
Data Mining Using Dynamically Constructed
Recurrent Fuzzy Neural Networks

Yakov F~ayman and Lipo Wang

Deakin University, School of Computing and Mathematics,
662 Blackburn Road, Clayton, Victoria 3168, Australia
E-mail: yfraym~deakin.edu.au, lwang@deakin.edu.au

Abs t rac t . Approaches to data mining proposed so far are mainly sym-
bolic decision trees and numerical feedforward neural networks methods.
While decision trees give, in many cases, lower accuracy compared to
feedforward neural networks, the latter show black-box behaviour, long
training times, and difficulty to incorporate available knowledge. We pro-
pose to use an incrementally-generated recurrent fuzzy neural network
which has the following advantages over feedforward neural network ap-
proach: ability to incorporate existing domain knowledge as well as to
establish relationships from scratch, and shorter training time. The re-
current structure of the proposed method is able to account for temporal
data changes in contrast to both both feedforward neural network and de-
cision tree approaches. It can be viewed as a gray box which incorporates
best features of both symbolic and numerical methods. The effectiveness
of the proposed approach is demonstrated by experimental results on a
set of standard data mining problems.

1 I n t r o d u c t i o n

Data mining is one of the most promising fields for application of intelligent in-
formation processing technologies. A main aim of data mining is to extract useful
patterns and nontrivial relationships from large collections of data records [3],
[5], [10], [17]. This method can provide users with a powerful tool for exploiting
vast amount of stored data.

The most popular approaches to data mining include symbolic [2], [7], [11]
and neural [6], [9], [15] models. Symbolic models are represented as either sets of
IF - THEN rules, or decision trees generated through symbolic inductive algo-
rithms [2], [7], [11]. A neural model [6], [9], [15] is represented as an architecture
of weighted nodes, each of which incorporates a thresholding function. While,
in many cases, neural networks lead to more accurate classification results at
the expense of long training time, it is difficult to incorporate available domain
knowledge into neural networks [13], [14]. Traditionally, neural networks are not
able to articulate knowledge in the form of classification rules [13], [14]; however,
there exist techniques for extracting certain types of rules from trained neural
networks [6], [9], [15].

The following characteristics of real world data may case difficulties to neural
and /o r symbolic learning techniques in data mining:

123

1. Temporal changes of data: During the database lifetime the contents of
database can change. None of the existing symbolic or numerical approaches
is able to account for this temporal changes of data, i.e., these classifiers
need to be completely retrained as data change, which is undesirable in
most real-world situations.

2. Need for data preprocessing: Most databases are not designed for data min-
ing. Some existing approaches [1], [9] need special coding of the data before
data mining. This may not be suitable for real-world situations as the user
is usually not an expert on the method used for data preprocessing.

3. Use of existing knowledge: Whenever there exist expert knowledge on the
database it is advantageous to be able to use it. Feedforward neural network
approaches [9] are not able to incorporate the available expert knowledge.

4. Data volume: Million of records exist in many databases. Since the feed-
forward neural network [9] starts with a full-sized network, which is then
pruned to an optimal size, the initial network can be too large in a large
dimensional situation.

Fuzzy neural network (FNN) technique can be used as a bridge between
numerical and symbolic data representations. Since fuzzy logic has an affinity
with the human knowledge representation, it should become a key component
of data mining system. One advantage of using fuzzy logic is that we can ex-
press knowledge about a database in a manner which is natural for people to
comprehend.

In this paper we present a dynamically constructed FNN which can offer solu-
tions to the abovementioned problems. Our FNN can reduce the computational
cost as it starts with a minimal rule base which increases only when new input
data requires so, at the same time constantly removing irrelevant inputs, rules,
and rules conditions which no longer match the data. Dynamical construction of
the network also eliminates the trial-and-error determination of the size of the
hidden layer in feedforward neural networks [9] and creates a minimal network,
thereby reducing the risk of overfitting. The proposed FNN does not need any
preprocessing or postprocessing of the data as required in [1] and [9], which is
desirable from the user's point of view. The recurrent structure of the proposed
network is able to deal with temporal data changes without the requirement to
retrain the classifier in contrast to both decision trees [11] and feedforward neural
networks [9]. The presented FNN is able to incorporate existing domain knowl-
edge in the form of IF-THEN rules, in contrast to feedforward neural networks
[9].

X. Z. Wang et al [16] used fuzzy neural network for decision making. Our
approach is different from X. Z. Wang et al [16] in the following aspects. Firstly,
our FNN approach is recurrent on-line method which is bottom-up constructed
from scratch, thereby generating only a small number of rules, whereas in [16]
the initial number of rules is equal to the number of data tuples, which may be
too large for large datasets. Secondly, our FNN is able to eliminate irrelevant
inputs, rules, and rule conditions, which is necessary to effectively process a large
amount of data. X. Z. Wang et al [16] used a confidence factor CF, representing

124

reliability of of the rules, defined as

CF = #Tel #Fcl #T~I~ / ER ,

where #Tel, #Fc~ , ~THll are membership values for variables Tel, Fc1, THIn,
respectively, and ER is the error. Then a A - Cut value was defined as the
threshold for the rule to be worth keeping. In such way the rule base size can be
reduced. However, in the example given with a A - Cut × 10 = 6.0, the reduced
rule base still has multiple instances of the same rule, which makes the rule base
ambiguous. For example, rules 2 and 10 are exactly the same,

IF Fc1 is Normal (# = 0.61) and Tel is Normal (# = 1.00)

THEN THIn is Normal (# = 0.67) ,

and rules 40 and 47 are different only in membership values, i.e., the rule 40 is

IF Fc1 is High (# = 0.67) and Tel is High (# = 0.19)

THEN THIn is Normal (# = 0.55) ,

and the rule 47 is

IF Fc1 is High (it = 1.00) and Tc~ is High (# = 1.00)

THEN THin is Normal (# = 0.22)

Consequently, it is difficult to see which rule is applicable to which case.
The FNN of Khan et al [8] is partially recurrent, i.e. the recurrent link is

between the hidden and the input layer. As the output of the hidden layer and the
network are equivalent only for the case where the network has one hidden node
and one output node, the recurrency (current inputs depend on past outputs)
has ambiguous meaning. Our FNN is fully recurrent, i.e., the recurrent link is
from the output to the input layer, which results in the clear interpretation Of
the rule base. In addition, the network of Khan et at [8] is not self-constructing
and it does not have a facility for elimination of irrelevant inputs, rules, and rule
conditions, which make it unsuitable for large scale problems.

2 Fuzzy Neural Network Structure and Learning
Algorithm

The structure of the proposed FNN is shown in Fig. 1. The network consists of
four layers, i.e., the input layer, the input membership functions layer, the rule
layer, and the output layer. The input nodes represent input variables consisting
of the current inputs and the previous outputs. This recurrent structure provides
the possibility to include temporal information, i.e., the network learns dynamic
input-output mapping instead of static mapping as is feedforward neural net-
works [9]. It also speeds up the convergence of the network. In databases, data
fields are either numerical or categorical. The input membership functions layer

125

generates input membership functions for numerical inputs, i.e., numerical data
values are converted to categorical values. For example, the numerical values of
age are converted to categorical values of young, middle-aged, and old. Each in-
put node is connected to all membership function nodes for this input. We used
piecewise linear-triangular membership functions for computational efficiency.
The leftmost and rightmost membership functions are shouldered. Rule nodes
are connected to all input membership function nodes and output nodes for
this rule. Each rule node performs product of its inputs. The input membership
functions act as fuzzy weights between the input layer and the rule layer. Links
between the rule layer, the output layer and the input membership functions are
adaptive during learning. In the output layer each node receives inputs from all
rule nodes connected to this output node and produces the actual output of the
system.

Output Layer

Rule Layer

Input Membership
Function Layer

Input Layer

Fig. 1. The structure of our fuzzy neural network

The FNN structure-generation and learning algorithm is as follows:

0. Start with the number of input nodes equal to the sum of the input variables
consisting of the current inputs and the past outputs (n+m), and the number
of output nodes equal to the number of output variables (m). The rule layer
is empty, i.e., there are initially no rules in the rule base;

1. Add two equally spaced input membership functions along the operating
range of each input variable. In such a way these membership functions will

126

satisfy e - c o m p l e t n e s s , which means that for a given value of x of one of the
inputs in the operating range, we can always find a linguistic label A such
that #A(X) ~_ e. If the e - c o m p l e t n e s s is not satisfied, there may be no rule
applicable for a new data input;

2. Create initial rule base layer using the following form for rule i:

Rule

and

i : IF xt is A~ and ... xn is A~n

y l (k - 1) is A~ and ... y , ~ (k - r) is d ~ (1)

• i THEN Yl = w~ , ... , ym = Wm ,

(l = 1, 2, .., m) are the current inputs and the past outputs, where xj and yt
respectively, w~ is a real number. Here A} is the membership function of the
antecedent part of the i rule for the j input node, k is the time, and r is the
delay. The membership value #~ of the premise of the i th rule is calculated
as fuzzy AND using the product operator

(2) • . A2(x2) A~n(Xn) . #i = A~ (Xl) i

The output yl of the fuzzy inference is obtained using weighted average

E i . (3)
Yl - - ~ I~i ,

3. Train the network using the following learning rules

0el w (k + 1) = w (k) - ?]aw (4)

d ~ (k + 1) = A~(k) - ?]~OOAl~ , (5)

where ?] is the learning rate. The objective is to minimize an error function

1
el = ~(Yl - Ydl) 2 , (6)

where y~ is the current output, Ydl is the target output. The learning rate
?] is adaptive to improve the speed of convergence, as well as the learning
performance (accuracy). We start with a basic learning rate to enhance the
learning speed. Whenever el changes its sign, the learning rate is reduced
according to the following iterative formula

?]new = rC ?]old , (7)

where rc is a coefficient in the range (0, 1). The learning error ¢z asymp-
totically approaches zero or a pre-specified small value > 0 as the iteration
number k increases;

127

4. If the degree of overlapping of membership functions is greater than a thresh-
old (e.g. 0.9), combine those membership functions. We use the following
fuzzy similarity measure [4]

M(A1 N A2)
Degree(A1 = d2) = E(A1, A2) - M(A1 U A2) ' (8)

where ¢q and U denote the intersection and the union of two fuzzy sets A1 and
A2, respectively. M(.) is the size of a fuzzy set, and 0 < E(A1, A2) < 1. If an
input variable ends up with only one membership function, which means that
this input is irrelevant, delete the input. We can thus eliminate irrelevant
inputs and reduce the size of the rule base. If the classification accuracy of
FNN is below the requirement (e.g. 99%), and the number of rules is less
than the specified maximum, go to step 6. Otherwise, go to step 5;

5. The generated rules are evaluated for accuracy and generality. We use a
weighting parameter between accuracy and generality, the rule applicability
coefficient (weighting of the rules) (WR) which is defined as the product of
the number of the rule activations RA by the accuracy of the rule A in terms
of misclassifications. All rules whose rule applicability coefficient W R falls
below the defined threshold (e.g. 10) are deleted. Elimination of rule nodes
is rule by rule, i.e., when a rule node is deleted, associated input membership
nodes and links are deleted as well. By varying W R threshold a user is able
to specify the degree of rule base compactness. The size of the rule base can
thus be kept minimal. If the classification accuracy of the FNN after pruning
is below the requirement (e.g. 90%), go to step 6, otherwise stop;

6. Add additional membership function for each input at its value at the point
of the maximum output misclassification error. One vertex of additional
membership function is placed at the value at the point of the maximum
output error and has membership value unity; the other two vertices lie at the
centers of the two neighbouring regions, respectively, and have membership
values zero. As the output of the network is not a binary 0 or 1, but a
continuous function in the range from 0 to 1, by firstly eliminating the errors
whose deviation from the target values is the greatest, we can speed up the
convergence of the network substantially;

7. Update the rule base layer in the same way as in step 2;
8. Retrain the network with the updated rule base layer using the algorithm

given in step 3;
9. Go to step 4.

3 E x p e r i m e n t a l R e s u l t s

To test our algorithm we used ten classification problems of different complexity
defined in [1] on synthetic database with nine attributes given in Table 1. At-
tributes elevel, car and zipcode are categorical, and all others are non-categorical.
F~nctions 1 to 5 have predicates with one (function 1), two (functions 2 and 4),
and three at tr ibute values (functions 4, 5, and 6). Functions 7 to 9 are linear

128

functions and function 10 is a non-linear function of at tr ibute values. Consult
Agrawal et al [1] for detailed description of the database and the functions.

Attribute

salary
commission

age
elevel

car
zipcode
hvalue

hyers
loan

Table 1. Description of attributes adapted from [1]

Description Value

salary uniformly distributed from 20K to 150K
commission salary _> 75K => commission -- 0 else

uniformly distributed from 10k to 75K
age uniformly distributed from 20 to 80

education level uniformly chosen from 0 to 4
make of the car

zip code of the town
uniformly chosen from 1 to 20

uniformly chosen from 9 available zipcodes
value of the house uniformly distributed from n50K to n150K

where n E 0...9 depends on zipcode
years house owned uniformly distributed from 1 to 30
total loan amount uniformly distributed from 0 to 500K

Attribute values were randomly generated according to uniform distribution
as in [1]. For each experiment we generated 1000 training and 1000 test data
tuples. As the tuples were classified into two classes only (Groups A and B), a
single output node was sufficient. Default class was Group B. The target output
was 1 if the tuple belongs to Group A, and 0 otherwise. We used the random
data generator with the same perturbation factor p = 5% as in [1] to model
fuzzy boundaries between classes. For comparison with our approach we used
decision trees algorithms C4.5 and C4.5rules [12] on the same data sets. We
also compared our results with those of a pruned feedforward neural network
(NeuroRule) of Lu et al reported in [9] for the same classification problems.
Table 2 shows the accuracy on the test data set, the number of rules, and the
average number of conditions per rule, for all three approaches, with two sets
of FNN parameters. We report only the rules for class A for C4.5 to make the
comparison more objective, as C4.5 generates rules for both A and B classes,
while both our FNN and NeuroRule [9] generate rules only for class A, using
class B as a default rule.

With the first set of parameters in Table 2 (indicated by FN1) and compared
to NeuroRule, our FNN produces the rule bases of less complexity for all func-
tions, except 7 and 9. The FNN gives better accuracy for functions 6, 7, and 9,
the same for function 1, and worse for the rest. Compared to C.4.5, the FNN
gives less complex rule bases for functions 2, 4, and 9, the same for functions 2,
4, and 7, and more complex for the rest. Our FNN gives bet ter accuracy than
C4.5 on function 8, 9, and 10, similar for function 1, 6, and 7 and worse for the
rest. The results for functions 8 and 10 were not reported in [9] (indicated by
"N/A" in Table 2) as these functions lead to highly skewed data.

129

Table 2. Accuracy rates on the test data set, the number of rules, and the average
number of conditions per rule for NeuroRule (NR) (performance data taken from [9]),
the C4.5, and the FNN (FN). FN1 uses the following parameters: the learning rate
7/= 0.0001, the coefficient for learning rate adaptation rc = 0.9, required classification
accuracy for training 99%, required classification accuracy after pruning 90%, max-
imum number of rules = 20, degree of overlapping of membership functions = 0.9,
weighting of the rules W R = 10, maximum number of iterations k = 10. FN2 uses the
same parameters as FN1, except weighting of the rules W R = 15

F~nc. Accuracy

NR C4.5 FN1 FN2
1 99.91 99.9 99.9 100
2 98.13 99.4 96.8 }3.3
3 98.18 99.8 97.5 100
4 95.45 99.3 95.0 95.3
5 97.16 98.6 96.4 93.0
6 90.78 95.8 94.7 95.1
7 90.50 95.4 95.2 95.9
8 !N/A 98.1 99.1 98.9
9 90.96 92.6 96.7 97.2

1 0 N/A 95.5 96.0 97.0

No. of Rules No. of Conditions

NR C4.5 FN1 FN2 NR Ic4 iFN1 FN2
t

2.03 2 2 3 2.23i 1 1 1
7.13 3 3 4 4.37 3.33 2.33 2
6.70 5 5 6 3.18 2 2 2
13.37 11 7 8 4.17 4.18 3.14 3.13
24.40 4 5 7 4.68 4.75 4.2 4
13.13 8 9 10 4.61 3.37 3 3.1
7.43 12 10 13 2.94 2.17 2.9 2.54
N/A 2 3 4 N/A 1 ~,2.67 2.75
9.03 12 9 i i 3.46 2.75 3.56 3.64!
N/A 6 8 9 N/A 2.17 4:5 4.67

In Table 2 for FN1 we attempted to obtain the most compact rule base to al-
low for easy analysis of the rules for very large databases, and thus easy decision
making in real-world situations. If accuracy is more important than compactness
of the rule base, it is possible to use our FNN with more strict accuracy require-
ment, i.e., a higher threshold for pruning the rule base (WR), thereby producing
more accurate rules at the expense of rule base complexity. The final decision
regarding complexity versus accuracy of the rules is application specific. Table
2 shows the performance comparison with a weaker compactness constrain, i.e.,
a larger W R , for FN2. In this case the FNN offers similar or better accuracy
compared to both C4.5 and NeuroRule, except for functions 2, 4, and 5. Com-
paring the performance of FN2 with FN1, we see that relaxing the compactness
constrain (increasing W R) improves accuracy for functions 1, 3, 4, 6, 7, 9, and
10. For functions 2, 5, and 8, however, relaxing the compactness constrain actu-
ally results in lower accuracy, which means that caution is necessary in selecting
appropriate values of the weighting of the rules W R . As all problems in the table
are different, the different compactness constrain values for each function may
be needed. We used the same W R value for all functions to make a balanced
comparison.

130

4 C o n c l u s i o n a n d D i s c u s s i o n

In this paper we presented a dynamically-constructed recurrent fuzzy neural net-
work for knowledge discovery from databases. Experiments were conducted to
test the proposed approach to a well defined set of data mining problems given
by [1]. The results shows that the presented approach is able to achieve accuracy
and compactness comparable to both feedforward neural networks and decision
tree methods, with more compact rule base than feedforward neural network for
most of datasets used, and for some compared to decision tree approach. The
proposed method is also able to achieve a higher accuracy on some datasets
compared to both feedforward neural network and decision tree approaches. In-
cremental on-line learning of the proposed approach requires less time compared
to off-line training of feedforward neural network approaches [9] due to the local
updating feature of fuzzy logic, i.e., our FNN only updates the rules applicable
to a current data while feedforward neural network globally updates the net-
work. The proposed method eliminates extraction of symbolic rules phase in
both decision trees and feedforward neural networks approaches. Our FNN per-
mits updating of the rules along with changes in database contents due to its
recurrent structure, in contrast to the decision tree and the feedforward neural
networks methods.

Another important feature of databases need to be considered. Data may
contain a certain level of noise due to statistical fluctuations or human errors.
Using neural network based approach such as [9] and the one proposed in this
paper should also greatly reduce the problem of data noise, due to ability of
neural networks to deal effectively with noisy data. Testing of the proposed
FNN in this aspect is subject of a future work.

R e f e r e n c e s

1. Agrawal R., Imielinski T., and Swami A.: Database Mining: A Performance Per-
spective. IEEE Trans. Knowledge and Data Engineering 5 (1993) 914-925

2. Breiman L., Friedman J. H., Olshen R. A., and Stone C. J.: Classification and
Regression Trees: Wansworth International (1984)

3. Cercone N. and Tsuchiya M.: Special Issue on Learning and Discovery in Knowledge-
based Databases. IEEE Trans. Knowledge and Data Engineering 5 (1993)

4. Dubois D. and Prade H.: A Unifying View of Comparison Indices in a Fuzzy Set
Theoretic Framework. in Yager R. R. (ed.) Fuzzy Sets and Possibility Theory: Re-
cent Developments: Pergamon NY (1982)

5. Frawley W. J., Piatetsky-Shapiro G., and Matheus C. J.: Knowledge Discovery
in Databases: An Overview. In Piatetsky-Shapiro G. and Frawley W. J. (eds.):
Knowledge discovery in databases: AAAI Press/MIT Press (1991) 1-27

6. Gallant S. I.: Connectionist Expert Systems. Communications of the ACM 32 (1988)
153-168

7. Kerber R.: Learning Classification Rules from Examples. Proc. 1991 AAAI Work-
shop on Knowledge Discovery in Databases: AAAI (1991)

8. Khan E. and Unal F.: Recurrent Fuzzy Logic Using Neural Networks. Proc. 1994
IEEE Nagoya World Wisepersons Workshop (1994) 48-55

131

9. Lu H., Setiono R., and Liu H.: Effective Data Mining Using Neural Networks. IEEE
Trans. on Knowledge and Data Engineering 8 (1996) 957-961

10. Piatetsky-Shapiro G.: Special Issue on Knowledge Discovery in Databases - from
Research to Applications. Int. J. of Intelligent Systems 5 (1995)

11. Quinlan J. R.: Induction of Decision Trees. Machine Learning 1 (1986) 81-106
12. Quinlan J. R.: C4.5:Programs for Machine Learning Morgan Kaufmann: San Mateo

CA (1993)
13. Quinlan J. R.: Comparing Connectionist and Symbolic Learning Methods. In S.

Hanson, G. Drastall, and R. Rivest (eds.): Computational Learning Theory and
Natural Learning Systems: MIT Press 1 (1994) 445-456

14. Shavlik J. W., Mooney R. J., and Towell G. G.: Symbolic and Neural Learning
Algorithms: An Experimental Comparison. Machine Learning 6 (1991) 111-143

15. Towell G. G. and Shavlik J. W.: Extracting Refined Rules From Knowledge-based
Neural Networks. Machine Learning 13 (1993) 71-101

16. Wang X. Z., Chen B. H., Yang S. H., McGreavy C., Lu M. L.: Fuzzy Rule Genera-
tion From Data for Process Operational Decision Support. Computer and Chemical
Engineering 21 (1997) 661-666

17. Wu X.: Knowledge Acquisition from Databases. Ablex Publishing: Norwood NJ
(1995)

