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accumulation. Theoretical results of error analysis are verified lmgcillation between two states), until Koiran [5] published a number
experimental simulation. The results indicate that FIR filters imef results recently.

plemented with LNS provide lower error performance than those Koiran [5] first proved that the discrete-time, continuous-state HNN
implemented with a floating-point number system of equivalenioes approach a fixed poiit the network has a finite number
wordlength and dynamic range. In general, logarithmic arithmetaf fixed points and the energy function is bounded from below.
offers accuracy, speed, and wide dynamic range, and thus is vBgiran [5] then showed thalmostevery discrete-time, continuous-

attractive for real-time filtering applications. state HNN has a finite number of fixed points if the neurons are
updatedasynchronouslyserial mode of operation). Koiran [5] listed
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continuous-state HNN is nontrivial may be stated as follows. To
prove that the discrete-time, discrete-state HNN must stablize itself
after a finite number of iterations starting from any initial condition,
we need the following two conditions, in addition to the existence of
a decreasing energy function: 1) the energy function is bounded from
On the Dynamics of Discrete-Time, Continuous-State  pelow [1], and 2) each time the energy function decreases, it must

Hopfield Neural Networks decrease by at least some minimum amount [2]. Both conditions are
) easily derived from the finite size of the discrete-time, discrete-state
Lipo Wang HNN [6]; however, condition 2) no longer holds if the state of a

neuron is continuous.

Abstract—We propose answers to four open problems listed recently
by Koiran on the dynamics of discrete-time, continuous-state Hopfield Il. ANSWERS TO THEFOUR OPEN PROBLEMS
neural networks. In the discrete-time, continuous-state HNN, the oufgu€ [—1, 1]

Index Terms—Convergence, cycles, fixed point, Hopfield neural net- of neuron: is determined by its inpul’; (Fig. 1):
works, oscillation, stability.

Vit + At) = f[U: () — 6,] )

I. INTRODUCTION where; is the firing threshold of neuroi i = 1,2,---,n, f is
In his famous paper [1], Hopfield proposed an energy function f@ continuous increasing function so thét! exists, and the inputs
the discrete-time, discrete-state Hopfield neural network (HNN), at@ the neurons are
showed that this energy function decreases for any change of neuronal
states. Hopfield further showed that a different energy function
decreases if any neuron changes its state in the continuous-tim T 1 ; T s s .
continuous-state HNN [2]. Fogelman-Sduit al. [3] and Marcus and With ¢ = (UL, '."L,")’ v . (V1,V3,---, V), and a
mmetric weight matrixi¥’ = W' with nonnegative diagonals

. S
Westervelt [4] proved that the Iatt_er energy fu_nctlon also decreaa%gi > 0,i=12---.n The energy function of the network is
for any neuronal state changes in an HNN if neuronal states j
a

continuous; however, the dynamics is of discrete time. It might h 4]
largely been taken for granted that, because of the existence of such LT eirer  oTe Vi |
an energy function, the discrete-time, continuous-state HNN should E=—3V WV +6 V+ Z/O f(g) de. ®3)
approach a stable state (fixed point) or a length-2 cycle (periodic '
Thefirst problem is readily solved by combining the corresponding
Manuscript received June 27, 1996; revised November 22, 1996. This papg§ |t for the serial mode of operation stated above [5] and the
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v, will stablize atl; = V> = —1. If the initial states of the network are
.’ such thafl; = 0 and0 < V5 < 1, the final states of the network will
- be: 1)V; =V, =1 if neuron 1 is updated first, or 2); = V5, =0
s if neuron 2 is updated first. It is now clear that the only possible
fixed points for this network ar®;, =V, =1, V; =V, = -1 and
= Vi =V, = 0: the number of fixed points in this network is finite.

Let us study a slightly different two-neuron network. Suppose
Wit = Wa = 81 = 6 = 0, Wia = Wa1 = 1, and the
input—output response function of the neurons is such that (Fig. 1)
4 FVi) =ViatV; =1/m,withm = £1,+2,.-- ,+c0, andi = 1, 2.

. One can verify that if we seleet = 1 again, all conditions 1)-3)
2 given above are satisfied, and tHat = V> = 0 and 1/m, with
) -1 m = +1,£2,.--, 400, are the fixed points of the network. This
’ example is interesting since an infinite number of fixed points exists,

Fig. 1. Example of the input-output response functjprfl). One of the and yet all but one fixed poinl, = V2> = 0) is isolated.
three conditions for a Hopfield neural network to have an infinite number of A variation of this example, withn being finite, in fact leads to

fixed points or length-2 cycles is thdt intersects with a linear function at &n answer to thehird problem: there does not exist an upper bound
an infinite number of points. for the number of fixed points or length-2 cycles when it is finite.
Now, let us consider théourth problem. In general, in a dynamic
system with a bounded Lyapunov function which strictly decreases
along all trajectoriespot all trajectories necessarily converge to fixed

+1

formed as follows:N = (W, 6). where

W= 0o W and 4= 0 points if there exists an infinite number of fixed points. The following
AW 0 T\8 ) example may be used to illustrate this point. In polar coordinates,
Any length-2 cycle in networkV is, in fact, equivalent to a fixed consider .
point in network N. From now on, we will implicitly consider the g(r,a) = tanh [(1 - 7'2)‘}. 5)

serial mode of operation only. The results for the parallel mode of o o )
operation will follow due to the above relationship between the twoUnctiong is minimum atr = 1 (the unit circle), and is bounded for

modes of operation. all « andr > 0. The spiral flow defined by
We now discuss theecondoroblem. The fixed points of the system dr dg da
are the solutions of the following equations: @ or and i ©)
WiVi4+ WiV 4+ WiV = F (V1) + 6, (4.1) approaches the unit circle asymptotically, i.e.,
WorVi 4 WaoVa + -+ + W Vi = f1(V2) + 62 (4.2) 1 —r| = e~/ ast — +oc andr — 1 ©)

o ) e and monotonously decreasgs however, the flow spirals around
WiirVi + WooVa - + Woo Vi, = f7(Vi) + 0. (4.n)  the unit circle indefinitely, and does not approach any point on the
unit circle! A discrete-time (iterative) version of this example can

S:Q,?:Stri]r? :Eg;t‘;reigsz;fs(t?e_(sll'23]:;3 %?ﬁ??;lzndogi?gzsfgt be obtained by the standahansition mapof the above continuous
b ) P P y b low [8]. A gradient flowdefined by

find an infinite number of solutions for these equations, the righf-
hand sides of (4.1)—(4.n) must intersect with thdisear planes dr _ 99 do _ 09 _ ®)

at an infinite number of points, i.e., there exists a set of constants dt or dt od

(c1,c2.+++,c) such thatf~'(V;) + #; = ¢; Vi holds for an infinite where no flow components tangent to the gradient exist, does lead
number of pointd’; € [-1, 1] (Fig. 1), foralli = 1,2,---,». This,in  to fixed points on the unit circle. The dynamics of a neural network
turn, is possible only ity = 6, = --- = §,, = 6,, thatis, all neurons described by (1) and (2) happens to be suchradient flow and
have the same firing threshold, and thus= ¢> = --- = ¢, = ¢.  hence it must converge to a fixed point regardless of whether or not

In this case, (4.1)—(4.n) become a set of linear equations. Henggs number of fixed points is infinite: a combination of (1)-(3) gives
an infinite number of fixed points exists if and only if there exists a

constant: such that the following three conditions are simultaneously AfTHV) =V AD) = FTH(V)
satisfied: 1) all neurons have the same firing threshold, e+~ __9E for all 1. 9
By = =0, =0, 2) f(V.)+ 8, = cV, holds for an infinite ovi’
number of pointsV,, € [—1,1] (Fig. 1); and 3) the rank of matrix
M = (W —¢I) is less tham, wherel is thenth-order unit matrix. IIl.- ConcLuSsIONS
The example given by Koiran [5] is a special case with = In summary, we have shown that the number of length-2 cycles is
s = -~ =6, =6, =0,c=1,and f5(V,) = V, for all finite for aimostevery network if the neurons are updateghchro-
Vo € [-1,1], f(Vo) = 1 for Vo, >1, f(V,) = —1 for V, <—1; nously(parallel mode of operation). We have given a condition on

however, no conditions for synaptic weight were specified in the neuronal response functigih ensuring thaeverynetwork has a
[5]. We now show that not ever}#” in Koiran's example satisfies finite number of fixed points in the serial mode or length-2 cycles in
condition 3) above or leads to an infinite number of fixed pointshe parallel mode of operation: there does not exist a constsunth
Consider an HNN of two neurons, i.er, = 2, W2 = Wy = 3,  that the following three conditions are simultaneously satisfied: 1) all
andW,; = Wy, = 6, = 8, = 0. If the network state starts initially neurons have the same firing threshold, #g.= 6> = --- 8, = 8,;
from any0 <V, <1 and0 <V < 1, it is straightforward to verify 2) f~'(V,) + 6, = ¢V, holds for an infinite number of points
that the network will settle down dat, = V2> = 1. Similarly, if the V, € [-1,1]; and 3) the rank of matribxd/ = (W — ¢I) is less
network starts initially from any-1<V, <0 and -1< V> <0, it thann, wherel is thenth-order unit matrix. We have demonstrated
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that there does not exist an upper bound on the number of fixed poiits
or the number of length-2 cycles when this number is finite. We have
shown that the network converges to a fixed point (serial mode) @ré
a length-2 cycle (parallel mode) regardless of whether or not the
network has an infinite number of fixed points or length-2 cycles.
(a3
ACKNOWLEDGMENT u

The author thanks A. F. Ivanov and D. L. Elliott for manyy“)
stimulating discussions, and for their help in constructing the example
shown in (5) and (6). Many helpful comments and suggestions froljm)
the reviewers are also gratefully appreciated.

e
REFERENCES ‘

[1] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,Proc. Nat. Acad. Sci. USAol. 79,
pp. 2554-2558, 1982.

[2] —, “Neurons with graded response have collective computational
properties like those of two-state neuronBrbc. Nat. Acad. Sci. USA
vol. 81, pp. 3088-3092, May 1984. x

[3] F. Fogelman-Soudi, C. Mejia, E. Goles, and S. Martinez, “Energy
function in neural networks with continuous local function€émplex , (+)
Syst, vol. 3, pp. 269-293, 1989. Y

[4] C. M. Marcus and R. M. Westervelt, “Dynamics of iterated-map neural
networks,” Phys Rev. Ayol. 40, pp. 501-504, July 1989.

[5] P. Koiran, “Dynamics of discrete time, continuous state Hopfield ne);u(ﬁ)
works,” Neural Comput.vol. 6, pp. 459—-468, 1994.

[6] R. Hecht-Nielsen,Neurocomputing Reading, MA: Addison-Wesley, *
1990, p. 106. w

[7] J. Bruck and J. W. Goodman, “A generalized convergence theorem for
neural networks,IEEE Trans. Inform. Theoryol. 34, pp. 1089-1092, b( )(n)
May. 1988.

[8] C. Robinson,Dynamical Systems: Stability, Symbolic Dynamics, and
Chaos Boca Raton, FL: CRC Press, 1995.

&

(k)

(](L)

a4

A Fast Training Algorithm for Neural Networks Bk
Jarodaw Bilski and Leszek Rutkowski B

Abstract—The recursive least squares method (RLS) is derived for the agk)(rn)
learning of multilayer feedforward neural networks. Simulation results on
the XOR, 4-2-4 encoder, and function approximation problems indicate ()
a fast learning process in comparison to the classical and momentum
backpropagation (BP) algorithms.

. . e,
Index Terms—Learning systems, least squares methods, multilayer °*
perceptrons, neural networks, recursive estimation.

|. TERMINOLOGY

In the subsequent sections of this brief, the following terminology
will be used.

Forgetting factor in the recursive least squares (RLS)
algorithm.

Constants.

Learning coefficient in the backpropagation (BP) algo-
rithm.

Momentum coefficient in the momentum BP algorithm.

= [u1,---,un,]". Vector of input signals of the neural
network.
Output signal of théth neuron; = 1,---, Ny; in the kth
layer,k = 1,---. Ly (n) = f(s'* (n)).
= [y, y%k)]l Vector of output signals in théth
layer,k = 1,---, L.
ith input,s = 0,---, N,._; for kth layer,k = 1,---, L,
where

Ui, fork =1

;US.I')_ 15’“71), fork=2---L

+1, fori=0,k=1,---,L.

= [xg’“:’, cee ‘T’F’\!:Z,,l]T' Vector of input signals for théth

layer,k = 1,---, L.

Weight of theith neuron; = 1,-- -, Ni, of the kth layer,

k=1,---, L, connecting this neuron with thgh input,
g = 0 N,
[uv(“ : u'(l')k ]7. Vector of weights of theith

neuron, = 1,---, Ny, in the kth layer,k = 1,---, L.
= [mﬁ"’ . mf\")] Matrix of weights in thekth layer,
k=1, L
= Y‘N" Lwi® (n) - 2 (n). Linear output of theith
neurom_l Ni, in the kth layer,k = 1,---, L.
= [s(f').---/ %2]T Vector of linear outputs in théth
layer, k = 1.-
Desired output of the’th neuron,i = 1,---, Ng, in the
kth layer, k = -, L.

[d(") .- d“”)] . Vector of desired outputs in the layer
kk =1,- L

=f! (rl(k)) DeS|red linear summation output of thid
neuron, = 1,---, Ng, in the kth layer,k = 1,---, L.
=, b““Z]T Vector of desired linear summation
outputs in the layek,k = 1,---, L.
=d"n)—y® () = p, .. b(k)] Error of theith
neuron, = 1,---, N, in thekth Iayer k=1,---,L.
=[50, ... (")] . Vector of the error 5|gnals in thlah
Iayer k = 1 ,L.
=0 (n) = f~ (y“‘) (n)). Error of the linear part of the
ithneuronj = 1,---, Ni, inthekth layer,k = 1,---, L.
=[P, ..., e%fz]f. Vector of the error signals in theth
layer,k = 1,---, L.

In Fig. 1, we show a model of thi&h neuron in thekth layer.

_ Il. INTRODUCTION
I;, mumﬁer O; layers In_thehgit\ivork. b= 1 I The BP [6] is the most widely applied multilayer neural-network
Yk umber of neurons in theth layer,k = 1,---, L. learning algorithm. Unfortunately, it suffers from a number of short-
No Numbers of inputs of the neural networks.

comings. One such shortcoming is the slow convergence. Therefore,
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