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Effects of Noise in Training Patterns on the Memory
Capacity of the Fully Connected Binary Hopfield
Neural Network: Mean-Field Theory and Simulations

Lipo Wang

Abstract—We show that the memory capacity of the fully training patterns increases. In Section Ill, we present results
connected binary Hopfield network is significantly reduced by a of extensive computer simulations to support our theoretic

sma[l amount of noise in training patterns. Our analytical resul'gs studies. Closing remarks are presented in Section IV.
obtained with the mean field method are supported by extensive

computer simulations.

Index Terms—Associative memory, Hebbian learning, Hop- Il. MEAN FIELD THEORY

field, neural network, mean-field theory, memory capacity, train-  The binary Hopfield network consists 8f McCulloch—Pitts
Ing noise. neurons [14] that have two states: firing and quiescent, or,
S; = £1, wherei = 1,---, N. Each neuron receives signals
I. INTRODUCTION from its neighboring neurons, and the signals are transmitted

NCE the publication of Hopfield's classic paper in 198
9], there have been numerous studies on the so—cal&
Hopfield neural network and its variants (e.g., [1], [4], [7]
[10]-[11], [15], [16], and [18]-[29]). For example, a Hopfield
network can be used as content-addressable memory (CAM). R = Z T;;S;. (1)
After a set of memory patterns are learned by the network, a i
presentation of a noisy input causes the network to recall a ) o )
memorized pattern in a successful retrieval. Time-dependéhtaddition, we consider the noise in neuronal signals due to
sequences of spatial patterns (spatio-temporal sequences) [g@pabilistic release of synaptic vesicle.s.and neurotransmitters
[18], [19] can also be stored and retrieved with a Hopfieldlat accounts for the spontaneous firing of a neuron [2].
network. The patterns used to train a Hopfield network agimilar noise also exists in electronic_ im_plementation_s _of
generally assumed to be ideal patterns that are free of noisé'@tral networks. In the presence of this signal transmission
is known that the memory capacity, i.e., the maximum numbBpise, the dynamics of the neuron becomes stochastic and
of spatial patterns that can be stored in a fully connected bind¥§ assume that neuron updates according the following
Hopfield network (stationary or temporal), is about4N, N Probability function [13]:
being the number of neurons in the network. In this paper 1
we study the following important question [21]: When one Prob(S; = £1) = f(£h{) = = )
needs to use a Hopfield network as CAM or to store spatio-
temporal sequences, and when the training patterns, or trainfgere 3 is inversely proportional to the standard deviation
sequences of spatial patterns, are contaminated with noRgthe signal transmission noise [13], [17], [29]. Hopfield
how will the memory capacity of the fully connected binar)fg] studied a fully connected network in which neurons are
Hopfield network be affected? updated sequentially and synaptic connections are chosen to
We will proceed as follows. In Section Il, we present &e 3]
theoretical analysis using theean fieldmethod [7], [15], 1 &
after generalizing the Hebbian learning rule [8], [3], [9] Tff =5 Z SESy (3)
used in the original Hopfield network to allow for noise in p=1
training patterns. The equations that determine the memory
capacity of the Hopfield network is derived analytically anwheres” = {S{', S5, .- -, S} is theuth stored binary pattern

the memory capacity is shown to decrease as the noise in g = 1), andp is the number of stored patterns. Patterns
{S*} are assumed to be randomly generated so that they are
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il O il O Hebbian rule
. nk guk
@ s @ S P
2 \‘ / st Since the second learning strategy discussed above is more
Vs . . . directly related to the Hebbian learning, we choose to use it
O O . O O , in this paper (a comparison between the above two learning
sH3 s 3 st strategies may be the subject of future studies)
(@) (b) 1 &8
Fig. 1. Schematic representations for two possible generalizations of the Tij = _N Z Z Sfbksjuk (8)
learning rule in the presence of training noise. (a) Associative mappings q p=1 k=1

among the noisy training patterns: equivalent to obtaimipgroximate clean
training patternsby carrying out averages over the noisy training patterns. (l'\)R,

Juk|,, — ek = ... i
Autoassociative mappings between the noisy training patterns themselves: Here {S |/“L 1,2, Zp’ k 1,2, ’Q} are the noisy
closer analogy with the Hebbian learning rule. training patterns ang noisy patterns are used to store each

standard memory. Equation (8) reduces to the original pre-
scription (3) if S#* = S* for all k and p.

Jul Qu2 H ini
51,512, -+, that may deviate fromclean training patterns o ¢ analysis in this paper, we choose the following form
S#, as shown in Fig. 1. Thelean pattern.S* itself is not of training noise:

explicitly shown, since any number of the noisy patterns may
be the same as theean patternﬁ“, i.e., the noise may take SJ“" = ij + 61”" (9)
zero values.

To derive the first possible learning strategy for noisy)/hereéfk is the difference between the training pattern and
training patterns, we notice that (3) may be understood # standard pattern, and may take valOgs2, since both
a set of mappings of pattern§S*,; = 1,2,---,p} onto S* andS** can bex1 only. We assume that these differences
themselves, and hence the temmtoassociativememories. are independent random numbers with a zero average and a
This interpretation has been generalized to sheteroassocia- standard deviatiom, i.e.,

tive memories with mappings between different patterns, for 1 r 1N
example, the bidirectional associative memory (BAM) [12]. (61 = = > st = > 5 =0 (10)
When noisy training patterng®!, S#2 ... are available, it Lt N =1
is reasonable to store them by establishing mappings amonncaj imilarl
them, that is [see Fig. 1(a)] and simiarly
(84" = (85™)%) = ((85%)%) = &*. (11)

7Y Y Y (st @
I k k’

This is in fact the same as

For instance$? = 0.5 indicates tha#? /4 = 12.5% of the
bits in {§”’“} are randomly chosen and flipped, since each bit
flipped gives(6¥)? = (£2)2 = 4. We have used {*)" to
g Ry indicate a statistical average, which may be carried out over
Tij Z <Z 5P ) <Z 55 ) (5) the stored patterns and the neurons (10), as well as the signal
mooNK M transmission noise (12) below.
Hence this strategy is equivalent to replacingdteanpatterns  According to (2), when averaged over the signal transmis-
Sk in (3) by theaverageof the noisy patterns, that is, in thission noise [7]
strategy one first obtains a set approximate clean _patterns (S:) = Prob(S; = +1)(+1) + Prob(S; = —1)(—1)
by averaging over (a form of preprocessing) the noisy patterns
and then use thesmproximate clean patterris learning with = tanh(Bh7). (12)
the original rule (3). A

. . . . Averages over the stored patterns and the neurons will be
Let us now discuss another possible learning strategy in tg rried out later

presence of noisy training patterns. The algorithm shown in ( In the mean field theory [7], we replade in (1) by its

is in the spirit of the Hebbian rule [8], which in essence stat erage over signal transmission noise and combine (1) with
that the increment of a synaptic weight during presentations((i )

training patterns is proportional to ttemultaneous activities
of the two neurons involved, i.e.,

S;) =tanh | 3 T::(5;) |. 13
N © (Si) = tan /; i455) (13)

Equation (3) can be obtained from (6) if all (clean) training To solve (13), let us consider the overlap between the
patterns are presented to the network consequtively duriagerage state of the network and a memory patﬁ%‘rn
learning. When the noisy training patterns are presented to 1 - . 1

the network, one training pattern at a given instance in time, mY = N<S> SV = N Z S7(S:). (14)
learning may occur as follows, agamthe spirit of the above i
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Substituting (13), (8), and (9) into (14), we obtain in addition to (10). Hence when averaged over the stored
3 1 patterns and the neurons, we have
R &= (A} = (51SEm) + 37 (81 + 6)SHm) +(Stn)
p#EL
> s (S§L+6§"“)<Sj>] = (81)(Sim) + > ((SI' + 6L)SHH(m*)
pok g £l

) . . + (S5 m)
=¥ Z S¥ tanh | 3 p > sk =0. (24)

wk

regarded as thsignal term, which drives the system toward

L S sk I
qN the memory state&*, whereas the second tersy; is anoise

ok,

1
=~ Z Sy tanh{ﬁlz (SE+ 8 )ym! +

m

)] Hence the first term in the right-hand side of (20) may be

that interferes with the converging process.

} (15) Let us now evaluate the standard deviation of this noise
term (A?): all cross-terms between the terms on the right-hand
side of (21) vanish after average, because of the independence

where among the random variables and their zero-averages, and thus
8 = 1 Z 6£Lk (16) only the squared terms survive, i.e.,
L V= (a3
and = ((812m?) + 3 (m)?)
1 k cuk £1
==y Sets). (17) "
Wi () + (1)), (25)
Suppose the network is initially_close to pattesih. We o nL _
consider the retrieval of this patte§ and evaluate Combining (11) and (16), we obtain
_ 1 1 .
m=m', (18) (@) = 5 S A@ ) =8/a=08  (20)
Let us first rewrite (15) slightly, using the fact th&} = k
{-1,+1} andtanh(z) is an odd function Similary, according to (17)
v _ 1 v olel 1 1k 2 vk 2
m’ =5 2 S St (@) =y 20 (S S
T 1ok,
52P(N -1 2
.tanh{/} [Z (SE 4+ 8 ymH 4+, } ~ N ~ oo (27)
F
1 Z g gl where we have assumed that
((85%(55))%) = 8 (28)
-tanh{ﬁ [Z (SE 4 6)Stm* + St } (19) and bothp and N approach+oc; however
# p
== 29
Then “=N (29)
1 remains a finite constant. Since random variabtes, . # 1}
= — tanh[3 A; 20 . R T
" Z aub(m + 2] (20) should all have the same variance [7], we have, following (25):
where v? = 6§m2 +ra+ 637’04 + 6204
Ai = 8ESEm+ > (S + ) Stm + Sty (21) =ra+ 8 (m* +a +ra) (30)
u7l where
We now investigate the property df;. We assume that [7] 1 y 1 y
{m#, . # 1},{S"}, and {6} are allindependentandom r=- > ((m*?) = o L)%
variables with mean zero, that is, e
= "2 1. 1
(mMy =0, forall p#1 (22) (m5, s (31)

We have also assumed that among all overlags (1 =
1,2,---,N), only the overlap with the attracting patternn=
(S =0, for all p, (23) m! is on the order of one, and all other overlapg (;: # 1)

and
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are infinitesimal. In fact, as we will shown below* (. # 1) L S e et S S B
are on the order oI/\/N andr given in (31) is finite. <«®

Again due to the independence among the random variables &
{m*, u # 1},{SI'}, and {6/} and their zero-averages, we
have

0.13

We have thus established th&f\;} in (20) is a set of
independentrandom variables with a zero-average and a
standard deviatiom given by (30). According tdhe central
limit theorem [6], we can replaceN—! ¥; in (20) with an
average over gsaussiannoise with a zero-average and a
standard deviatiom given by (30)

0.12

0.1

m = / \;l;_w /2 tanh[B(m + vz)]. (33)

The form of (33) is identical to the corresponding equation

derived for the case without training noise by Arattal. [4] =
and the effect of training noise is included in the standard T
deviation given by (30). That is, by Iettin@f =0, (33) and 0 0.01 0.02 0.03 0.04
(30) reduce to those of Amit al. [4]. 52
Sincev in (33) depends om, we need to evaluate self- 1
consistently by starting from (19) for # 1 Fig. 2. The ratioon. between the memory capacip: and the number of
neuronsh, i.e.,a. = p./N, for the fully connected binary Hopfield neural
— i Z S¥ gl network, as a function 0b2 = 62 /¢, whereé is the standard deviation
- g’ of training noise as defined in (9) angis the number of noisy training

patterns used to stored each memory pattern. Solid line: the mean field theory

.t v vygl, v . (solutions of (48), (49), (51), and (30). Circles: simulations wjth= 5
tanb{3[m + (57 + &7)Sim” + GI} (34) Triangles: simulations witly = 10.

where
G=681Sim+ > (SE+8)StmH 4 S (35) and
n#ly
— 2 v QU
Following exactly the same analysis fdy; defined in (21), =N Z{l — tanh”[3(m + G)]}67 57 (41)
we can show that ‘
(&) = (A) =0 (36) In (40) we have again used the central limit theorem [6] to
‘ ‘ replace the sum by an integration over a Gaussian distribution.
and We now show that the in (39) is much smaller compared

N2Y = (A)2) =12 = 1 §2(m2 o). (37 to the preceding term in (39) and can therefore be neglected.
(G)) = (8)%) = =ra+ G +atra). @7) o A SECEm
Another way to show (36) and (37) is by observing that

2
= A = (7 + St @ =) X sty i+ )
]

andm” with » # 1 is negligible by itself.
Expanding the second term on the right-hand side of (34),
which is proportional to the small quantite”, we obtain

x {1 — tanh®[B(m + ¢)] - (42)

Now we calculate the statistical averageadf Let us carry
1 v fi ith £ 7 vani
m¥ = — Z 575! tanh[B(m + &) out the_average oves” first and all terms withi #£ 5 vanish
after this average. Hence

+ % EZ: {1- tanhQ[ﬁ(m + )]}

(%) = % 3252< Z {1 — tanh?[B(m + ()]} >
(146757 )ym ) dz
:% > SYSanh[Bm + ¢ == 7% Nl {1 — tanh*[B(m + v2)]}?
N [/321 )l (39) —0, asN — 4o0. (43)
where Solving (39) (withz neglected) forn”, we obtain
9= [ =T o)) 40) = TR N 2 Sisyanblpmo+ Q)] (44
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Fig. 3. Histograms of the overlaps of the retrieved state with the initial state of the network (one of the stored patternsk forl3 and various
numbers of neurons in the network .

or smooth part of the integrand, i.e., the exponential factor, is
(m")? = v 1 approximately a constant in this small region ofand can
[1-p8(1-g)]* N? therefore be moved outside of the integration. Hence (40)
Y S¢SESYSitanh[B(m + ¢)] reduces to
i 21 2 /0,2
— _ _ = - —m /2b
xtanh[B(m + ¢ (45) C=pl-9)= ﬂ S “8)
Now we average (45) over the stored patterns. The avere%gce (48) showg — 1 as 3 — +oo, (46) becomes
over 5” again eliminates all terms with # j. The average r= % (49)
over the remaining patterns gives a factor gofas in (40). - (1-0)
Hence (45) becomes, in combination with (31) In addition, asg — +oo
dZ 2
S — ¢ */? tanh [B(m + vz
il Fey e 2 (46) NG [5( )
In the absence of signal transmission ndie= +oc in — dz e—z2/2sgn(m+w)
(2)], we take the limit3 — +oc in (33), (46), and (40). First, oV 2
we notice, according to (40) —9 / d; =% /2 _ 1 (50)
dz _2 —-mjv V&
pl—g)=p / Jar ¢ (1 = tanh?[B(m + v2)]) Hence (33) is simply
B_ —erf [ -2 51
~ e |rn+'vz:0 dz m=er ( )
Vam V2v
(1 = tanh?[B(m + v2)]) where
1 2 /0,2 0 2 x 2
= /27 [ dy — tanh[B(m + vz)). fo)=-—— [ dze” 52
oz e / # 5~ tan [B(m 4+ vz)] erf(x) =, ze (52)
(47)

is the standard error function.

To obtain the second line of (47), we have observed that asThe memory capacity of the network trained with noisy

# — 400, the integrand in the first line of (47) vanishes for alpatterns can be obtained by solving (48), (49), (51), and (30)
z except the close vicinity ofn + vz = 0 or z = —m/v. The collectively. Before we proceed to find the solutions, we note
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Fig. 4. Same as Fig. 3 fonr = 0.143.

that for the special case of zero noise in training patterngydating rule is deterministic, i.e3 = 4+co in (2)

i.e.,_é =0, these equ_ations reduce to the equations derivgd by Si(t+ At) = —1, if hi(t) <0

Amit et al. with a replica method [4]. The procedure of solving ) i h (8 S 0 54
(48), (49), (51), and (30) is presented in the Appendix. The =+1 if hi(t) > 0. (54)
memory capacity of the network, according to the mean fielthe distribution of the overlaps between the final network
theory, is presented in Fig. 2, which shows that the capachiates and the initial memory states are recorded. For each set
decreases monotonously as the noise in the training pattehsV, @, ¢, and 6%, the above processes, including network
increases. In the absence of training noise, iﬁ?_,: 0, we creation and memory stability checking, are repeated four
havea, = 0.138, which is the same as the result in [4]. Herdimes and average results are obtained.

_ Pe Let us first consider the case without training no@§§ =
N = — (53) 2 . .

N §%/q = 0). We choosey = 1, since the results are independent

andp. is the maximum (critical) number of stored patterns aif ¢ in the absence of training noise, according to (8). Fig. 3
which the autoassociative memory breaks down for a netwaskows the histograms forr = 0.13 with various values

of N neurons (we have assumed in this paper that- +00 of N [4]. As N increases, these histograms do not change
and N — +00). qualitatively: there are sharp peaks neae= 1 and very small
peaks scattered around lowet values. As« is increased

IIl. COMPUTER SIMULATIONS with an increment of 0.001 in each round of simulation, the

Fully connected binary Hopfield networks trained with noishiistograms do not change appreciably unti= 0.143. Fig. 4
patterns are implemented according to (1), (8), and (9) skows the histograms far = 0.143. As N increases, the
follows. For eachV (the number of neurons in the network)sharp peaks nean = 1 gradually shrink and the wider peaks
and a,p = aN “clean” patterns{ﬁf‘m = 1,2,---p} are at lower m values start to form and grow. It can thus be
formed by choosing each bit randomly frosll and—1. For extrapolated that the network never stabilizesrat= 1 for
a given set ofs? and ¢, ¢ noisy training patterns are formedN = +oo and « = 0.143 = «,. Thus the autoassociative
for each “clean” pattern by flipping each bit in the “clean’'memories of a fully connected Hopfield network breaks down
pattern with a probabilityy? /4. The synaptic weights are thenat«, = 0.143. We let the memory capacity. = a, —0.001 =
calculated with (8). The stability of each stored pattern is thénl142 (with a confidence range 6£0.001), in the absence of
checked: the initial state of the network is set to be each wéining noise & = 0). We note that this simulation result
the patternss* (. = 1,2,---,p) and the neurons are updatedvith «, = 0.142 is slightly higher than the theoretical result
sequentially (asynchronously) until the network stabilizes. Theith . = 0.138.
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1.5

Fig. 5. f1(y) and f2(y) in (A.5) in the absence of training n0i$é§ =0) Fig. 6. Same as Fig. 5 for nonzero training no&%e: 0.0365.

inifg_rl\fri(gisffigigf'(é??zfdiféfl?s'g: (©): f2(y). (@):a = 0.09. (b): possible cause of this large error range may be the validity of

(55) itself, whose theoretic origin has not been demonstrated.

In the presence of training noise, i.62 # 0, we have In fact, (55) predicts an exponential growth of the area under
run simulations with both; = 5 and g = 10. The overall them =1 peak fora < a. as N increases, but we did not
behaviors are similar to those Whég, =0, i.e., them =1 Observe such exponential growth in our simulations.
peaks start _to shrink a& increases ifx values are _increased IV. SUMMARY AND DISCUSSIONS
to be sufficiently large. The method of determining at a
given 63 # 0 is thus as follows. Starting from low values
and gradually increasing, we look for thea,, values at which
the sharp peaks nean = 1 start to shrink agV increases,

In summary, the Hebbian learning rule used in Hopfield’s
original work is generalized to allow for the existence of
noise in training patterns and the memory capacity of the

and we let the memory capacities = «, — 0.001 (with a fully connected binary Hopfield network is discussed ana-
confidence range of0.001). ’ Iytically. Both theoretical and simulation results show that

The memory capacities extracted from these extensive silfié memory capacity of the fully connected binary Hopfield
ulations are presented in Fig. 2. The quantitative agreem Work decreases as the amount.of _tralnlng noise increases.
between the theory and the simulations is reasonably godg. @chieve an even better quantitative agreement between

The small deviations between the mean field and simulatifffOretic and simulation results, a more rigorous theoretic
results may be attributed to the mean field theory itself, i.@PProach is needed. The replica method used in [4] is much

the fundamental assumption made in (13) is not rigorous. more complicated mathematically and yet yields the same

As indicated at the beginning of this section, for each sgsult as the mean field method [7], [15] used in the present
of N, a,q, and 62, only four simulations are run. This is paper, at least in the absence of training noise. The inclusion

due to the enormous computational time required to simuldibthe so-called replica symmetry breaking may be helpful [4];
large networks operating near or above memory capacity. FEFWeVer. this is out of the scope of the present paper.
example, forV = 2500, = 0.143,62 = 0, andq = 1 APPENDIX

(no noise in training patterns), it takesven dayso run one SOLVING (48), (49), (51),AND (30)

simulationin a SUN SPARC 20, despite all synaptic weights T e th i lectivel dt tth
and training patterns were stored in RAM rather than written 0 solve Inese equations coflectively, we heed to cast them
to disks, so as to maximize the computational speed. Into a form with only one variable. Let

In the absence of training noise, i.ég, = 0, Amit et al. y= n (A1)
[4] assumed that V2u
Then (51) leads to
P =Aexp [B(a— «.)N] (55)
m = erf(y) (A.2)

where P is the area under the peak near = 1, and A
and B are constants. By fitting (55), Amitt al. [4] obtained and
a. = 0.145 + 0.01. We did not use this method, since the — 1
. . ) . v erf(y). (A.3)
error range of 0.01 obtained with this method is too large. A V2y
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Substituting (49) in (48), we have [12] B.Kosko, “Bidirectional associative memorie$EE Trans. Syst., Man,
1 Cybern, vol. 18, pp. 49-60, Jan./Feb. 1988.
r = . (A.4) [13] W. A. Little, “The existence of persistent states in the braimath.
21 2 Biosci, vol. 19, pp. 101—120, 1974._ ) )
1— \/j Z e—yP [14] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
T U in nervous activity,"Math. Biophys.vol. 5, pp. 115-133, 1943.

[15] P. Peretto, “On learning rules and memory storage abilities of asymmet-

We have now rewrittemn, v, andr in terms ofy. Substituting rical neural networks,J. Phys, France, vol. 49, pp. 711-726, 1988.
(A 2)—(A 4) in (30) we obtain. after some manipulations [16] D. Schonfeld, “On the hysteresis and robustness of Hopfield neural

networks,” IEEE Trans. Circuits Syst.—lhol. 40, pp. 745-748, Nov.

1 erf(y)]? 1993. ‘
— 982 [eer(y) + af [17] G.L.Shaw and R. Vasudevan, “Persistent states of neural networks and
20(1 + 63) y 4 the random nature of synaptic transmissiodAth. Biosci, vol. 21, pp.

9 207-217, 1974.
2 .- 2 [18] H. Sompolinsky and I. Kanter, “Temporal association in asymmetric
lerf(y) — —= ye™? =erf*(y). (A.5) neural networks, Phys. Rev. Lettvol. 57, pp. 2861-2864, 1986.
\/7_r [19] L. Wang, “Processing spatio-temporal sequences with any static as-

We denote the left-hand side and the right-hand side of (A.5) sociative neural network,TEEE Trans. Circuit Syst.—llvol. 5, May

by f1(y) and f2(v), respectively. We plot these two functions[ZO]

1998.
, “On the dynamics of discrete-time, continuous-state Hopfield

for various choices ofv and 63 in Figs. 5 and 6. neural networks,”IEEE Trans. Circuits Syst.—II: Analog and Digital
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