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Effects of Noise in Training Patterns on the Memory
Capacity of the Fully Connected Binary Hopfield

Neural Network: Mean-Field Theory and Simulations
Lipo Wang

Abstract—We show that the memory capacity of the fully
connected binary Hopfield network is significantly reduced by a
small amount of noise in training patterns. Our analytical results
obtained with the mean field method are supported by extensive
computer simulations.

Index Terms—Associative memory, Hebbian learning, Hop-
field, neural network, mean-field theory, memory capacity, train-
ing noise.

I. INTRODUCTION

SINCE the publication of Hopfield’s classic paper in 1982
[9], there have been numerous studies on the so-called

Hopfield neural network and its variants (e.g., [1], [4], [7],
[10]–[11], [15], [16], and [18]–[29]). For example, a Hopfield
network can be used as content-addressable memory (CAM).
After a set of memory patterns are learned by the network, a
presentation of a noisy input causes the network to recall a
memorized pattern in a successful retrieval. Time-dependent
sequences of spatial patterns (spatio-temporal sequences) [11],
[18], [19] can also be stored and retrieved with a Hopfield
network. The patterns used to train a Hopfield network are
generally assumed to be ideal patterns that are free of noise. It
is known that the memory capacity, i.e., the maximum number
of spatial patterns that can be stored in a fully connected binary
Hopfield network (stationary or temporal), is about
being the number of neurons in the network. In this paper
we study the following important question [21]: When one
needs to use a Hopfield network as CAM or to store spatio-
temporal sequences, and when the training patterns, or training
sequences of spatial patterns, are contaminated with noise,
how will the memory capacity of the fully connected binary
Hopfield network be affected?

We will proceed as follows. In Section II, we present a
theoretical analysis using themean fieldmethod [7], [15],
after generalizing the Hebbian learning rule [8], [3], [9]
used in the original Hopfield network to allow for noise in
training patterns. The equations that determine the memory
capacity of the Hopfield network is derived analytically and
the memory capacity is shown to decrease as the noise in the
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training patterns increases. In Section III, we present results
of extensive computer simulations to support our theoretic
studies. Closing remarks are presented in Section IV.

II. M EAN FIELD THEORY

The binary Hopfield network consists of McCulloch–Pitts
neurons [14] that have two states: firing and quiescent, or,

, where . Each neuron receives signals
from its neighboring neurons, and the signals are transmitted
through synaptic weights . The neuron then either fires
if the total input exceeds a threshold, or remains quiescent
otherwise [7]. Quantitatively, neuronreceives the following
inputs from other neurons:

(1)

In addition, we consider the noise in neuronal signals due to
probabilistic release of synaptic vesicles and neurotransmitters
that accounts for the spontaneous firing of a neuron [2].
Similar noise also exists in electronic implementations of
neural networks. In the presence of this signal transmission
noise, the dynamics of the neuron becomes stochastic and
we assume that neuron updates according the following
probability function [13]:

(2)

where is inversely proportional to the standard deviation
of the signal transmission noise [13], [17], [29]. Hopfield
[9] studied a fully connected network in which neurons are
updated sequentially and synaptic connections are chosen to
be [3]

(3)

where is the th stored binary pattern
, and is the number of stored patterns. Patterns

are assumed to be randomly generated so that they are
quasiorthogonal.

When training patterns are corrupted with noise, how should
the learning rule given by (3) be generalized? We discuss
the following two possible strategies. Suppose that instead of
clean training patterns , there exist sets of training patterns
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(a) (b)

Fig. 1. Schematic representations for two possible generalizations of the
learning rule in the presence of training noise. (a) Associative mappings
among the noisy training patterns: equivalent to obtainingapproximate clean
training patternsby carrying out averages over the noisy training patterns. (b)
Autoassociative mappings between the noisy training patterns themselves: in
closer analogy with the Hebbian learning rule.

that may deviate fromclean training patterns
, as shown in Fig. 1. Theclean pattern itself is not

explicitly shown, since any number of the noisy patterns may
be the same as thecleanpattern , i.e., the noise may take
zero values.

To derive the first possible learning strategy for noisy
training patterns, we notice that (3) may be understood as
a set of mappings of patterns onto
themselves, and hence the termautoassociativememories.
This interpretation has been generalized to storeheteroassocia-
tive memories with mappings between different patterns, for
example, the bidirectional associative memory (BAM) [12].
When noisy training patterns are available, it
is reasonable to store them by establishing mappings among
them, that is [see Fig. 1(a)]

(4)

This is in fact the same as

(5)

Hence this strategy is equivalent to replacing thecleanpatterns
in (3) by theaverageof the noisy patterns, that is, in this

strategy one first obtains a set ofapproximate clean patterns
by averaging over (a form of preprocessing) the noisy patterns
and then use theseapproximate clean patternsin learning with
the original rule (3).

Let us now discuss another possible learning strategy in the
presence of noisy training patterns. The algorithm shown in (3)
is in the spirit of the Hebbian rule [8], which in essence states
that the increment of a synaptic weight during presentations of
training patterns is proportional to thesimultaneous activities
of the two neurons involved, i.e.,

(6)

Equation (3) can be obtained from (6) if all (clean) training
patterns are presented to the network consequtively during
learning. When the noisy training patterns are presented to
the network, one training pattern at a given instance in time,
learning may occur as follows, againin the spirit of the above

Hebbian rule:

(7)

Since the second learning strategy discussed above is more
directly related to the Hebbian learning, we choose to use it
in this paper (a comparison between the above two learning
strategies may be the subject of future studies)

(8)

where are the noisy
training patterns and noisy patterns are used to store each
standard memory. Equation (8) reduces to the original pre-
scription (3) if for all and .

For our analysis in this paper, we choose the following form
of training noise:

(9)

where is the difference between the training pattern and
the standard pattern, and may take values since both

and can be only. We assume that these differences
are independent random numbers with a zero average and a
standard deviation , i.e.,

(10)

and similarly

(11)

For instance, indicates that of the
bits in are randomly chosen and flipped, since each bit
flipped gives We have used “ ” to
indicate a statistical average, which may be carried out over
the stored patterns and the neurons (10), as well as the signal
transmission noise (12) below.

According to (2), when averaged over the signal transmis-
sion noise [7]

(12)

Averages over the stored patterns and the neurons will be
carried out later.

In the mean field theory [7], we replace in (1) by its
average over signal transmission noise and combine (1) with
(12)

(13)

To solve (13), let us consider the overlap between the
average state of the network and a memory pattern

(14)
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Substituting (13), (8), and (9) into (14), we obtain

(15)

where

(16)

and

(17)

Suppose the network is initially close to pattern. We
consider the retrieval of this pattern and evaluate

(18)

Let us first rewrite (15) slightly, using the fact that
and is an odd function

(19)

Then

(20)

where

(21)

We now investigate the property of . We assume that [7]
and are all independentrandom

variables with mean zero, that is,

for all (22)

and

for all (23)

in addition to (10). Hence when averaged over the stored
patterns and the neurons, we have

(24)

Hence the first term in the right-hand side of (20) may be
regarded as thesignal term, which drives the system toward
the memory state whereas the second term is a noise
that interferes with the converging process.

Let us now evaluate the standard deviation of this noise
term all cross-terms between the terms on the right-hand
side of (21) vanish after average, because of the independence
among the random variables and their zero-averages, and thus
only the squared terms survive, i.e.,

(25)

Combining (11) and (16), we obtain

(26)

Similary, according to (17)

(27)

where we have assumed that

(28)

and both and approach however

(29)

remains a finite constant. Since random variables
should all have the same variance [7], we have, following (25):

(30)

where

(31)

We have also assumed that among all overlaps
only the overlap with the attracting pattern

is on the order of one, and all other overlaps
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are infinitesimal. In fact, as we will shown below,
are on the order of and given in (31) is finite.

Again due to the independence among the random variables
and and their zero-averages, we

have

for (32)

We have thus established that in (20) is a set of
independentrandom variables with a zero-average and a
standard deviation given by (30). According tothe central
limit theorem [6], we can replace in (20) with an
average over aGaussiannoise with a zero-average and a
standard deviation given by (30)

(33)

The form of (33) is identical to the corresponding equation
derived for the case without training noise by Amitet al. [4]
and the effect of training noise is included in the standard
deviation given by (30). That is, by letting , (33) and
(30) reduce to those of Amitet al. [4].

Since in (33) depends on, we need to evaluate self-
consistently by starting from (19) for

(34)

where

(35)

Following exactly the same analysis for defined in (21),
we can show that

(36)

and

(37)

Another way to show (36) and (37) is by observing that

(38)

and with is negligible by itself.
Expanding the second term on the right-hand side of (34),

which is proportional to the small quantity we obtain

(39)

where

(40)

Fig. 2. The ratio�c between the memory capacitypc and the number of
neuronsN , i.e.,�c = pc=N , for the fully connected binary Hopfield neural
network, as a function of�2

q
� �2=q, where � is the standard deviation

of training noise as defined in (9) andq is the number of noisy training
patterns used to stored each memory pattern. Solid line: the mean field theory
(solutions of (48), (49), (51), and (30). Circles: simulations withq = 5.
Triangles: simulations withq = 10.

and

(41)

In (40) we have again used the central limit theorem [6] to
replace the sum by an integration over a Gaussian distribution.

We now show that the in (39) is much smaller compared
to the preceding term in (39) and can therefore be neglected.
According to (41)

(42)

Now we calculate the statistical average of. Let us carry
out the average over first and all terms with vanish
after this average. Hence

(43)

Solving (39) (with neglected) for , we obtain

(44)
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Fig. 3. Histograms of the overlaps of the retrieved state with the initial state of the network (one of the stored patterns), for� = 0:13 and various
numbers of neurons in the networkN .

or

(45)

Now we average (45) over the stored patterns. The average
over again eliminates all terms with . The average
over the remaining patterns gives a factor ofas in (40).
Hence (45) becomes, in combination with (31)

(46)

In the absence of signal transmission noise in
(2)], we take the limit in (33), (46), and (40). First,
we notice, according to (40)

(47)

To obtain the second line of (47), we have observed that as
the integrand in the first line of (47) vanishes for all

except the close vicinity of or . The

smooth part of the integrand, i.e., the exponential factor, is
approximately a constant in this small region ofand can
therefore be moved outside of the integration. Hence (40)
reduces to

(48)

Since (48) shows as , (46) becomes

(49)

In addition, as

(50)

Hence (33) is simply

(51)

where

(52)

is the standard error function.
The memory capacity of the network trained with noisy

patterns can be obtained by solving (48), (49), (51), and (30)
collectively. Before we proceed to find the solutions, we note
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Fig. 4. Same as Fig. 3 for� = 0:143.

that for the special case of zero noise in training patterns,
i.e., , these equations reduce to the equations derived by
Amit et al.with a replica method [4]. The procedure of solving
(48), (49), (51), and (30) is presented in the Appendix. The
memory capacity of the network, according to the mean field
theory, is presented in Fig. 2, which shows that the capacity
decreases monotonously as the noise in the training patterns
increases. In the absence of training noise, i.e., , we
have , which is the same as the result in [4]. Here

(53)

and is the maximum (critical) number of stored patterns at
which the autoassociative memory breaks down for a network
of neurons (we have assumed in this paper that
and .

III. COMPUTER SIMULATIONS

Fully connected binary Hopfield networks trained with noisy
patterns are implemented according to (1), (8), and (9) as
follows. For each (the number of neurons in the network)
and “clean” patterns are
formed by choosing each bit randomly from1 and 1. For
a given set of and noisy training patterns are formed
for each “clean” pattern by flipping each bit in the “clean”
pattern with a probability . The synaptic weights are then
calculated with (8). The stability of each stored pattern is then
checked: the initial state of the network is set to be each of
the patterns and the neurons are updated
sequentially (asynchronously) until the network stabilizes. The

updating rule is deterministic, i.e., in (2)

if

if (54)

The distribution of the overlaps between the final network
states and the initial memory states are recorded. For each set
of and the above processes, including network
creation and memory stability checking, are repeated four
times and average results are obtained.

Let us first consider the case without training noise
We choose , since the results are independent

of in the absence of training noise, according to (8). Fig. 3
shows the histograms for with various values
of [4]. As increases, these histograms do not change
qualitatively: there are sharp peaks near and very small
peaks scattered around lower values. As is increased
with an increment of 0.001 in each round of simulation, the
histograms do not change appreciably until . Fig. 4
shows the histograms for . As increases, the
sharp peaks near gradually shrink and the wider peaks
at lower values start to form and grow. It can thus be
extrapolated that the network never stabilizes at for

and . Thus the autoassociative
memories of a fully connected Hopfield network breaks down
at . We let the memory capacity

(with a confidence range of , in the absence of
training noise ( ). We note that this simulation result
with is slightly higher than the theoretical result
with .
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Fig. 5. f1(y) andf2(y) in (A.5) in the absence of training noise(�2
q
= 0)

and for various choices of�. (a)–(d):f1(y). (e): f2(y). (a): � = 0:09. (b):
� = 0:11. (c): � = 0:138. (d): � = 0:17.

In the presence of training noise, i.e., , we have
run simulations with both and . The overall
behaviors are similar to those when , i.e., the
peaks start to shrink as increases if values are increased
to be sufficiently large. The method of determining at a
given is thus as follows. Starting from low values
and gradually increasing, we look for the values at which
the sharp peaks near start to shrink as increases,
and we let the memory capacities (with a
confidence range of ).

The memory capacities extracted from these extensive sim-
ulations are presented in Fig. 2. The quantitative agreement
between the theory and the simulations is reasonably good.
The small deviations between the mean field and simulation
results may be attributed to the mean field theory itself, i.e.,
the fundamental assumption made in (13) is not rigorous.

As indicated at the beginning of this section, for each set
of and only four simulations are run. This is
due to the enormous computational time required to simulate
large networks operating near or above memory capacity. For
example, for and
(no noise in training patterns), it takesseven daysto run one
simulation in a SUN SPARC 20, despite all synaptic weights
and training patterns were stored in RAM rather than written
to disks, so as to maximize the computational speed.

In the absence of training noise, i.e., , Amit et al.
[4] assumed that

(55)

where is the area under the peak near , and
and are constants. By fitting (55), Amitet al. [4] obtained

. We did not use this method, since the
error range of 0.01 obtained with this method is too large. A

Fig. 6. Same as Fig. 5 for nonzero training noise�2
q
= 0:0365.

possible cause of this large error range may be the validity of
(55) itself, whose theoretic origin has not been demonstrated.
In fact, (55) predicts an exponential growth of the area under
the peak for as increases, but we did not
observe such exponential growth in our simulations.

IV. SUMMARY AND DISCUSSIONS

In summary, the Hebbian learning rule used in Hopfield’s
original work is generalized to allow for the existence of
noise in training patterns and the memory capacity of the
fully connected binary Hopfield network is discussed ana-
lytically. Both theoretical and simulation results show that
the memory capacity of the fully connected binary Hopfield
network decreases as the amount of training noise increases.
To achieve an even better quantitative agreement between
theoretic and simulation results, a more rigorous theoretic
approach is needed. The replica method used in [4] is much
more complicated mathematically and yet yields the same
result as the mean field method [7], [15] used in the present
paper, at least in the absence of training noise. The inclusion
of the so-called replica symmetry breaking may be helpful [4];
however, this is out of the scope of the present paper.

APPENDIX

SOLVING (48), (49), (51),AND (30)

To solve these equations collectively, we need to cast them
into a form with only one variable. Let

(A.1)

Then (51) leads to

(A.2)

and

(A.3)
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Substituting (49) in (48), we have

(A.4)

We have now rewritten and in terms of . Substituting
(A.2)–(A.4) in (30), we obtain, after some manipulations

(A.5)

We denote the left-hand side and the right-hand side of (A.5)
by and , respectively. We plot these two functions
for various choices of and in Figs. 5 and 6.

Let us first consider . If , there are
two positive intersecting points between and ,
which correspond to positive solutions forand , the larger
solution measuring the retrieval quality (see [4] for discussions
on the meaning of the smaller solution). If , there are
no positive intersecting points between and , which
represents the breakdown of the autoassociative memories. At
the critical memory capacity , there is one
positive intersecting (tangent) point between and .

As increases from zero, does not change; however,
curves for various choices of move downwards. For

example, when , the curve with
becomes tangent to . Thus

. In general, the memory capacity
is a decreasing function of the noise in training patterns.
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