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accumulation. Theoretical results of error analysis are verified by
experimental simulation. The results indicate that FIR filters im-
plemented with LNS provide lower error performance than those
implemented with a floating-point number system of equivalent
wordlength and dynamic range. In general, logarithmic arithmetic
offers accuracy, speed, and wide dynamic range, and thus is very
attractive for real-time filtering applications.
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On the Dynamics of Discrete-Time, Continuous-State
Hopfield Neural Networks

Lipo Wang

Abstract—We propose answers to four open problems listed recently
by Koiran on the dynamics of discrete-time, continuous-state Hopfield
neural networks.

Index Terms—Convergence, cycles, fixed point, Hopfield neural net-
works, oscillation, stability.

I. INTRODUCTION

In his famous paper [1], Hopfield proposed an energy function for
the discrete-time, discrete-state Hopfield neural network (HNN), and
showed that this energy function decreases for any change of neuronal
states. Hopfield further showed that a different energy function
decreases if any neuron changes its state in the continuous-time,
continuous-state HNN [2]. Fogelman-Soulié et al. [3] and Marcus and
Westervelt [4] proved that the latter energy function also decreases
for any neuronal state changes in an HNN if neuronal states are
continuous; however, the dynamics is of discrete time. It might have
largely been taken for granted that, because of the existence of such
an energy function, the discrete-time, continuous-state HNN should
approach a stable state (fixed point) or a length-2 cycle (periodic
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oscillation between two states), until Koiran [5] published a number
of results recently.

Koiran [5] first proved that the discrete-time, continuous-state HNN
does approach a fixed pointif the network has a finite number
of fixed points and the energy function is bounded from below.
Koiran [5] then showed thatalmostevery discrete-time, continuous-
state HNN has a finite number of fixed points if the neurons are
updatedasynchronously(serial mode of operation). Koiran [5] listed
the following open problems for the discrete-time, continuous-state
HNN, signifying the need to improve our understanding of this type
of HNN’s. In this paper, we attempt to answer these open problems
(with minor changes).

1) Prove that the number of length-2 cycles is finite foralmostev-
ery network if the neurons are updatedsynchronously(parallel
mode of operation).

2) Give a condition on the neuronal response functionf , ensuring
that everynetwork has a finite number of fixed points in serial
mode and a finite number of length-2 cycles in parallel mode
of operation.

3) Give an upper bound on the number of fixed points or length-2
cycles when it is finite.

4) Does the network still converge if it has an infinite number of
fixed points or length-2 cycles?

An intuitive reason that the dynamics of the discrete-time,
continuous-state HNN is nontrivial may be stated as follows. To
prove that the discrete-time, discrete-state HNN must stablize itself
after a finite number of iterations starting from any initial condition,
we need the following two conditions, in addition to the existence of
a decreasing energy function: 1) the energy function is bounded from
below [1], and 2) each time the energy function decreases, it must
decrease by at least some minimum amount [2]. Both conditions are
easily derived from the finite size of the discrete-time, discrete-state
HNN [6]; however, condition 2) no longer holds if the state of a
neuron is continuous.

II. A NSWERS TO THEFOUR OPEN PROBLEMS

In the discrete-time, continuous-state HNN, the outputVi 2 [�1; 1]
of neuroni is determined by its inputUi (Fig. 1):

Vi(t+�t) = f [Ui(t)� �i] (1)

where �i is the firing threshold of neuroni; i = 1; 2; � � � ; n; f is
a continuous increasing function so thatf�1 exists, and the inputs
to the neurons are

U(t) = WV (t) (2)

with UT
� (U1; U2; � � � ; Un); V T

� (V1; V2; � � � ; Vn); and a
symmetric weight matrixW = WT with nonnegative diagonals
Wii � 0; i = 1; 2; � � � ; n: The energy function of the network is
[2]–[4]

E = � 1

2
V
T
WV + �

T
V +

i

V

0

f
�1(�) d�: (3)

Thefirst problem is readily solved by combining the corresponding
result for the serial mode of operation stated above [5] and the
following result proven by Bruck and Goodman [7]: for any parallel
mode of operation in a neural network described byN = (W; �); an
equivalentserial mode of operation can be found in another network
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Fig. 1. Example of the input–output response functionf (1). One of the
three conditions for a Hopfield neural network to have an infinite number of
fixed points or length-2 cycles is thatf intersects with a linear function at
an infinite number of points.

formed as follows:N̂ = (Ŵ ; �̂); where

Ŵ =
0 W
W 0

and �̂ =
�
�

:

Any length-2 cycle in networkN is, in fact, equivalent to a fixed
point in networkN̂ : From now on, we will implicitly consider the
serial mode of operation only. The results for the parallel mode of
operation will follow due to the above relationship between the two
modes of operation.

We now discuss thesecondproblem. The fixed points of the system
are the solutions of the following equations:

W11V1 +W12V2 + � � �+W1nVn = f�1(V1) + �1 (4.1)

W21V1 +W22V2 + � � �+W2nVn = f�1(V2) + �2 (4.2)

� � �

Wn1V1 +Wn2V2 + � � �+WnnVn = f�1(Vn) + �n: (4.n)

Since the left-hand sides of (4.1)–(4.n) are linear inV and represent
planes in then-dimensional space spanned byV; if it is possible to
find an infinite number of solutions for these equations, the right-
hand sides of (4.1)–(4.n) must intersect with theselinear planes
at an infinite number of points, i.e., there exists a set of constants
(c1; c2; � � � ; cn) such thatf�1(Vi) + �i = ciVi holds for an infinite
number of pointsVi 2 [�1; 1] (Fig. 1), for alli = 1; 2; � � � ; n: This, in
turn, is possible only if�1 = �2 = � � � = �n � �o; that is, all neurons
have the same firing threshold, and thusc1 = c2 = � � � = cn � c:
In this case, (4.1)–(4.n) become a set of linear equations. Hence,
an infinite number of fixed points exists if and only if there exists a
constantc such that the following three conditions are simultaneously
satisfied: 1) all neurons have the same firing threshold, i.e.,�1 =
�2 = � � � = �n � �o; 2) f�1(Vo) + �o = cVo holds for an infinite
number of pointsVo 2 [�1; 1] (Fig. 1); and 3) the rank of matrix
M � (W � cI) is less thann; whereI is thenth-order unit matrix.

The example given by Koiran [5] is a special case with�1 =
�2 = � � � = �n � �o = 0; c = 1; and f�1(Vo) = Vo for all
Vo 2 [�1; 1]; f(Vo) = 1 for Vo> 1; f(Vo) = �1 for Vo<�1;
however, no conditions for synaptic weightsW were specified in
[5]. We now show that not everyW in Koiran’s example satisfies
condition 3) above or leads to an infinite number of fixed points.
Consider an HNN of two neurons, i.e.,n = 2; W12 = W21 = 3,
andW11 = W22 = �1 = �2 = 0: If the network state starts initially
from any 0<V1< 1 and 0<V2< 1; it is straightforward to verify
that the network will settle down atV1 = V2 = 1: Similarly, if the
network starts initially from any�1<V1< 0 and�1<V2< 0; it

will stablize atV1 = V2 = �1: If the initial states of the network are
such thatV1 = 0 and0<V2< 1; the final states of the network will
be: 1)V1 = V2 = 1 if neuron 1 is updated first, or 2)V1 = V2 = 0
if neuron 2 is updated first. It is now clear that the only possible
fixed points for this network areV1 = V2 = 1; V1 = V2 = �1 and
V1 = V2 = 0: the number of fixed points in this network is finite.

Let us study a slightly different two-neuron network. Suppose
W11 = W22 = �1 = �2 = 0; W12 = W21 = 1; and the
input–output response function of the neurons is such that (Fig. 1)
f(Vi) = Vi atVi = 1=m; with m = �1;�2; � � � ;�1; andi = 1; 2:
One can verify that if we selectc = 1 again, all conditions 1)–3)
given above are satisfied, and thatV1 = V2 = 0 and 1=m; with
m = �1;�2; � � � ;�1; are the fixed points of the network. This
example is interesting since an infinite number of fixed points exists,
and yet all but one fixed point(V1 = V2 = 0) is isolated.

A variation of this example, withm being finite, in fact leads to
an answer to thethird problem: there does not exist an upper bound
for the number of fixed points or length-2 cycles when it is finite.

Now, let us consider thefourth problem. In general, in a dynamic
system with a bounded Lyapunov function which strictly decreases
along all trajectories,not all trajectories necessarily converge to fixed
points if there exists an infinite number of fixed points. The following
example may be used to illustrate this point. In polar coordinates,
consider

g(r; �) = tanh 1� r2
2
: (5)

Functiong is minimum atr = 1 (the unit circle), and is bounded for
all � and r � 0: The spiral flow defined by

dr

dt
= �

@g

@r
and

d�

dt
= 1 (6)

approaches the unit circle asymptotically, i.e.,

j1� rj � e�(t=4); ast! +1 andr ! 1 (7)

and monotonously decreasesg; however, the flow spirals around
the unit circle indefinitely, and does not approach any point on the
unit circle! A discrete-time (iterative) version of this example can
be obtained by the standardtransition mapof the above continuous
flow [8]. A gradient flowdefined by

dr

dt
= �

@g

@r
and

d�

dt
= �

@g

@d
= 0 (8)

where no flow components tangent to the gradient exist, does lead
to fixed points on the unit circle. The dynamics of a neural network
described by (1) and (2) happens to be such agradient flow, and
hence it must converge to a fixed point regardless of whether or not
the number of fixed points is infinite: a combination of (1)–(3) gives

�f�1(Vi) � f�1[Vi(t+�t)]� f�1(Vi(t))

=�
@E

@Vi
; for all i: (9)

III. CONCLUSIONS

In summary, we have shown that the number of length-2 cycles is
finite for almostevery network if the neurons are updatedsynchro-
nously (parallel mode of operation). We have given a condition on
the neuronal response functionf , ensuring thateverynetwork has a
finite number of fixed points in the serial mode or length-2 cycles in
the parallel mode of operation: there does not exist a constantc such
that the following three conditions are simultaneously satisfied: 1) all
neurons have the same firing threshold, i.e.,�1 = �2 = � � � �n � �o;
2) f�1(Vo) + �o = cVo holds for an infinite number of points
Vo 2 [�1; 1]; and 3) the rank of matrixM � (W � cI) is less
thann; whereI is thenth-order unit matrix. We have demonstrated
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that there does not exist an upper bound on the number of fixed points
or the number of length-2 cycles when this number is finite. We have
shown that the network converges to a fixed point (serial mode) or
a length-2 cycle (parallel mode) regardless of whether or not the
network has an infinite number of fixed points or length-2 cycles.
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A Fast Training Algorithm for Neural Networks

Jaros law Bilski and Leszek Rutkowski

Abstract—The recursive least squares method (RLS) is derived for the
learning of multilayer feedforward neural networks. Simulation results on
the XOR, 4-2-4 encoder, and function approximation problems indicate
a fast learning process in comparison to the classical and momentum
backpropagation (BP) algorithms.

Index Terms—Learning systems, least squares methods, multilayer
perceptrons, neural networks, recursive estimation.

I. TERMINOLOGY

In the subsequent sections of this brief, the following terminology
will be used.

L Number of layers in the network.
Nk Number of neurons in thekth layer,k = 1; � � � ; L.
N0 Numbers of inputs of the neural networks.
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� Forgetting factor in the recursive least squares (RLS)
algorithm.

; � Constants.
� Learning coefficient in the backpropagation (BP) algo-

rithm.
� Momentum coefficient in the momentum BP algorithm.
uuu = [u1; � � � ; uN ]T . Vector of input signals of the neural

network.
y
(k)
i Output signal of theith neuron,i = 1; � � � ; Nk; in thekth

layer, k = 1; � � � ; L y
(k)
i (n) = f(s

(k)
i (n)):

yyy(k) = [y
(k)
1 ; � � � ; y

(k)
N ]T . Vector of output signals in thekth

layer, k = 1; � � � ; L.
x
(k)
i ith input, i = 0; � � � ; Nk�1 for kth layer,k = 1; � � � ; L;

where

x
(k)
i =

ui; for k = 1
y
(k�1)
i ; for k = 2 � � �L

+1; for i = 0; k = 1; � � � ; L:

xxxk = [x
(k)
0 ; � � � ; x

(k)
N ]T . Vector of input signals for thekth

layer, k = 1; � � � ; L.
w
(k)
ij Weight of theith neuron,i = 1; � � � ; Nk; of thekth layer,

k = 1; � � � ; L; connecting this neuron with thejth input,
x
(k
j ; j = 0; � � � ; Nk�1:

www
(k)
i = [w

(k)
i0 ; � � � ; w

(k)
iN ]T . Vector of weights of theith

neuron,i = 1; � � � ; Nk; in the kth layer,k = 1; � � � ; L.
WWW (k) = [www

(k)
1 ; � � � ; www

(k)
N ]. Matrix of weights in thekth layer,

k = 1; � � � ; L.
s
(k)
i (n) = �

N

j=0 w
(k)
ij (n) � x

(k)
j (n). Linear output of theith

neuron,i = 1; � � � ; Nk; in the kth layer,k = 1; � � � ; L.
sss(k) = [s

(k)
1 ; � � � ; s

(k)
N ]T . Vector of linear outputs in thekth

layer, k = 1; � � � ; L.
d
(k)
i Desired output of theith neuron,i = 1; � � � ; Nk; in the

kth layer,k = 1; � � � ; L.
ddd(k) = [d

(k)
1 ; � � � ; d

(k)
N ]T . Vector of desired outputs in the layer

k; k = 1; � � � ; L.
b
(k)
i = f�1(d

(k)
i ). Desired linear summation output of theith

neuron,i = 1; � � � ; Nk; in the kth layer,k = 1; � � � ; L.
bbb(k) = [b

(k)
1 ; � � � ; b

(k)
N ]T . Vector of desired linear summation

outputs in the layerk; k = 1; � � � ; L.
"
(k)
i (n) = d

(k)
i (n)�y

(k)
i (n) = [b

(k)
1 ; � � � ; b

(k)
N ]T . Error of theith

neuron,i = 1; � � � ; Nk; in the kth layer,k = 1; � � � ; L.
"(k) = ["

(k)
1 ; � � � ; "

(k)
N ]T . Vector of the error signals in thekth

layer, k = 1; � � � ; L.
e
(k)
i (n) = b

(k)
i (n)� f�1(y

(k)
i (n)). Error of the linear part of the

ith neuron,i = 1; � � � ; Nk; in thekth layer,k = 1; � � � ; L.
eee(k) = [e

(k)
1 ; � � � ; e

(k)
N ]T . Vector of the error signals in thekth

layer, k = 1; � � � ; L.

In Fig. 1, we show a model of theith neuron in thekth layer.

II. I NTRODUCTION

The BP [6] is the most widely applied multilayer neural-network
learning algorithm. Unfortunately, it suffers from a number of short-
comings. One such shortcoming is the slow convergence. Therefore,
several approaches have been developed [4], [5], [8] in order to speed
up the convergence.

The method presented in this brief relies on the analogy between
adaptive filters and neural networks. In adaptive filtering, the RLS
algorithm is typically an order of magnitude faster then the LMS
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