires a better product quality under
constantly increasing environmental� operational and



energy restrictions� a viable scheme for control is of
substantial interest to the industry� Consequently�
considerable industrial research e�ort ���� ���� ���� has
been devoted to �nding the best possible solution�

The presence of the computer in control loops en�
ables us to investigate the use of more sophisticated
control methods such as fuzzy neural networks� We
propose to use a recurrent FNN controller dynami�
cally constructed from the process input�output data
and a reference model for direct MRAC� The per�
ceived bene�ts of using FNN include reductions in
commissioning time� better�tuned control over a di�
verse polymer product range� improved control over
changes of process characteristics during polymeriza�
tion� the ability to control nonlinear e�ects in control
loops� and robustness to process disturbances and
noise�

The continuous stirred tank polymerization reac�
tor �CSTR	 is shown in Fig� � ���� A free�radical
polymerization of methyl methacrylate �MMA	 takes
place in the rector� with azo�bis�isobutyronitrile
�AIBN	 as initiator and toluene as solvent� The reac�
tion is exotermic and a cooling jacket allows the heat
removal� The standard mechanism of free�radical
polymerization is assumed� together with the result�
ing rate laws ����

The following assumptions were made� perfect mix�
ing of the reactor contents� constant density of the
reacting mixture �no volume shrinkage	� gel e�ect is
absent �due to low monomer conversion	� constant
reactor volume �constant volumetric �ow rate of the
monomer stream	� no polymer in the �uids in inlet
streams� constant heat capacity of the reacting mix�
ture� uniform coolant temperature in the jacket� in�
sulated reactor and cooling system� constant heat ca�
pacity of the coolant� negligible initiator solution �ow
rate in comparison to that of the monomer stream�
negligible inhibition and chain transfer to solvent re�
actions� quasi�steady state and long�chain hypothesis�

The dynamic behaviour of the process is described
by the mass and energy balances as a set of ordi�
nary di�erential equations ���� ���� Consult ��� for
the ordinary di�erential equations involved and the
kinetic data� physical parameters� and steady�state
values used�

The dimensionless state variables are de�ned as
follows� x� � Cm� x� � CI � x� � T� x� � D�� x� �
DI � x� � Tj �Fig� �	� The control of a polymerization
reactor requires the number�average molecular weight
�NAMW	 y� � DI
D� and the reactor temperature
y� � T to be regulated� This is achieved by manipu�
lating the inlet initiator volumetric �ow rate u� � FI
and the cooling water volumetric �ow rate u� � Fcw�
The process disturbances are the molar concentration
of monomer in the inlet stream d� � Cmin

and the
temperature of the inlet stream d� � Tin�

Monomer + Solvent Initiator

T j

C

F T C FI Iin

m T D 0

F C I D1

inC min
T in

F cw

owT

Fig� �� Continuous stirred tank polymerization reactor� Here
F is the volumetric �ow rate of the inlet and outlet streams�
Cmin is the molar concentration of monomer in inlet stream�
Tin is temperature of the inlet streams� CIin is the molar con	
centration of the initiator in inlet stream� FI is the volumetric
�ow rate of the inlet initiator stream� TwO is the temperature
of the inlet coolant stream� Fcw is the volumetric �ow rate
of the cooling water� CI is the molar concentration of the
initiator� D� is the mass concentration of the dead polymer
chains� Cm is the molar concentration of the monomer� T is
the reactor temperature� DO is the molar concentration of the
dead polymer chains� and Tj is the cooling jacket temperature�

�� Simulation Results

The robustness to disturbances and noise of the dy�
namically constructed recurrent FNN was evaluated
by numerical simulations�

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 200 400 600 800 1000

T
 (

no
rm

al
iz

ed
)

Time (samples)

T

Fig� 
� Time responses for uncontrolled reactor temperature
�T� in the presence of molar concentration of monomer and the
temperature in inlet steam disturbances� and the measurement
noise�

We used as a reference model Butterworth�s ���
characteristic equation for the �th order system

s� ������ns
� � ������

ns
� � ������

ns
� � ������

ns� ��

n

��	
where �n is a natural frequency of the system� This
form of characteristic equation gives us a damping ra�
tio � � ����� and the settling time can be determined
through approximate relationship ts � ����n�
We used the input�output data generated using

above reference model to train our FNN� We have
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Fig� �� Time responses for reactor temperature �T� in the pres	
ence of molar concentration of monomer and the temperature
in inlet steam disturbances� and the measurement noise with
PI controllers�

generated ���� input�output data tuples using �fth
order Runge�Kutta integrator ��� with a sampling
time h � ����� for the numerical integration of the set
of ordinary di�erential equations describing the pro�
cess� In order to prevent numerical ill�conditioning�
all equations were �rstly appropriately normalized by
dividing the deviation of each variable from its nom�
inal operating value by its nominal operating value�
Thus we obtained variables values that are zero at
the nominal operating condition and have roughly
equivalent ranges� We applied ��� square wave dis�
turbance to the inlet monomer molar concentration
Cmin

and ��� square wave disturbance to inlet tem�
perature Tin with a frequency �� dimensionless units�
We also applied zero�mean white measurement noise
with a variance ���� and a sampling time ������ The
disturbances and noise were applied concurrently to
represent a real situation when the disturbances and
noise in the polymerization reactor are present at the
same time�

The FNN was trained using on�line learning us�
ing �rst ��� samples for training� the other ��� for
validation of network�s ability to generalize� and the
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Fig� �� Time responses for reactor temperature �T� in presence
of molar concentration of monomer and the temperature in
inlet steam disturbances� and the measurement noise with the
FNN controller�

whole data for �nal testing of a resulted network� For
comparison two PI controllers were used for the same
process� The parameters of the PI controller� i� e�� the
gain Kc � �� and the integral time constant I � ����
were the same as used in ����
Simulation results are presented in Fig� ���� While

rejecting the process disturbances and noise to some
extend� the performance of the PI controller is not
totally satisfactory �Fig�  and �	� On the contrary�
our FNN controller is able to reject the disturbances
and noise almost completely �Fig� � and �	�
A quantitative summary of the results is given in

Table ��

RMSE
Uncontrolled PI FNN

D��Do �������� �������� ������
T ������ �����
� ��������

Table� �� Root Mean Squared Error �RMSE� for the reactor
temperature and the number	average molecular weight for un	
controlled� PI and FNN controlled cases�
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lar weight �NAMW� in presence of molar concentration of
monomer and the temperature in inlet steam disturbances� and
the measurement noise with the FNN controller�

�� Conclusion

In this work we have discussed the bene�ts of using
our dynamically constructed recurrent FNN for mul�
tivariable nonlinear control on a real�world example
of control of polymerization reactor� The e�ective�
ness of our approach was demonstrated by simula�
tion results and is compared with the performance
of the conventional PI controllers� Exploiting the
advantage of nonlinear control� our dynamically con�
structed FNN signi�cantly increases the control ro�
bustness compared to linear PI controllers� We argue
that our dynamically constructed recurrent FNN with
both structure and parameter learning can provide a
computationally e
cient solution to control of many
real�world nonlinear systems in presence of distur�
bances�
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