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Abs t rac t .  Approaches to data mining proposed so far are mainly sym- 
bolic decision trees and numerical feedforward neural networks methods. 
While decision trees give, in many cases, lower accuracy compared to 
feedforward neural networks, the latter show black-box behaviour, long 
training times, and difficulty to incorporate available knowledge. We pro- 
pose to use an incrementally-generated recurrent fuzzy neural network 
which has the following advantages over feedforward neural network ap- 
proach: ability to incorporate existing domain knowledge as well as to 
establish relationships from scratch, and shorter training time. The re- 
current structure of the proposed method is able to account for temporal 
data changes in contrast to both both feedforward neural network and de- 
cision tree approaches. It can be viewed as a gray box which incorporates 
best features of both symbolic and numerical methods. The effectiveness 
of the proposed approach is demonstrated by experimental results on a 
set of standard data mining problems. 

1 I n t r o d u c t i o n  

Data mining is one of the most promising fields for application of intelligent in- 
formation processing technologies. A main aim of data  mining is to extract useful 
patterns and nontrivial relationships from large collections of data records [3], 
[5], [10], [17]. This method can provide users with a powerful tool for exploiting 
vast amount of stored data. 

The most popular approaches to data mining include symbolic [2], [7], [11] 
and neural [6], [9], [15] models. Symbolic models are represented as either sets of 
IF - THEN rules, or decision trees generated through symbolic inductive algo- 
rithms [2], [7], [11]. A neural model [6], [9], [15] is represented as an architecture 
of weighted nodes, each of which incorporates a thresholding function. While, 
in many cases, neural networks lead to more accurate classification results at 
the expense of long training time, it is difficult to incorporate available domain 
knowledge into neural networks [13], [14]. Traditionally, neural networks are not 
able to articulate knowledge in the form of classification rules [13], [14]; however, 
there exist techniques for extracting certain types of rules from trained neural 
networks [6], [9], [15]. 

The following characteristics of real world data  may case difficulties to neural 
and /o r  symbolic learning techniques in data  mining: 
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1. Temporal changes of data: During the database lifetime the contents of 
database can change. None of the existing symbolic or numerical approaches 
is able to account for this temporal changes of data, i.e., these classifiers 
need to be completely retrained as data change, which is undesirable in 
most real-world situations. 

2. Need for data preprocessing: Most databases are not designed for data  min- 
ing. Some existing approaches [1], [9] need special coding of the data  before 
data  mining. This may not be suitable for real-world situations as the user 
is usually not an expert on the method used for data  preprocessing. 

3. Use of existing knowledge: Whenever there exist expert  knowledge on the 
database it is advantageous to be able to use it. Feedforward neural network 
approaches [9] are not able to incorporate the available expert knowledge. 

4. Data volume: Million of records exist in many databases. Since the feed- 
forward neural network [9] starts with a full-sized network, which is then 
pruned to an optimal size, the initial network can be too large in a large 
dimensional situation. 

Fuzzy neural network (FNN) technique can be used as a bridge between 
numerical and symbolic data representations. Since fuzzy logic has an affinity 
with the human knowledge representation, it should become a key component 
of data  mining system. One advantage of using fuzzy logic is that  we can ex- 
press knowledge about a database in a manner which is natural  for people to 
comprehend. 

In this paper we present a dynamically constructed FNN which can offer solu- 
tions to the abovementioned problems. Our FNN can reduce the computational 
cost as it starts with a minimal rule base which increases only when new input 
data  requires so, at the same time constantly removing irrelevant inputs, rules, 
and rules conditions which no longer match the data. Dynamical construction of 
the network also eliminates the trial-and-error determination of the size of the 
hidden layer in feedforward neural networks [9] and creates a minimal network, 
thereby reducing the risk of overfitting. The proposed FNN does not need any 
preprocessing or postprocessing of the data  as required in [1] and [9], which is 
desirable from the user's point of view. The recurrent structure of the proposed 
network is able to deal with temporal data changes without the requirement to 
retrain the classifier in contrast to both decision trees [11] and feedforward neural 
networks [9]. The presented FNN is able to incorporate existing domain knowl- 
edge in the form of IF-THEN rules, in contrast to feedforward neural networks 
[9]. 

X. Z. Wang et al [16] used fuzzy neural network for decision making. Our 
approach is different from X. Z. Wang et al [16] in the following aspects. Firstly, 
our FNN approach is recurrent on-line method which is bottom-up constructed 
from scratch, thereby generating only a small number of rules, whereas in [16] 
the initial number of rules is equal to the number of data  tuples, which may be 
too large for large datasets. Secondly, our FNN is able to eliminate irrelevant 
inputs, rules, and rule conditions, which is necessary to effectively process a large 
amount of data. X. Z. Wang et al [16] used a confidence factor CF, representing 
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reliability of of the rules, defined as 

CF = #Tel #Fcl #T~I~ / ER  , 

where #Tel, #Fc~ , ~THll are membership values for variables Tel, Fc1, THIn, 
respectively, and ER is the error. Then a A - Cut value was defined as the 
threshold for the rule to be worth keeping. In such way the rule base size can be 
reduced. However, in the example given with a A - Cut × 10 = 6.0, the reduced 
rule base still has multiple instances of the same rule, which makes the rule base 
ambiguous. For example, rules 2 and 10 are exactly the same, 

IF Fc1 is Normal (# = 0.61) and Tel is Normal (# = 1.00) 

THEN THIn is Normal (# = 0.67) , 

and rules 40 and 47 are different only in membership values, i.e., the rule 40 is 

IF Fc1 is High (# = 0.67) and Tel is High (# = 0.19) 

THEN THIn is Normal (# = 0.55) , 

and the rule 47 is 

IF Fc1 is High (it = 1.00) and Tc~ is High (# = 1.00) 

THEN THin is Normal (# = 0.22) 

Consequently, it is difficult to see which rule is applicable to which case. 
The FNN of Khan et al [8] is partially recurrent, i.e. the recurrent link is 

between the hidden and the input layer. As the output of the hidden layer and the 
network are equivalent only for the case where the network has one hidden node 
and one output  node, the recurrency (current inputs depend on past outputs) 
has ambiguous meaning. Our FNN is fully recurrent, i.e., the recurrent link is 
from the output  to the input layer, which results in the clear interpretation Of 
the rule base. In addition, the network of Khan et at [8] is not self-constructing 
and it does not have a facility for elimination of irrelevant inputs, rules, and rule 
conditions, which make it unsuitable for large scale problems. 

2 Fuzzy Neural Network Structure and Learning 
Algorithm 

The structure of the proposed FNN is shown in Fig. 1. The network consists of 
four layers, i.e., the input layer, the input membership functions layer, the rule 
layer, and the output layer. The input nodes represent input variables consisting 
of the current inputs and the previous outputs. This recurrent structure provides 
the possibility to include temporal information, i.e., the network learns dynamic 
input-output mapping instead of static mapping as is feedforward neural net- 
works [9]. It also speeds up the convergence of the network. In databases, data  
fields are either numerical or categorical. The input membership functions layer 
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generates input membership functions for numerical inputs, i.e., numerical data 
values are converted to categorical values. For example, the numerical values of 
age are converted to categorical values of young, middle-aged, and old. Each in- 
put node is connected to all membership function nodes for this input. We used 
piecewise linear-triangular membership functions for computational efficiency. 
The leftmost and rightmost membership functions are shouldered. Rule nodes 
are connected to all input membership function nodes and output nodes for 
this rule. Each rule node performs product of its inputs. The input membership 
functions act as fuzzy weights between the input layer and the rule layer. Links 
between the rule layer, the output layer and the input membership functions are 
adaptive during learning. In the output layer each node receives inputs from all 
rule nodes connected to this output node and produces the actual output of the 
system. 

Output Layer 

Rule Layer 

Input Membership 
Function Layer 

Input Layer 

Fig. 1. The structure of our fuzzy neural network 

The FNN structure-generation and learning algorithm is as follows: 

0. Start with the number of input nodes equal to the sum of the input variables 
consisting of the current inputs and the past outputs (n+m), and the number 
of output nodes equal to the number of output variables (m). The rule layer 
is empty, i.e., there are initially no rules in the rule base; 

1. Add two equally spaced input membership functions along the operating 
range of each input variable. In such a way these membership functions will 
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satisfy e - c o m p l e t n e s s ,  which means that  for a given value of x of one of the 
inputs in the operating range, we can always find a linguistic label A such 
that  #A(X)  ~_ e. If the e - c o m p l e t n e s s  is not satisfied, there may be no rule 
applicable for a new data  input; 

2. Create initial rule base layer using the following form for rule i: 

Rule 

and 

i :  IF xt is A~ and ... xn  is A~n 

y l ( k - 1 )  is A~ and ... y , ~ ( k - r )  is d ~  (1) 

• i THEN Yl = w~ , ... , ym = Wm , 

(l = 1, 2, .., m) are the current inputs and the past outputs, where xj and yt 
respectively, w~ is a real number. Here A} is the membership function of the 
antecedent part  of the i rule for the j input node, k is the time, and r is the 
delay. The membership value #~ of the premise of the i th rule is calculated 
as fuzzy AND using the product operator 

(2) • . A2(x2) . . . . .  A~n(Xn) . #i = A~ (Xl) i 

The  output  yl of the fuzzy inference is obtained using weighted average 

E i  . (3) 
Yl - -  ~ I~i , 

3. Train the network using the following learning rules 

0el w (k + 1) = w (k) - ?]aw  (4) 

d ~ ( k  + 1) = A~(k)  - ?]~OOAl~ , (5) 

where ?] is the learning rate. The objective is to minimize an error function 

1 
el = ~(Yl - Ydl) 2 , (6) 

where y~ is the current output,  Ydl is the target output.  The learning rate 
?] is adaptive to improve the speed of convergence, as well as the learning 
performance (accuracy). We start  with a basic learning rate to enhance the 
learning speed. Whenever el changes its sign, the learning rate is reduced 
according to the following iterative formula 

?]new = rC  ?]old , ( 7 )  

where rc is a coefficient in the range (0, 1). The learning error ¢z asymp- 
totically approaches zero or a pre-specified small value > 0 as the iteration 
number k increases; 
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4. If the degree of overlapping of membership functions is greater than a thresh- 
old (e.g. 0.9), combine those membership functions. We use the following 
fuzzy similarity measure [4] 

M(A1 N A2) 
Degree(A1 = d2) = E(A1, A2) - M(A1 U A2) ' (8) 

where ¢q and U denote the intersection and the union of two fuzzy sets A1 and 
A2, respectively. M(.) is the size of a fuzzy set, and 0 < E(A1, A2) < 1. If an 
input variable ends up with only one membership function, which means that  
this input is irrelevant, delete the input. We can thus eliminate irrelevant 
inputs and reduce the size of the rule base. If the classification accuracy of 
FNN is below the requirement (e.g. 99%), and the number of rules is less 
than the specified maximum, go to step 6. Otherwise, go to step 5; 

5. The generated rules are evaluated for accuracy and generality. We use a 
weighting parameter between accuracy and generality, the rule applicability 
coefficient (weighting of the rules) (WR)  which is defined as the product  of 
the number of the rule activations RA by the accuracy of the rule A in terms 
of misclassifications. All rules whose rule applicability coefficient W R  falls 
below the defined threshold (e.g. 10) are deleted. Elimination of rule nodes 
is rule by rule, i.e., when a rule node is deleted, associated input membership 
nodes and links are deleted as well. By varying W R  threshold a user is able 
to specify the degree of rule base compactness. The size of the rule base can 
thus be kept minimal. If the classification accuracy of the FNN after pruning 
is below the requirement (e.g. 90%), go to step 6, otherwise stop; 

6. Add additional membership function for each input at its value at the point 
of the maximum output misclassification error. One vertex of additional 
membership function is placed at the value at the point of the maximum 
output  error and has membership value unity; the other two vertices lie at the 
centers of the two neighbouring regions, respectively, and have membership 
values zero. As the output of the network is not a binary 0 or 1, but  a 
continuous function in the range from 0 to 1, by firstly eliminating the errors 
whose deviation from the target values is the greatest, we can speed up the 
convergence of the network substantially; 

7. Update the rule base layer in the same way as in step 2; 
8. Retrain the network with the updated rule base layer using the algorithm 

given in step 3; 
9. Go to step 4. 

3 E x p e r i m e n t a l  R e s u l t s  

To test our algorithm we used ten classification problems of different complexity 
defined in [1] on synthetic database with nine attributes given in Table 1. At- 
tributes elevel, car and zipcode are categorical, and all others are non-categorical. 
F~nctions 1 to 5 have predicates with one (function 1), two (functions 2 and 4), 
and three at tr ibute values (functions 4, 5, and 6). Functions 7 to 9 are linear 
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functions and function 10 is a non-linear function of at tr ibute values. Consult 
Agrawal et al [1] for detailed description of the database and the functions. 

Attribute 

salary 
commission 

age 
elevel 

car 
zipcode 
hvalue 

hyers 
loan 

Table 1. Description of attributes adapted from [1] 

Description Value 

salary uniformly distributed from 20K to 150K 
commission salary _> 75K => commission -- 0 else 

uniformly distributed from 10k to 75K 
age uniformly distributed from 20 to 80 

education level uniformly chosen from 0 to 4 
make of the car 

zip code of the town 
uniformly chosen from 1 to 20 

uniformly chosen from 9 available zipcodes 
value of the house uniformly distributed from n50K to n150K 

where n E 0...9 depends on zipcode 
years house owned uniformly distributed from 1 to 30 
total loan amount uniformly distributed from 0 to 500K 

Attribute values were randomly generated according to uniform distribution 
as in [1]. For each experiment we generated 1000 training and 1000 test data 
tuples. As the tuples were classified into two classes only (Groups A and B), a 
single output  node was sufficient. Default class was Group B. The target output  
was 1 if the tuple belongs to Group A, and 0 otherwise. We used the random 
data  generator with the same perturbation factor p = 5% as in [1] to model 
fuzzy boundaries between classes. For comparison with our approach we used 
decision trees algorithms C4.5 and C4.5rules [12] on the same data sets. We 
also compared our results with those of a pruned feedforward neural network 
(NeuroRule) of Lu et al reported in [9] for the same classification problems. 
Table 2 shows the accuracy on the test data set, the number of rules, and the 
average number of conditions per rule, for all three approaches, with two sets 
of FNN parameters. We report  only the rules for class A for C4.5 to make the 
comparison more objective, as C4.5 generates rules for both A and B classes, 
while both our FNN and NeuroRule [9] generate rules only for class A, using 
class B as a default rule. 

With the first set of parameters in Table 2 (indicated by FN1) and compared 
to NeuroRule, our FNN produces the rule bases of less complexity for all func- 
tions, except 7 and 9. The FNN gives better  accuracy for functions 6, 7, and 9, 
the same for function 1, and worse for the rest. Compared to C.4.5, the FNN 
gives less complex rule bases for functions 2, 4, and 9, the same for functions 2, 
4, and 7, and more complex for the rest. Our FNN gives bet ter  accuracy than 
C4.5 on function 8, 9, and 10, similar for function 1, 6, and 7 and worse for the 
rest. The results for functions 8 and 10 were not reported in [9] (indicated by 
"N/A" in Table 2) as these functions lead to highly skewed data. 
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Table 2. Accuracy rates on the test data set, the number of rules, and the average 
number of conditions per rule for NeuroRule (NR) (performance data taken from [9]), 
the C4.5, and the FNN (FN). FN1 uses the following parameters: the learning rate 
7/= 0.0001, the coefficient for learning rate adaptation rc = 0.9, required classification 
accuracy for training 99%, required classification accuracy after pruning 90%, max- 
imum number of rules = 20, degree of overlapping of membership functions = 0.9, 
weighting of the rules W R  = 10, maximum number of iterations k = 10. FN2 uses the 
same parameters as FN1, except weighting of the rules W R  = 15 

F~nc. Accuracy 

NR C4.5 FN1 FN2 
1 99.91 99.9 99.9 100 
2 98.13 99.4 96.8 }3.3 
3 98.18 99.8 97.5 100 
4 95.45 99.3 95.0 95.3 
5 97.16 98.6 96.4 93.0 
6 90.78 95.8 94.7 95.1 
7 90.50 95.4 95.2 95.9 
8 !N/A 98.1 99.1 98.9 
9 90.96 92.6 96.7 97.2 

1 0  ....... N/A 95.5 96.0 97.0 

No. of Rules No. of Conditions 

NR C4.5 FN1 FN2 NR Ic4 iFN1 FN2 
t 

2.03 2 2 3 2.23i 1 1 1 
7.13 3 3 .... 4 4.37 3.33 2.33 2 .... 
6.70 5 5 6 3.18 2 2 2 
13.37 11 7 8 4.17 4.18 3.14 3.13 
24.40 4 5 7 4.68 4.75 4.2 4 
13.13 8 9 10 4.61 3.37 3 3.1 
7.43 12 10 13 2.94 2.17 2.9 2.54 
N/A 2 3 4 N/A 1 ~,2.67 2.75 
9.03 12 9 i i  3.46 2.75 3.56 3.64! 
N/A 6 8 9 N/A 2.17 4:5 4.67 

In Table 2 for FN1 we attempted to obtain the most compact rule base to al- 
low for easy analysis of the rules for very large databases, and thus easy decision 
making in real-world situations. If accuracy is more important than compactness 
of the rule base, it is possible to use our FNN with more strict accuracy require- 
ment, i.e., a higher threshold for pruning the rule base (WR), thereby producing 
more accurate rules at the expense of rule base complexity. The final decision 
regarding complexity versus accuracy of the rules is application specific. Table 
2 shows the performance comparison with a weaker compactness constrain, i.e., 
a larger W R ,  for FN2. In this case the FNN offers similar or better accuracy 
compared to both C4.5 and NeuroRule, except for functions 2, 4, and 5. Com- 
paring the performance of FN2 with FN1, we see that relaxing the compactness 
constrain (increasing W R )  improves accuracy for functions 1, 3, 4, 6, 7, 9, and 
10. For functions 2, 5, and 8, however, relaxing the compactness constrain actu- 
ally results in lower accuracy, which means that  caution is necessary in selecting 
appropriate values of the weighting of the rules W R .  As all problems in the table 
are different, the different compactness constrain values for each function may 
be needed. We used the same W R  value for all functions to make a balanced 
comparison. 
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4 C o n c l u s i o n  a n d  D i s c u s s i o n  

In this paper we presented a dynamically-constructed recurrent fuzzy neural net- 
work for knowledge discovery from databases. Experiments were conducted to 
test the proposed approach to a well defined set of data  mining problems given 
by [1]. The results shows that  the presented approach is able to achieve accuracy 
and compactness comparable to both feedforward neural networks and decision 
tree methods, with more compact rule base than feedforward neural network for 
most of datasets used, and for some compared to decision tree approach. The 
proposed method is also able to achieve a higher accuracy on some datasets 
compared to both feedforward neural network and decision tree approaches. In- 
cremental on-line learning of the proposed approach requires less time compared 
to off-line training of feedforward neural network approaches [9] due to the local 
updating feature of fuzzy logic, i.e., our FNN only updates the rules applicable 
to a current data  while feedforward neural network globally updates the net- 
work. The proposed method eliminates extraction of symbolic rules phase in 
both decision trees and feedforward neural networks approaches. Our FNN per- 
mits updating of the rules along with changes in database contents due to its 
recurrent structure, in contrast to the decision tree and the feedforward neural 
networks methods. 

Another important  feature of databases need to be considered. Data may 
contain a certain level of noise due to statistical fluctuations or human errors. 
Using neural network based approach such as [9] and the one proposed in this 
paper should also greatly reduce the problem of data  noise, due to ability of 
neural networks to deal effectively with noisy data. Testing of the proposed 
FNN in this aspect is subject of a future work. 

R e f e r e n c e s  

1. Agrawal R., Imielinski T., and Swami A.: Database Mining: A Performance Per- 
spective. IEEE Trans. Knowledge and Data Engineering 5 (1993) 914-925 

2. Breiman L., Friedman J. H., Olshen R. A., and Stone C. J.: Classification and 
Regression Trees: Wansworth International (1984) 

3. Cercone N. and Tsuchiya M.: Special Issue on Learning and Discovery in Knowledge- 
based Databases. IEEE Trans. Knowledge and Data Engineering 5 (1993) 

4. Dubois D. and Prade H.: A Unifying View of Comparison Indices in a Fuzzy Set 
Theoretic Framework. in Yager R. R. (ed.) Fuzzy Sets and Possibility Theory: Re- 
cent Developments: Pergamon NY (1982) 

5. Frawley W. J., Piatetsky-Shapiro G., and Matheus C. J.: Knowledge Discovery 
in Databases: An Overview. In Piatetsky-Shapiro G. and Frawley W. J. (eds.): 
Knowledge discovery in databases: AAAI Press/MIT Press (1991) 1-27 

6. Gallant S. I.: Connectionist Expert Systems. Communications of the ACM 32 (1988) 
153-168 

7. Kerber R.: Learning Classification Rules from Examples. Proc. 1991 AAAI Work- 
shop on Knowledge Discovery in Databases: AAAI (1991) 

8. Khan E. and Unal F.: Recurrent Fuzzy Logic Using Neural Networks. Proc. 1994 
IEEE Nagoya World Wisepersons Workshop (1994) 48-55 



131 

9. Lu H., Setiono R., and Liu H.: Effective Data Mining Using Neural Networks. IEEE 
Trans. on Knowledge and Data Engineering 8 (1996) 957-961 

10. Piatetsky-Shapiro G.: Special Issue on Knowledge Discovery in Databases - from 
Research to Applications. Int. J. of Intelligent Systems 5 (1995) 

11. Quinlan J. R.: Induction of Decision Trees. Machine Learning 1 (1986) 81-106 
12. Quinlan J. R.: C4.5:Programs for Machine Learning Morgan Kaufmann: San Mateo 

CA (1993) 
13. Quinlan J. R.: Comparing Connectionist and Symbolic Learning Methods. In S. 

Hanson, G. Drastall, and R. Rivest (eds.): Computational Learning Theory and 
Natural Learning Systems: MIT Press 1 (1994) 445-456 

14. Shavlik J. W., Mooney R. J., and Towell G. G.: Symbolic and Neural Learning 
Algorithms: An Experimental Comparison. Machine Learning 6 (1991) 111-143 

15. Towell G. G. and Shavlik J. W.: Extracting Refined Rules From Knowledge-based 
Neural Networks. Machine Learning 13 (1993) 71-101 

16. Wang X. Z., Chen B. H., Yang S. H., McGreavy C., Lu M. L.: Fuzzy Rule Genera- 
tion From Data for Process Operational Decision Support. Computer and Chemical 
Engineering 21 (1997) 661-666 

17. Wu X.: Knowledge Acquisition from Databases. Ablex Publishing: Norwood NJ 
(1995) 


