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On Chaotic Simulated Annealing

Lipo Wang and Kate Smith

Abstract—Chen and Aihara recently proposed a chaotic simulated
annealing approach to solving optimization problems. By adding aneg-
ative self-coupling to a network model proposed earlier by Aihara et
al. and gradually removing this negative self-coupling, they used the
transient chaos for searching and self-organizing, thereby achieving
remarkable improvement over other neural-network approaches to opti-
mization problems with or without simulated annealing. In this paper we
suggest a new approach to chaotic simulated annealing with guaranteed
convergence and minimization of the energy function by gradually reduc-
ing the time step in the Euler approximation of the differential equations
that describe the continuous Hopfield neural network. This approach
eliminates the need to carefully select other system parameters. We also
generalize the convergence theorems of Chen and Aihara to arbitrarily
increasing neuronal input–output functions and to less restrictive and yet
more compact forms.

Index Terms—Annealing, chaos, energy function, Hopfield, neural
network, optimization.

I. INTRODUCTION

Combinatorial optimization problems are ever present in science
and technology. Since Hopfield and Tank’s seminal work [6] on
solving the travelling salesman problem with a Hopfield neural
network (HNN) [5], the HNN’s [4], [5] have been recognized as
powerful tools for optimization (e.g., [10], [13]). The HNN’s have
an intriguing property that as each neuron in an HNN updates, an
energy function is monotonously reduced until the network stabilizes.
One can therefore map an optimization problem to a HNN such
that the cost function of the problem corresponds to the energy
function of the HNN and the final state of the HNN thus suggests
a solution to the optimization problem with a low cost value. While
some researchers have described HNN’s as nothing more than naive
gradient descent machines, the neural framework does brings about
some important advantages over other gradient descent techniques:
principally the inherent parallelism and hardware implementation
which can potentially result in great speed-ups over conventional
techniques for combinatorial optimization [12]. The employment
of HNN’s to solve problems of real-world significance has been
hampered, however, by problems over the last decade with solution
quality and slow development of suitable hardware to enable large
sized problems to be solved.

Earlier attempts at solving various optimization problems with the
HNN’s suffered from the fact that a HNN can often be trapped at
a local minimum in the complex energy terrain, which gives an
optimization solution with an unacceptably high cost [15]. Several
methods which allow for temporary energy increases, such assimu-
lated annealing[7], have been proposed. Recent advances have now
made modified HNN’s competitive with the best heuristics for solving
combinatorial optimization problems, and this has been demonstrated
on a variety of real-world problems [10], [11]. The search still contin-
ues however, for further or alternative improvements to the standard
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neural algorithms to address the issue of solution quality: particularly
improvements which are easily implementable in hardware.

Chen and Aihara [1] recently proposed a chaotic simulated an-
nealing approach. By adding anegative self-couplingto a “tran-
siently chaotic neural network” (TCNN) and gradually removing this
negative self-coupling, they used the transient chaos generated by
the fading negative self-coupling for searching and self-organizing,
thereby achieving remarkable improvement over other neural-network
methods, in terms of frequency of finding near-optimal solutions.
However, a number of network parameters must be carefully chosen
so as to guarantee the convergence of the TCNN and its minimization
of the energy upon the removal of the transient chaos [2]. In
addition, Chen and Aihara [2] used in proving their convergence
theorems a particular sigmoidal function for all neurons. Hardware
implementations may not easily ensure this form of input–output (I/O)
function and may also need to allow for some variations in I/O among
the neurons.

In this letter, we first suggest an alternative approach to chaotic
simulated annealing with guaranteed convergence and minimization
of the energy function, butwithout the need for choosing any other
system parameters. We then generalize the convergence theorems to
arbitrarily increasing I/O and to less restrictive and yet more compact
forms.

II. A N ALTERNATIVE APPROACH TOCHAOTIC SIMULATED ANNEALING

The dynamics of an-neuron continuous Hopfield neural network
(CHNN) [5] are described by

dui

dt
= �

ui

�
+

j

Tij Vj + Ii (1)

where i = 1; 2; � � � n; Ii is the external input to neuroni and is
sometimes called “firing threshold” when replaced with�Ii. The
internal state of neuroni; ui 2 (�1; +1), determines the output
of neuron i

Vi(t) = fi[ui(t)] 2 [0; 1] (2)

orui(t) = f�1

i [Vi(t)]. Herefi is the neuronal I/O function for neuron
i. fi may differ from neuron to neuron and does not need to have any
symmetry properties; however, we assume thatfi is monotonously
increasing so thatf�1

i exists. For example, the sigmoid function

fi(x) =
1

2
[1 + tanh(�x)] (3)

is often used, with� being the gain of the I/O function.
Hopfield introduced the following function [5] for the CHNN:

E(t) = � 1
2 i; j

Tij Vi(t)Vj(t)� i
IiVi(t)

+
1

�
i

V (t)

0

f�1(�) d�: (4)

Since @E=@Vi = �
j
Tij Vj � Ii + f�1

i (Vi)=� = �dui=dt,
provided thatTij = Tji (regardless the sign of the self-couplingTii),
thendE=dt =

i
(@E=@Vi)(dVi=dt) = �(dui=dt)�f

0

i �(dui=dt) <
0, if dui=dt 6= 0 for at least onei, and dE=dt = 0 if and
only if dui=dt = 0 for all i. HenceE is a Lyapunov (energy)
function that monotonously decreases as the network updates until
the network stabilizes. Based on the existence and the finiteness of
such a Lyapunov function, Hopfield concluded [5] that the CHNN
must stabilize itself:~u(t)! ~uo, ast! +1. Here~uo is independent
of time t and represents the stable fixed point of the network.
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Now let us consider a different network which consists ofn

neurons with the same I/O functionsfi, but obeys the following
dynamic equations:

ui(t+�t) = 1�
�t

�
ui(t) + �t

j

TijVj(t) + Ii : (5)

We note that in the limit�t ! 0, this equation is the same as the
CHNN (1). In fact, (5) is the Euler approximation of the CHNN (1).

The Euler approximation of the CHNN (5) is identical to the TCNN
of Chen and Aihara [1], [2], [9]:

ui(t+ 1) = kui(t) +
j

T 0

ij Vj(t) + I 0i (6)

if �t = 1 and

k = 1�
�t

�
; T 0

ij = �tTij ; I 0i = �tIi: (7)

By adding a large negative self-couplingT 0

ii and gradually removing
it in the TCNN (6), Chen and Aihara [1] markedly enhanced the
probability of reaching an optimal or near-optimal solution. In this
approach, other system parameters, such ask and � [the gain in
the sigmoidal function equation (3)], must be carefully selected with
respect to the synaptic weight matrix according to their stability
theorems [2], in order to assure network convergence and energy
minimization.

We suggest an alternative approach to chaotic simulated annealing:
starting from the Euler approximation of the CHNN (5) with a large
time-step�t, where the dynamics are chaotic [2], we gradually
reduce the time-step�t. The system is guaranteed to converge
and to minimize the CHNN energy function (4), since in the limit
of �t ! 0, the system approaches the CHNN which is stable
and minimizes the CHNN energy function. This approach does not
require difficult choices of any system parameters to assure network
convergence and energy conversion.

III. GENERALIZED STABILITY THEOREMS

Chen and Aihara [2] derived stability theorems for both the
Euler approximation of the CHNN (5) and the TCNN (6) for both
synchronous and asychronous updating, using a particular form of
the neuronal I/O (3). We now generalize their theorems to arbitrarily
increasing I/O functions (2) and to less restrictive but more compact
forms.

Let us calculate the change in energy between two time steps when
the TCNN (6) is updatedsynchronously, according to (4)

�E(t)

�t
�

E(t+ 1)� E(t)

�t
= � 1

2 i; j
T 0

ij �Vi(t)�Vj(t)

+ k
i

�Vi(t) f
�1
i [Vi(t)]�

i

�Vi(t) f
�1
i [Vi(t+ 1)]

+ (1� k)
i

fGi[Vi(t+ 1)]�Gi[Vi(t)]g: (8)

whereGi(Vi) �
V

0
f�1
i (�) d� and�Vi(t) � Vi(t + 1) � Vi(t).

ExpandingGi at Vi(t+ 1) and using the fact thatGi is concave-up
[8], we obtain

Gi[Vi(t+ 1)]�Gi[Vi(t)] �G0

i[Vi(t+ 1)]�Vi(t)

� 1
2
min d G

d V
[�Vi(t)]

2 (9)

whereminfd2Gi=d
2Vig = minf1=f 0ig � 1=�max is the minimum

curvature ofGi; �max being the maximum slope of the I/O functions.
Furthmore, ifk � 0

�kff�1
i [Vi(t+ 1)]� f�1

i [Vi(t)]g�Vi(t) � �
k

�max
[�Vi(t)]

2:

(10)

Combining (8)–(10), in the case where1 � k � 0, we obtain

�E(t)

�t
� � 1

2 i; j
T 0

ij +
(1+k)
�

�ij �Vi(t)�Vj(t) (11)

where�ij = 0 if i 6= j and�ij = 1 if i = j. Hence�E(t) � 0, or
the network is stable, if matrixfT 0

ij+[(1+k)=�max]�ijg is positive-
definite. Therefore a sufficient stability condition for a synchronous
TCNN (6) is

1 � k � 0; and
(1 + k)

�max
< �T 0

min (12)

whereT 0

min is the minimum eigenvalue of matrixT 0

ij . For k > 1,
we expandGi at Vi(t) and obtain, instead of (9)

Gi[Vi(t+ 1)]�Gi[Vi(t)]

� G0

i[Vi(t)]�Vi(t) +
1

2
min

d2Gi

d2Vi
[�Vi(t)]

2: (13)

We thus have an alternative stability condition for the TCNN in
synchronous mode, similar to (12)

k > 1; and
2k

�max
> �T 0

min: (14)

The stability condition for the Euler approximation of the CHNN (5)
can be derived easily from (7) and (12), with the usual assumption
that � > 0

�t � �; �t <
2�

1� �maxTmin
; and Tmin � 0: (15)

Both the TCNN and the Euler approximation of the CHNN are stable
if T 0

min = �tTmin > 0, since the matrix in (11) is automatically
positive-definite. It is straightforward to derive that the stability
conditions for both the TCNN and the Euler approximation of the
CHNN for asynchronousupdating are obtained from the conditions
for synchronousupdating (12), (14), and (15) withT 0

min (or Tmin)
replaced byminfT 0

iig (or Tii).
Our stability conditions consist of two parameter regions for

the TCNN (12) and (14) and one parameter region for the Euler
approximation of the CHNN (15), and are therefore more compact
compared to those of Chen and Aihara [2] (three regions for each
type of network). Furthermore, our conditions are less restrictive
on the parameters involved. For instance, in the one-neuron TCNN
considered by Chen and Aihara [2], the I/O function is given by (3)
with a gain� = 125. Hence�max = �=2 = 62:5. With k = 0:9,
Chen and Aihara’s [2] theorems indicate that the network is stable if
�T 0

11 < 0:0288, whereas our condition (12) gives�T 0

11 < 0:0304
and is closer to the bifurcation point�T 0

11 = 0:0331.

IV. CONCLUSIONS

In summary, we have proposed an alternative approach to chaotic
simulated annealing, in which the time-step�t in the Euler approxi-
mation of the CHNN starts from a large value, where chaos exists, and
reduces to a small value so that the network stabilizes. This approach
guarantees convergence and minimization of the energy function,
and eliminates the need of choosing other system parameters. It
should prove to be a powerful tool for efficiently obtain optimal
or near-optimal solutions to a variety of optimization problems,
which is currently under investigation. We have also generalized the
Chen–Aihara convergence theorems for the transiently chaotic neural
network and the Euler approximation of the CHNN to arbitrarily
increasing neuronal I/O functions and to less restrictive but more
compact forms. This should be useful for both hardware implemen-
tations and software simulations, as well as further theoretic analysis
of the systems.
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Comments on “The Effects of Quantization
on Multilayer Neural Networks”

Oh-Jun Kwon and Sung-Yang Bang

In this letter we point out and correct the errors in the above paper1

in the derivations of the following equations:
1) in the left column of p. 1147

�
2

y =
(�0 � 2

N)2

144
�K1 (1)
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2) in the right column of p. 1147

�
2

y =
(�1 � 2

N)2

12
�

K2

2A

A

2
� tanh

A

2
: (2)

We think the derivations should be as follows.

a) Since the products of the weight and the input are independent,
we can rewrite the variance ofy0i as follows:

�
2

y =var

K �1

k=0

w
0

ikx
0

k

=

K �1

k=0

var[w0

ikx
0

k]: (3)

Also w0

ik and x0k are independent andE[w0

ik] = 0 by the
assumption of the uniform distribution of the weights given
by [1]. And, by the assumption that the inputs are uniformly
distributed between zero and one, the expectation of an input is

E[x0k] =
1

2
: (4)

Therefore

var[w0

ikx
0

k] =E[(w0

ikx
0

k)
2]� E

2[w0

ikx
0

k]

=E[(w0

ikx
0

k)
2]

=E[(w0

ik)
2] � E[(x0k)

2]

= var[w0

ik] � (var[x
0

k] +E
2[x0k])

=
(�0 � 2

N)2

12
�

1

12
+

1

4

=
(�0 � 2

N)2

36
: (5)

Finally, substituting (5) into (3), we obtain

�
2

y =
(�0 � 2

N)2

36
�K1: (6)

b) The output of the hidden neurons is between zero and one since
the following sigmoidal function is used in neurons:

f(u) = (1 + e
�u)�1: (7)

By the assumption given by [1] that the outputs of the hidden
neurons are uniformly distributed, the expectation of the output
of a hidden neuron is

E[x1l ] =
1

2
: (8)

Therefore, as in (a), we can derive the variance ofy1i as follows:

�
2

y =var

K �1

l=0

w
1

ilx
1

l

=

K �1

l=0

var[w0

ilx
1

l ]

=

K �1

l=0

var[wil] � (var[x
1

l ] +E
2[x1l ])

=K2 �

(�1 � 2
N)2

12

1

2A

A

2
� tanh

A

2
+

1

4

=
(�1 � 2

N)2

12
�

K2

2A
A� tanh

A

2
: (9)
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