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Abstract - We consider the discretization of the ana-
log Hopfield neural network (DAHNN) using Euler
approximation. We suggest an alternative approach
to chaotic simulated annealing using the discretizing
time-step At as the bifurcation parameter, because the
DAHNN is chaotic when the time-step At is chosen
to be sufficiently large and stabilization is guaranteed
when the time-step At is small enough. It is not nec-
essary to carefully choose other system parameters to
assure minimization of Hopfield energy function and
network convergence. We argue that this approach
should find significant applications in solving combi-
natorial optimization problems with neural networks.

1. Introduction

It is practically impossible to find the optimal solu-
tion in many combinatorial optimization problems due
to the immense computation involved. It is therefore
often desirable to find near-optimal solutions to these
problems through some efficient algorithms. Since
Hopfield and Tank [10] applied a Hopfield neural net-
work (HNN) [9] to solve the travelling salesman prob-
lem, the HNNs [8], [9] have been recognized as power-
ful tools for optimization (e.g., [25], [28], [22]- [24]).

Hopfield showed [8], {9] that the HNNs have en-
ergy functions that strictly decrease whenever a neu-
ron changes its state. Once the cost function in an
optimization problem is cast onto the energy function
of a HNN, the network is allowed to settle down to a
state corresponding to an optimization solution with a
low cost. However, a HNN can often settle down at a
local minimum with a relatively high energy value and
thus is not able to suggest a good optimization solu-
tion [35]. Many authors have used various mechanisms
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to temporarily increase the energy, such as simulated
annealing (e.g. [14], [11]) and hill-climbing (e.g. [22]),
thereby allowing the network to search in a larger state
space while forcing the network to settle down at the
end of certain period of simulation time. '

Nozawa [19], [20], [21] showed that by varying the
input bias for each neuron in the discretized analog
HNN (DAHNN) obtained from the Euler approxima-
tion, chaos can be generated and used to improve op-
timization solutions. The searching ability of chaos
was also demonstrated by Nara et al [18] in memory
searching.

Chaotic simulated annealing was recently proposed
by Chen and Aihara [5]. They added a negative self-
coupling to a “chaotic neural network” model pro-
posed earlier by Aihara et al [3] based on a simplifi-
cation of the FitzHugh-Nagumo model {6], [16], [17]
and showed that chaos occurs. They then gradu-
ally removed this negative self-coupling and used the
transient chaos generated by the decreasing negative
self-coupling to search the solution space of optimiza-
tion problems. Compared to other neural network
methods, the Chen-Aihara approach significantly in-
creased the probability of finding near-optimal solu-
tions. Nozawa [19], [20], [21] and Chen and Aihara [5]
showed that when network parameters satisfy appro-
priate conditions, the DAHNN becomes very similar
to the “chaotic neural network” proposed by Aihara et
al[3]; however, the “chaotic neural network” of Aihara
et al [3] has more parameters than the DAHNN.

We will first analyze the dynamics of the DAHNN
as a function of the discretization time-step At. We
will then show why the analysis can be potentially
useful for solving optimization problems with neural
networks.



2. Chaos in DAHNN and Optimization

The Chen-Aihara system with transient chaos [5]
is a special case of the “chaotic neural network” pro-
posed by Aihara et al[3] and is described by, in slightly
different notation,

wit+1) = kuwi(t) + o (2;xT5V + L)

—z(t) [Vi(t) - L] ty)
where i = 1,2,...,n, I; is the external input or input

bias to neuron i. The internal state of neuron %, u; €
(—00, +00), determines the output of neuron z:

Vi=f(w) €[0,1], (2)
or
u;, = f-—l(Vt) (3>

Here f is the neuronal input-output response function
and is assumed to be strictly increasing so that f~!
exists, such as the sigmoid function,

1
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and A = 1/(2e) is the gain of the sigmoid function. In
eq. 1,
zi(t) 2 0 ()

is the added negative self-coupling,
Ty = Ty (6)

is the strength of the symmetric mutual interactions
(or weight matrix) between neurons ¢ and j. In an
optimization problem, the weight matrix T;; and the
input bias I; are obtained from the energy function
(or cost function) E as follows:

OF
STV + L = -3 (7)
J#i ¢

In addition,
I,'> 0 (8)

is a positive parameter in the Chen-Aihara system.

The analog Hopfield neural network (AHNN) [9] is
on the other hand described by

du,-

U;
§=—7+§:TM‘VJ‘+L 9)
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Hopfield [9] showed that the AHNN minimizes the fol-
lowing energy function:

Vi
EZ"ZT”V’VJ S+ S ARG

(10)
and
Z(aE dV _fiﬁl_ duz
T dt

<o

provided that eq. 6 holds.
The discretization of the AHNN (DAHNN) is given
by the Euler approximation of eq. 9

dui
dt

FYAN A
= u(t) — ’-‘-T— + AL TV + At
J

ui(t + At) = u;(t) + At

=(1- %)Ui + A1) TyVi+ L) (12)

J

By comparing eq. 1 and eq. 12, one sees that Chen-
Aihara system with transient chaos [5) is identical to
the DAHNN if [19)], [20], [21]

At

a = At (14)
zz = —=AtTy (15)
al; +z;1, = Ii (16)

Chen and Aihara [5] showed that for large positive
z; values, the system given by eq. 1 is chaotic, whereas
for z; = 0 the system becomes stable. Transient chaos
can therefore be generated by starting with a large z;
value and letting it decay with time. However, Chen-
Aihara system is stable at z; = 0 only when other
system parameters take some carefully-selected values.

We observe that in the limit At — 0, the DAHNN
eq. 12 is the same as the AHNN eq. 9. Thus the
DAHNN becomes stable and minimizes the Hopfield
energy function as At — 0. In addition, we will
show in the rest of this section that chaos exists
when the time step At is large enough. Therefore
it would advantageous to use the following new ap-
proach to chaotic simulated annealing: starting from
the DAHNN eq. 12 with a large time-step At, we grad-
ually reduce the time-step At. The network would
search a large portion of the state space with chaos
and then settles down at a minimum of the right en-
ergy function. The advantage of this approach is that



there is no need to carefully choose other system pa-
rameters so that the Hopfield energy function is min-
imized and the system eventually settles down to a
stable state, thereby indicating a solution to an opti-
mization problem.

Eq. 12 is equivalent to
ui(t+At) = [(l — %)u, + AtT,-,-f(u,-)]
+AL [324 T f(uy) + L

= Gi(u;) (17
If we let
t = 7t (18)
At = TAY (19)
T, = IT (20)
L o= oI (21)

Eq. 17 becomes

w(t +AF) = [(L-A)u + AF T} f(us)]

+ A [ 304 T flug) + I 1(22)
Eq. 22 is identical to eq. 17 with 7/ = 1. We thereafter
let 7 =1 in eq. 17 without losing generality.

When there are no mutual interactions in the net-
work

T;; =0 ,forallj # 1 (23)
eq. 17 can be decoupled:
u,,'(t-}- Aty = (1- At)ui + At[fl’,-;f(ui) + I,‘]
= F(uw) (24)

Alternatively, we can rewrite the above equation in
terms of a new variable

s; = 2u; —1 (25)
instead of u;
S,‘(t+ At) = ( 1 - At) s; + At Ty g(s,-) (26)

where we have used

L= 5 (1-Ts) (27)
and
9(si) = 2f(ui)—1
= tanh(Aw) € [-1,1] (28)

as opposed to f(u;) € [0,1].
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We first analyze the fixed point of eq. 26, i.e.,
si = (1= At)s] + At Ty g(si) = Gi(si) (29)

Or

*
i

9(s}) = 7= (30)

1
To assure there exist non-zero fixed points, i.e., there
are non-zero intersections between the sigmoid func-
tion at the left hand side of eq. 30 and the straight
line function at the right hand side of eq. 30, we need

J0) = A > Tl— and T;>0  (31)

12

Now let us exam the slope at the non-zero fixed
point:

GI(s)) = (1 = At) + MtTig(s])  (32)
Oscillations and chaos exist if G?'(sf) < —1, or

2
At S A—
> 1= Tag(s) (33)

Figs.1-5 show the dynamic behaviors of the
DAHNN as a function of the discretization time-step
At, with A\ = 2 and T;; = 0.7. The network is
chaotic at large time-steps At and becomes stable for
At < 3.78. The mutual interactions between neurons
are expected to increase the complexity of the dynam-
ics. Hence oscillations and chaos exist when the time-
step At is large enough.

3. Conclusions

In summary, we have suggested an alternative ap-
proach to chaotic simulated annealing based on the
facts that the DAHNN is chaotic when the discretiz-
ing time-step At is large enough and, in addition,
stabilization and energy reduction are achieved when
the time-step At is small enough, because the sys-
tem becomes identical to the HNN at zero time-step
limit. Hence by starting with a large time-step in the
DAHNN and reducing the time-step to zero, we can
achieve chaotic simulated annealing with guaranteed
minimization of the Hopfield energy and network sta-
bilization, without the need to select any other sys-
tem parameters. We have argued that this approach
should find significant applications in solving combi-
natorial optimization problems with neural networks.
We are currently applying it to various optimization
problems.



Figure 1: Chaos for large time step At = 6.5 in the dis-
cretized analog Hopfield network, according to eq. 26.
Initial conditions: s(0) = 0.9 (hexagon, solid line) and
$(0) = —0.9 (diamond, dashed line). The chaotic ac-
tivities for each trajectory cover both positive and neg-
ative s.
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